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Preface...............................................................

T HIS BOOK is about the mechanics and energetics of animal
movement on land, in water, and through the air. Its emphasis
is on understanding rather than comprehensive description, on

principles rather than details. Most of it is about vertebrates, arthropods,
and molluscs, because these are the groups that have been most intensely
studied. If a style of locomotion is peculiar to a few species or to an obscure
group, I have felt no need to include it, unless there is something particu-
larly interesting about it. I have included only muscle-powered locomo-
tion, excluding the movements of small animals such as planktonic larvae
of invertebrates that depend on cilia for propulsion.

My aim has been to explain the mechanical principles on which locomo-
tion depends; to account for its metabolic energy cost; and to explore the
merits of different styles of locomotion, in different circumstances. I have
used rough calculations and simple mathematical arguments frequently
to check and clarify the explanations.

I have designed this book principally for advanced undergraduates,
graduate students, researchers, and university teachers of biology. I have
assumed that readers will be familiar with the major groups of animals,
and that they will know a little anatomy, physiology, and mechanics.

I am grateful to two anonymous reviewers, whose percipient sugges-
tions have improved this book.
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Chapter One...............................................................
The Best Way to Travel

T HIS BOOK describes the movements of animals and of the struc-
tures such as legs, fins, or wings that they use for movement. It
tries to explain the physical principles on which their movements

depend. And it asks whether the particular structures and patterns of
movement that we find in animals are better suited to their ways of
life than possible alternatives. This chapter will, I hope, help us when we
come to ask these questions about the merits of particular structures and
movements.

The structures of animals and some of their patterns of movement (the
ones that are inherited) have evolved. Other patterns of movement may
be learned afresh by successive generations of animals, by trial and error.
Evolution by natural selection, and learning by trial and error, both tend
to make the animals and their behavior in some sense better. What, in this
context, does “better” mean?

1.1. FITNESS

The most fundamental answer is that evolution favors structures and pat-
terns of movement that increase fitness, and that the capacity for learning
has evolved so that learning also can be expected to increase fitness. The
fitness of an animal’s complement of genes (its genotype) is the probability
of the same group of genes being transmitted to subsequent generations.
Unfortunately for the purposes of this book, it is not generally easy to
measure or calculate the effect on fitness of, for example, a change in the
length of an animal’s legs or a modification of its gait. We can make more
progress by looking at the effects of evolution in a less fundamental way.

Fitness depends largely on the number of offspring that animals pro-
duce, and on the proportion of those offspring that survive to breed. Thus,
natural selection favors genotypes that increase fecundity or reduce mor-
tality. This insight still seems rather remote from our discussions of loco-
motion. It seems helpful to ask at this stage, what aspects of an animal’s
performance in locomotion are most likely to affect fecundity and mortal-
ity, and so fitness? What qualities, in the context of locomotion, can natural
selection be expected to favor? Some suggestions follow.
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1.2. SPEED

For many animals, natural selection may tend to favor structures and pat-
terns of movement that increase maximum speed. A faster-moving preda-
tor may be able to catch more prey, which may enable it to rear and feed
more offspring. A faster moving prey animal may be better able to escape
predators, and so may live longer. However, we should not assume that
speed is important for all animals. For example, tortoises are herbivores,
with no need for speed to catch prey. Their shells are sufficient protection
against most predators, so they do not need speed to escape. It seems
clear that maximum speed has had little importance in the evolution of
tortoises, so we need not be surprised that tortoises are remarkably slow.

It is probably generally true that most animals spend very little of
their time traveling at maximum speed. Lions (Panthera leo) are idle for
most of the day, but their ability to run fast occasionally is vital to their
hunting success. The antelopes and zebra on which they feed spend nearly
all their time quietly grazing or traveling slowly, but depend on their abil-
ity to run fast in emergencies, to escape from lions and other predators.
Ability to travel fast may be highly important to animals, although it may
seldom be used.

1.3. ACCELERATION AND MANEUVERABILITY

Acceleration may be even more important than speed for predators such
as lions, which stalk antelopes and then make a sudden dash from a short
distance; and pike (Esox), which hide among vegetation and dash out to
catch small fish that swim past. Acceleration must be correspondingly im-
portant for the prey. Suppose a predator dashes with constant acceleration
apred, starting from rest at zero time, at a distance d from its prey. At time
t its speed is apredt, and it has traveled a distance 0.5apredt 2. If the prey starts
running at the same instant as the predator, with acceleration aprey , it has
traveled a distance 0.5apreyt 2 at time t. If the predator’s acceleration is
greater than the prey’s, and if the chase is short enough for neither animal
to reach top speed, the predator catches the prey when

0.5 t 2 (apred − aprey) = d

t = 1 2d
apred − aprey

2
0.5

(1.1)

by which time the predator has covered a distance a predd/(apred − a prey). If
the predator has twice the acceleration of the prey, it catches it after cov-
ering a distance 2d; but if its acceleration is only 1.1 times that of the prey
it has to run a distance 11d.
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Fig. 1.1. Graphs of speed against time for lions and Thomson’s gazelle, calculated
from films of lions attacking prey. The curves were obtained by fitting to the data
equations of the form v = vmax [1 − exp (− kt)], where v is the speed at time t , vmax

is the speed that is approached asymptotically, and k is a constant. Redrawn from
Elliott et al. (1977).

That analysis is grossly simplified. It assumes that both animals start
moving simultaneously, and that both animals have constant acceleration
throughout the chase. Elliott et al. (1977) filmed lions hunting gazelles
(Gazella thomsoni), and used his films to calculate graphs of speed against
time. These graphs curve and level off, showing that both predator and
prey accelerated at decreasing rates, as they gained speed (Fig. 1.1). How-
ever, the analysis is sufficient to show that the ability of a predator to catch
prey may depend more on its acceleration than on its maximum speed.
Indeed, a predator with superior acceleration may be able to catch prey,
even if its top speed is lower than that of the prey. Elliott found that the
initial accelerations of the lions averaged 9.5 m/s2, and those of the ga-
zelles only 4.5 m/s2. He estimated that the speeds they would eventually
have reached were 14 m/s for the lions, and a much faster 27 m/s for the
gazelles. However, these estimates of top speed depended on extrapola-
tion of his data, and may not be accurate.

The analysis also ignored the possibility that the prey might attempt to
escape by swerving. Films of gazelles (Gazella thomsoni again) pursued by
cheetah (Acinonyx jubatus) show the prey swerving when the predator is
close behind. Children playing the game of tag (called tig in Britain) know
that a well-timed swerve is a good escape strategy.

An animal traveling at speed v on a circular arc of radius r has an acceler-
ation v 2/r toward the center of the circle. Thus, swerving involves side-
ways acceleration. Suppose that a predator running at speed vpred is capable
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of swerving with radius rpred, and a prey animal running with speed vprey

swerves with radius rprey. The prey can escape, even if vprey is lower than vpred,
if its sideways acceleration vprey

2/rprey is greater than the predator’s sideways
acceleration vpred

2/rpred. Howland (1974) pointed this out, and went on to
show that, to take full advantage of its superior sideways acceleration, the
prey must delay swerving until the predator is very close behind. This is
illustrated in Fig. 1.2, which shows the paths of predator and prey. The
predator is represented as traveling faster than the prey, but with larger
radius. Time intervals are marked on the animals’ paths. Each animal has
the same speed and radius in both diagrams. The prey escapes if it swerves
at the last possible moment (B), but if it swerves too soon the predator
cuts off the corner and intercepts it (A).

1.4. ENDURANCE

Animals cannot maintain their top speeds indefinitely in a prolonged
chase. Figure 1.3A shows the speeds at which human athletes have run
races ranging from a 100-m sprint to a marathon, plotted against the time
taken for the race. Figure 1.3B shows the maximum speeds maintained by
trout (Salmo irideus) for different times. In each case speed falls as time
and distance increase.

The graph for the fish (Fig. 1.3B) is plotted on ordinary linear coordi-
nates. It shows, for example, that the 15-cm fish’s maximum speed was
180 cm/s for one-second sprints, but fell, as time increased, toward an
asymptote of about 40 cm/s. The graph for human running (Fig. 1.3A)
would look very similar to the fish graph, if it had been plotted in the
same way. However, it has been plotted on logarithmic coordinates, which
have made it possible to display data for a much wider range of times. This
graph shows not only that maximum speed declines markedly in the first
100 s of running time, but also that the decline continues over a period
of several hours. The point for the 100-m race (triangle) is potentially
misleading because sprinters are still accelerating over most of this dis-
tance. The remaining data, for races from 200 m to a marathon, form
two straight lines meeting at an angle when plotted thus on logarithmic
coordinates. This suggests that the decline in speed over short times (less
than about 150 s) depends on a different phenomenon from the longer
term decline in speed. We will find a likely explanation in Section 2.5.

Now suppose that a predator is chasing prey over a sufficient distance
for us to ignore the acceleration period. We might, for example, be consid-
ering African hunting dogs (Lycaon), which chase antelopes over distances
of several kilometers (van Lawick-Goodall and van Lawick-Goodall
1970). Assume that both animals are able to estimate the duration of the



Fig. 1.2. Diagrams of a predator chasing swerving prey. The paths of the animals
are seen in plan view, with the animals’ positions after successive intervals of time
numbered 1, 2, etc. The prey is slower than the predator (vprey = 0.75vpred), but can
execute a tighter turn (rprey = 0.5rpred). In (A) the animals were initially running
along the line ABC. At time zero, when both animals started swerving, the preda-
tor was at B and the prey at C. The prey reaches point D after 6 units of time. The
predator would pass D after 5.4 units of time if it continued running at maximum
speed, but by slowing down a little it can intercept the prey there. In (B) swerving
starts when the animals are at B ′, C ′. The prey passes point D ′ after 1.3 units of
time, and the predator arrives there only after 1.4 units of time, so in this case the
prey escapes. Modified from Alexander (1982).



Fig. 1.3. Graphs showing how the speed at which an animal can travel falls, as the
time for which it has to be sustained increases. (A) World record speeds for male
human athletes in races of different lengths, plotted against the time for the race,
redrawn from Savaglio and Carbone (2000). (B) The highest speeds that a trout
(Salmo irideus) maintained for different times when swimming spontaneously in
an annular tank, redrawn from Bainbridge (1960). (C) A schematic graph, which
is explained in the text, showing how a predator with good endurance may be able
to catch faster prey.
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chase in advance, and choose the speeds that will take them furthest in
that time. Though its sprinting speed may be less than that of the prey,
the predator will eventually overtake the prey if its sustainable speed is
greater than that of the prey. Less obviously, even though its sprinting
speed and its maximum speed over long distances may be less than those
of the prey, it may be able to catch the prey if it fatigues less quickly than
the prey. Figure 1.3C is a schematic graph illustrating this possibility; no-
tice how the lines cross, showing that there is a range of chase times for
which the predator can travel faster than the prey.

1.5. ECONOMY OF ENERGY

Measurements of the oxygen consumption of many animals have been
made, to find out how much energy they use in locomotion; the principal
methods will be outlined in Section 5.3. Some striking differences have
been observed. For example, Taylor et al. (1982) found that walking pen-
guins (Pygoscelis) use energy about 60% faster than turkeys (Meleagris) of
the same mass, walking at the same speed. In another comparison, this
time of the energy cost of swimming at the surface of water, penguins
(Eudyptula, in this case) performed much better; they used only 0.72
times as much energy as ducks (Anas) of equal mass, swimming at the
same speed (Baudinette and Gill 1985). In a second comparison of swim-
mers, squid (Illex) used energy 1.75 times as fast as salmon (Onchorhyn-
chus) of comparable mass, although they were swimming at only 0.6 times
the speed of the fish (Webber and O’Dor 1986). Are these differences
likely to be important to the animals?

Economy of energy can affect fitness in various ways, of which the most
generally important is probably this: energy that is not used for locomo-
tion is available for growth and reproduction. For example, birds rearing
nestlings may have to spend all the daylight hours foraging for food, flying
for much of the time. A substantial proportion of the food they collect
has to be used to fuel flight, and so is not available to feed the nestlings.
House martins (Delichon urbica) are small birds that feed on insects,
which they catch on the wing. In field experiments in Scotland, Bryant
and Westerterp (1980) set up nest boxes that were used by house martins.
Trapdoors on the boxes enabled them to capture the birds, to make the
injections and (a day or two later) collect the blood samples needed to
measure their metabolic rates by the doubly labeled water technique,
which is explained in Section 5.3. While they had young in the nest, the
birds spent an average of 14 h per day off the nest, flying all the time, and
their metabolic rates were 3.6 times the resting rate. For part of the time,
the nestlings were temporarily fitted with collars that prevented them
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from swallowing, so that the experimenters could recover and weigh the
mouthfuls of food that their parents gave them. The brood was found to
be receiving food from each parent at a rate equivalent to 3.0 times the
parent’s resting metabolic rate, while the parents (as we have seen) were
using energy at 3.6 times the resting rate for their own metabolism. A very
large fraction of the energy that the parents were using, in excess of the
resting rate, must have been used to power flight; and if they could have
flown more economically they would have had more food to spare for the
young. They might have been able to rear a larger brood, and so pass on
more of their genes to the next generation.

As another example to show how economy of energy can affect fitness
consider a typical fish, which, unlike the birds we have been considering,
does not care for its young. The more eggs it lays (of given size and qual-
ity), the more offspring it will have and the more genes it is likely to con-
tribute to successive generations; but the number of eggs it can produce
is limited by its size. As a rough general rule, a mature female fish of mass
m can be expected to produce a mass of 0.1 to 0.2m of eggs in the course
of the season (Le Cren and Holdgate 1962). Other things being equal,
the less energy it has had to use for locomotion in the course of its life,
the more of its food energy intake will have been available for growth, the
bigger it will have grown, and the more eggs it can lay. Alexander (1967)
made a simple calculation to assess the likely effect of energy economy on
fitness. I estimated that 20% of the energy content of the food eaten by a
typical fish would be lost in feces and urine; 34% would be used for resting
metabolism; 34% would be used to power swimming; and 12% would be
available for growth and reproduction. If these estimates are realistic,
three times as much energy is used for swimming as for growth and repro-
duction, so a 1% improvement in the efficiency of swimming can be ex-
pected to make 3% more energy available for growth and reproduction.

1.6. STABILITY

We have already noted that tortoises walk very slowly. The likely reason is
that, if speed is unimportant, an animal can make do with very slow mus-
cles. These can be very economical of energy, as will be explained in Sec-
tion 2.5. Experiments with tortoise muscle have shown that it is remark-
ably economical (Woledge et al., 1985). We will see in Section 7.9 that
stability is a problem for walking animals with very slow muscles, but that
the problem can be alleviated by appropriate choice of gait. Natural selec-
tion seems to have optimized the gait of tortoises to obtain adequate sta-
bility with the slowest possible muscles.
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1.7. COMPROMISES

The discussion so far may suggest that animals should evolve to be as fast
as possible, to have the best possible acceleration, maneuverability and
endurance, and to be as economical as possible of energy. However, these
objectives are not always compatible. The example of tortoises has already
shown us that an animal designed to walk as economically as possible can-
not be fast. Similarly, no human athlete is a champion both in sprinting
and in distance running, and an animal adapted to sprint as fast as possible
would be unlikely to have good endurance. Sprinters and distance runners
differ markedly in physique, the sprinters having well-developed muscles
and the distance runners being less muscular, with bigger hearts capable
of pumping a greater volume of blood at each stroke (Reilly et al., 1990).
Evolution can be expected to favor compromises between the require-
ments of speed, endurance, economy, etc.

If we were to try to express the relationship between the locomotion of
animals and their fitness in mathematical terms, we would have to con-
clude that fitness is a function of speed, acceleration, maneuverability, en-
durance, energy economy, and a great many other properties. It would
not be at all obvious what the function should be, and if we were to try
to assess the effect on fitness of some change (for example, longer legs or
bigger thigh muscles) we would find ourselves doing elaborate and highly
unreliable calculations. To make our discussions manageable, we must try
to identify the properties that are most important, and concentrate on the
effects that adaptations have on them. We can safely assume that racehorses
have been selected for speed over distances of the order of a few kilo-
meters, but for animals designed by natural selection, as distinct from se-
lective breeding, the criteria for selection are generally less clear-cut.

1.8. CONSTRAINTS

We will have to remember in our discussions that evolution cannot
bring about every imaginable change. We have already seen that squid are
less economical swimmers than salmon. They are also slower; the maxi-
mum sustainable speeds of a 0.5-kg salmon and a similar-sized squid were
1.35 and 0.76 m/s, respectively (Webber and O’Dor 1986). Squid
might be faster and more economical if they had evolved fishlike tails,
but their evolution has been constrained by their molluscan ancestry. Evo-
lution proceeds by relatively small steps, and there does not seem to be
any conceivable evolutionary route from a squid to a fishlike animal that
would not involve passing through a stage less fit than either. Again, the
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walking of tortoises would be more stable if they had six legs instead of
four, but the evolution of tortoises has been constrained by their four-
legged ancestry.

To understand how these constraints operate, think of a walker in a
hilly landscape, who walks always uphill. He or she may reach the highest
summit, but is much more likely to finish on some subsidiary peak. There
is no route from a lower peak to a higher one that does not involve first
going downhill. Similarly, an evolutionary path along which an animal
species changed progressively, increasing fitness at every stage, would not
necessarily lead to the fittest imaginable structure.

1.9. OPTIMIZATION THEORY

Optimization theory is the branch of mathematics that finds the best pos-
sible solutions to problems. Here is a simple example. Consider a bird
gliding with fully spread wings, aiming to glide at the shallowest possible
angle and so to travel as far as possible for given loss of height. It can glide
faster or slower by holding its wings in slightly different positions, and
this will affect its angle of descent. This angle θ is given by an equation
that applies also to man-made gliders:

sin θ = Av 2 + B/v 2 (1.2)

where v is the speed, and A and B are constants that depend on the size
and shape of the wings (Equation 10.18). Figure 1.4A is a graph of sin θ
against speed v. It shows that the angle is steep if the bird glides very
slowly or very fast, and is least at an intermediate speed.

The same result can be obtained without drawing a graph. Notice that
at low speeds the graph slopes downhill, and at high speeds uphill. The
minimum angle of glide is obtained where the graph runs level, with zero
slope. We can find the minimum by deriving an equation that gives the
slope, which can be done by the mathematical process of differentiation,
and then finding the value of v that makes the slope zero. Readers who
do not know how to differentiate can take the process on trust, or consult
a textbook of calculus or (for a very quick explanation) read Section 1.2
of my book Optima for Animals (Alexander 1996). The slope of a graph
of sin θ against v is represented by the mathematical expression d(sin θ)/
dv. Differentiation of Equation 1.2 tells us that the slope is

d (sin θ)
dv

= 2Av − 2B/v 3

which is zero when



Fig. 1.4. Graphs illustrating an explanation of the basic principles of optimization
theory: (A) Equation 1.2; (B) Equation 1.3 with the parameter A given the value
0.3; and (C) the same equation for several different values of A.
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v = 1 B
A 2

0.25

Thus, the speed at which the angle of glide is least is (B/A)0.25. We will
use a more complicated form of this equation in Section 10.6, when we
discuss how the wings of soaring birds are adapted to their ways of life.

Instead of a graph of the sine of the angle of descent against speed, we
might have drawn a graph of the distance traveled per unit loss of height.
This would have shown a maximum, instead of a minimum. The slope is
zero at the top of a hill, as well as at the bottom of a valley, so the speed
that gives maximum glide distance could be found by differentiating the
appropriate equation, in the same way as we found the (identical) speed
that gives minimum glide angle.

When we discuss gaits, we will encounter more complex situations, in-
volving graphs with more than one maximum or minimum. Figure 1.4B
illustrates this possibility, by showing a graph of the function

F = x4 − x2 − Ax (1.3)

where A is a constant that has been given the value 0.3. The previous
graph had one minimum but this has two, at x = 0.8 and at x = − 0.6. At
both minima the graph runs level, and both would be found by differenti-
ation. However, if the aim is to make F as small as possible, the deeper
minimum should be chosen, at x = 0.8. This is described as the global
minimum, and the other as a local minimum.

Figure 1.4C shows graphs of Equation 1.3 for several different values
of A. When A = 0.3, the global minimum is at a positive value of x and
the local minimum at a negative one, as we have already seen. As A is
reduced, the minima become more equal, and when A = 0 they are equal.
When A is negative, the global minimum is found at a negative value of x
and the local minimum at a positive value. This phenomenon, in which a
small change of a parameter results in an abrupt shift of the global mini-
mum (or maximum), is called bifurcation.

1.10. GAITS

People walk to go slowly and run to go fast. Walking and running are
quite different patterns of movement, which do not merge into each other;
as we increase speed, we make the change from walking to running within
a single stride. Similarly, horses change from walking to trotting and then
to galloping as they increase speed. Walking, running, trotting, and gal-
loping are described as gaits, and in later chapters we will see that flying
birds and swimming fishes also use several distinct gaits.



Fig. 1.5. Graphs showing how the gait of adult humans changes with increasing
speed. (A) Duty factor and (B) shape factor plotted against speed. Note the abrupt
changes at about 2 m/s, at the transition from walking (open symbols) to running
(filled symbols). From Alexander (1989a).
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The formal definition of a gait is as follows: “A gait is a pattern of loco-
motion characteristic of a limited range of speeds, described by quantities
of which one or more change discontinuously at transitions to other gaits”
(Alexander 1989a). Figure1.5 shows graphs of two of the quantities that
change, when people change gait. Duty factor (Figure1.5A) is the fraction
of the duration of the stride, for which each foot is on the ground. In
walking, each foot is on the ground for more than half the time, and in
running for less than half the time. As speed increases, the duty factor falls
gradually from about 0.65 in slow walks to about 0.55 in the fastest walks;
but at the change to running it drops abruptly, to around 0.35. The shape
factor q (Figure1.5B) describes the pattern of force exerted on the ground;
it will be explained in Section 7.3. As speed increases, it rises smoothly
from about 0.2 in slow walking to about 0.8 in very fast walking; but then
drops abruptly to negative values at the transition to running.

I will show in Section 7.7 that people seem to adjust their gaits so as to
minimize the energy cost of traveling at their chosen speed. Thus, our
gaits are solutions to optimization problems. The abrupt shift of the opti-
mum from walking to running is a bifurcation.

Thus speed, acceleration, maneuverability, endurance, energy economy,
and stability are aspects of locomotion that are likely to be important to
animals in different circumstances. Natural selection can be expected to
act on structures and patterns of movement that affect them, but the
course of evolution is constrained by the animal’s ancestry.



Chapter Two...............................................................
Muscle, the Motor

MOST ANIMAL locomotion is powered by muscles. Some very
small animals including rotifers and the planktonic larvae of echi-
noderms, annelids, and molluscs depend on cilia for swimming,

and spermatozoa swim by means of the flagella that form their tails. Small
flatworms crawl by means of cilia on their ventral surfaces. Protozoans,
which are not regarded as animals in modern classifications, move by
means of cilia, flagella, or pseudopodia. All these are ignored in this book,
which is concerned only with muscle-powered locomotion.

The purpose of this chapter is to explain briefly how muscle works, what
it can do, and how much energy it uses. It is concerned only with striated
muscle, the kind of muscle that powers locomotion. Smooth muscle (as
found in the walls of guts and blood vessels) is ignored, as is heart muscle.
You will find more detailed information about muscle in Woledge et al.
(1985) and Josephson (1993).

2.1. HOW MUSCLES EXERT FORCE

In this section, a brief description of the structure of muscle leads into an
explanation of force production.

Striated muscle consists of cells known as muscle fibers, which are very
long and slender. Some human muscle fibers are as much as 100 mm long
(Richmond 1998), but few have diameters greater than about 0.1 mm.
They are bundled together in fascicles that are stout enough, in large
mammals, to be visible by the naked eye. These fascicles are in some cases
much longer than the individual fibres, for example about 450 mm in the
human sartorius muscle.

Most of the space within muscle fibers is generally occupied by myofi-
brils, which are composed of protein filaments a few micrometers long,
lined up parallel to each other and to the long axis of the fiber. There are
thick filaments of the protein myosin and thin filaments that consist
largely of the protein actin, arranged in a very orderly manner with the
thin filaments interdigitated between the thick ones (Fig. 2.1A). The two
kinds of filaments are arranged in bands so that, when a fiber is examined
under a microscope, stripes are seen running across it. The unit of this
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repeating, banded pattern is the sarcomere. The ends of the sarcomeres
are defined by partitions known as Z disks, which have thin filaments
projecting from both their faces. The bands of thick filaments lie between
successive Z disks, with the ends of each thick filament connected to the
disks by strands of titin, a highly extensible elastic protein (not shown in
Fig. 2.1.) (Kellermayer et al., 1997).

Each thick filament consists of several hundred myosin molecules. The
molecules are about 0.15 µm long, consisting of a long tail with two small
heads at one end (Fig. 2.1C). They are bundled together, each with about
two-thirds of its length incorporated in the main strand of the filament
and one-third (the end with the heads) projecting as a cross bridge capable
of attaching to adjacent thin filaments (Fig. 2.1D). The molecules are all
arranged with their tails pointing toward the midpoint of the filament, so
there is a bare region in the middle of the filament (about 0.2 µm long)
from which no cross bridges project. For the rest of the length of the
filament, rosettes of three cross bridges project at intervals of 14 nm
(0.014 µm) (Fig. 2.1D). The figure shows pairs of cross bridges instead of
groups of three, because of the limitations of a two-dimensional diagram.

When a muscle is shortening, each cross bridge repeatedly attaches one
of its heads to an actin molecule in an adjacent thin filament, and pulls
toward the midpoint of the thick filament. The cross bridges attach, pull,
detach, and reattach 5 nm further along the thin filament (Kitamura et
al., 1999). Their action is like people pulling in a rope hand over hand.
The thick and thin filaments slide past each other without changing length
(compare Fig. 2.1B with Fig. 2.1A). When a cross bridge detaches, a mole-
cule of ATP attaches to it. The myosin functions as an enzyme, breaking
the ATP down to ADP and a phosphate ion, but these are not released
until the cross bridge has reattached to another actin molecule. The action
of the muscle is powered by the energy released by the breakdown of ATP
to ADP. Kitamura et al. (1999) have shown that a single ATP molecule
may provide the energy for several 5-nm steps of a cross bridge.

There are of course other organelles in the muscle fibers, as well as the
myofibrils. There are nuclei, which generally occupy only a small fraction
of the cell volume. There are mitochondria containing the enzymes of
oxidative phosphorylation, on which aerobic respiration depends. These
may occupy a large fraction of the fiber volume in fast aerobic muscles, for
example, 35% in the flight muscles of a hummingbird and 37% in the wing
muscles of a beetle (Table 2.1). There is sarcoplasmic reticulum, a network
of fluid-filled tubules between the myofibrils, which releases calcium ions
into the cell lumen when the fiber is stimulated, to trigger contraction of
the muscle; and pumps the calcium back into its tubules when stimulation
ceases, to make the muscle relax. The sarcoplasmic reticulum may occupy
a large fraction of the fiber volume in muscles that contract and relax at



Fig. 2.1. (A, B), Diagrams of one sarcomere of a striated muscle fiber showing it
(A) extended beyond the optimum length for force production and (B) at the
optimum length. (C) A single myosin molecule and (D) a diagram showing how
myosin molecules are arranged in a thick filament. (E) A thick filament showing
lengths referred to in Equations 2.1 and 2.2.
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Table 2.1.
Composition (%) by volume of various muscles

Sarcoplasmic
Mitochondria reticulum Myofibrils Reference

Rattlesnake body 2 11 87 Schaeffer et al.
muscle (1996)

Rattlesnake tail- 26 26 32 Schaeffer et al.
shaker muscle (1996)

Hummingbird 35 not recorded not recorded Suarez (1996)
flight muscle

Locust flight muscle 24 10 65 Josephson et al.
(2000)

Beetle flight muscle 37 2 58 Josephson et al.
(2000)

high frequencies, for example, 26% in the tail-shaker muscle of the rattle-
snake (Crotalus), which vibrates at about 90 Hz (Rome et al., 1990a).
There are also T tubules, invaginations of the cell surface that function
like inside-out axons, transmitting electrical stimuli to the myofibrils in
the interior of the fiber.

The stresses (forces per unit cross-sectional area) that muscles can exert
depend on the length of the thick filaments and on the fraction of the cell
volume that is occupied by the myofibrils. Consider a thick filament of
length 2a with a bare region of length 2b (Fig. 2.1E). Groups of three
cross bridges project from it except in the bare region, each group a dis-
tance c from the next. Thus, each half of the filament has 3(a − b)/ c cross
bridges, each of them capable of exerting a force that we will give the
symbol δF. Thus, if all the cross bridges are active simultaneously, the total
force F that one-half of a thick filament can exert on adjacent thin fila-
ments is

F = 3 1 a − b
c 2 δF (2.1)

Let the myofibrils occupy a fraction A of the cross section of each muscle
fiber, and within each myofibril let there be n thick filaments per unit
cross-sectional area. The stress σ exerted by the muscle is then

σ = 3An 1 a − b
c 2 δF (2.2)

Many of the quantities in this equation seem to be the same for most
striated muscles, because they depend on the dimensions of the myosin
molecules and on the way these molecules are packed together to form
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Table 2.2.
Thick filament lengths and maximum isometric stresses of some muscles

Thick filament Maximum iso-
length, µm metric stress, Nmm2 Reference

Frog leg muscles 1.6 0.15–0.36 Marsh (1994)
Rat leg muscles 1.6 0.29–0.33 Wells (1965)
Locust flight muscle 3.1 0.35 Bennet-Clark (1975)
Locust leg muscle 5.5 0.7 Bennet-Clark (1975)
Oyster yellow adductor

muscle 5–8 0.5 Rüegg (1968)
Mussel byssus retractor

muscle 30 1.4 Rüegg (1968)

the thick filament; n = 560 µm−2, b = 0.1 µm, c = 0.014 µm. It seems likely
that δF will also be constant. Thus, muscles whose myofibrils occupy a
large fraction of their volume (large A), and which have long, thick fila-
ments (large a), are expected to be capable of exerting large stresses.

Small muscles, and muscle fascicles, can be kept alive for substantial
times if kept moist with saline solutions of appropriate osmotic strength.
They can be made to contract by electrical stimulation, and the forces
they exert can be measured by transducers. If the cross-sectional area is
measured, the stress can be calculated. Table 2.2 shows results from exper-
iments of this kind. In these experiments, the muscles were held at con-
stant length (they were contracting isometrically) at the length at which
they could exert most force. It shows, as expected, that muscles with long,
thick filaments can exert large stresses. The thick filaments of the mussel
muscle are exceptionally long and the stress it exerts is very high, but not
as much higher than the stresses exerted by other muscles as Equation
2.2 might lead us to expect. The reason is that the thick filaments are
exceptionally thick (due to reinforcement with the protein paramyosin),
reducing the number n that can be accommodated in unit cross-sectional
area of myofibril. Taylor (2000) gives further data on the relationship be-
tween sarcomere length and isometric stress, especially for Crustacea.

In other, technically remarkable, experiments myofibrils have been dis-
aggregated to obtain separate myosin molecules, and the forces exerted
by individual molecules have been measured. This has been done by means
of optical tweezers, instruments that use the inertia of the photons in a
beam of light to balance the tiny force exerted by the molecule. This force
(δF of our equations) has been found to be at least 1.7 pN (1.7 × 10−12 N)
(Molloy et al., 1995). By putting this into Equation 2.2 with 2a = 1.6 µm
(the length of the thick filaments in vertebrate striated muscle) and the
values of n, b, and c given above, we can estimate that if all the cross
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Fig. 2.2. A graph showing the stress exerted by a frog striated muscle fiber at
different sarcomere lengths, both when maximally activated by electrical stimula-
tion and when inactive. Another curve (scale at right) shows the unloaded rate of
shortening vmax at different sarcomere lengths. From Edman (1979).

bridges were simultaneously attached in a muscle in which the myofibrils
occupied the whole of the cross section (A = 1), the stress would be 0.14
MN/m2. This is just below the range of isometric stresses that have been
measured for frog leg muscles (Table 2.2). It would be lower if we had
allowed for the fact that a proportion of the cross bridges would be de-
tached, at any instant. However, it should be remembered that it is based
on a minimum estimate of cross bridge force.

In the experiments on which Table 2.2 is based, the muscles were held
at the lengths at which they could exert the most force. In other experi-
ments, a muscle fiber has been held at a range of different lengths, and the
force it could exert at each length has been measured. Results from an
experiment with a frog muscle fiber are shown in Fig. 2.2. Frog muscle
exerts maximal stresses when its sarcomeres are 2.0–2.2 µm long, and
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lower stresses at longer and shorter lengths. Gordon et al. (1966) showed
how this could be explained. At the optimum sarcomere length (Fig.
2.1B) every cross bridge is alongside a thin filament, to which it can attach.
When the sarcomere is stretched longer (Fig. 2.1A), some cross bridges
are no longer within reach of a thin filament, and the stress falls in propor-
tion to the number that can still attach. When it is shorter than the optimal
length, various undesirable things happen. Thin filaments from the two
ends of the sarcomere overlap and may reach cross bridges on the wrong
half of the thick filaments, which push them in the wrong direction. Even-
tually the ends of the thick filaments collide with the Z partitions. It has
also been suggested that titin is arranged in such a way as to resist extreme
shortening of the sarcomere (Spierts and van Leeuwen 1999).

As well as the force exerted by the cross bridges in active muscle, Fig.
2.2 shows the passive elastic force that resists extreme stretching even of
inactive muscle. This seems to be due in part to stretching of the titin and
in part to stretching of the sarcolemma, the network of connective tissue
that is wrapped around the fiber.

Note that Fig. 2.2 refers specifically to frog muscle. Muscles with longer
thick and thin filaments have longer optimum sarcomere lengths.

We can use Fig. 2.2 to estimate the work that a muscle can do in a single
contraction, if it shortens very slowly. (We will see in the next section that
the faster a muscle shortens, the less force it can exert.) Work is done when
the point of application of a force moves in the direction of the force; the
work is the force multiplied by the distance moved. Suppose that a frog
muscle fiber contracts very slowly through the range of sarcomere lengths
at which it can exert at least half the maximum force, that is, from 3.0 µm
(1.4 times its optimal length) to 1.5 µm (0.7 times its optimal length).
As it contracts the stress rises and then falls as shown in Fig. 2.2. We can
calculate the work the muscle does from the area under the graph. (Be-
cause work is force multiplied by distance, the area under a graph of force
against length represents work.) The area under this particular graph gives
us the work that could be done in a single contraction by a piece of muscle
one sarcomere long and with a cross section of a square millimeter. From
this we can calculate that frog muscle should be capable of doing about
120 J of work per kilogram of muscle, in a single contraction. This is
an extreme estimate, for infinitely slow contraction in which the muscle
shortens to half its initial length. Some vertebrate striated muscles shorten
as much as this, in some movements, but it seems to be more usual for
muscles to shorten by 25% or less (Burkholder and Lieber 2001). Figure
2.2 shows that a muscle shortening slowly by 25% of its length could do
up to 70 J/kg. Muscles with longer thick filaments, capable of exerting
larger stresses, could do more work.
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2.2. SHORTENING AND LENGTHENING MUSCLE

Figure 2.2 showed that the force that a muscle can exert, when contracting
isometrically, depends on its current length. Figure 2.3A shows results
from a different kind of experiment: a bundle of muscle fibers is stimulated
electrically while being allowed to shorten at a constant rate, and the force
it exerts is measured as it passes through the range of lengths in which it
could exert maximum force in isometric contractions. The graph shows
results for negative rates of shortening (forcible stretching of the muscle)
as well as for positive rates of shortening. The graph shows that when the
muscle is shortening it exerts less force than in isometric contraction. The
faster it shortens, the less force it exerts, until at the maximum possible
rate of shortening it exerts no force at all. This maximum rate may be
described as the unloaded rate of shortening, and is conventionally repre-
sented by the symbol vmax. When the muscle is being stretched, however,
it exerts forces that are greater than the isometric force, approaching 1.8
times the isometric force at high rates of stretching. The relationship be-
tween the force F and the rate of shortening v is quite well represented by
the empirical equations

for v ≥ 0, F = Fiso
vmax − v

vmax + Gv
(2.3a)

for v < 0, F = Fiso [1.8 − 0.8 1 vmax + v
vmax − 7.6Gv 2 ] (2.3b)

where Fiso is the isometric force, vmax is the unloaded rate of shortening,
and G is a constant (Alexander 1997b). G has different values for different
muscles but generally lies between 2 and 6 (Woledge et al. 1985). Figure
2.3 has been drawn for G = 4, a good average value for skeletal muscles of
vertebrates. The higher the value of G, the more concave is the graph for
positive rates of shortening. Equation 2.3a is known as Hill’s equation in
honor of A. V. Hill, the great muscle physiologist who introduced it. It
has been shown to give a reasonably good description of the force/rate of
shortening curves for a wide range of muscles, but deviations from its
predictions have been noted (Edman et al. 1976). Equation 2.3b is based
on fewer data. Forces are less at sarcomere lengths outside the range for
maximum isometric force, but vmax is more or less constant over a wide
range of sarcomere lengths (Fig. 2.2; the very high unloaded rates of short-
ening at long sarcomere lengths are due to elastic recoil of titin fibers and
other passive elastic structures).
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Fig. 2.3. Properties of vertebrate striated muscle fibers, maximally activated by
electrical stimulation, plotted against the rate at which the fiber is being allowed
to shorten. (Negative shortening rates mean that it is being forcibly stretched.)
Relative shortening speed means speed/vmax. (A) Relative force (force/Fiso , Equa-
tions 2.3a and 2.3b); (B) metabolic rate function (metabolic rate/Fiso vmax , Equa-
tions 2.10a and 2.10b); (C) relative power output (force × rate of shortening/Fiso

vmax); and (D), efficiency (power output/metabolic rate). The parameter G has
been given the value 4, which is typical for reasonably fast muscles. Metabolic rate
is expressed in terms of ATP consumption. From Alexander (1999).

The force/rate of shortening relationship is reasonably well predicted
by a model of muscle contraction proposed by Sir Andrew Huxley (1957).
I will describe the model in outline only, without the mathematics, which
has been expounded very clearly by McMahon (1984). Huxley represented
the cross bridge as being mounted on springs that tend to pull it back to
its equilibrium position, if it is displaced (Fig. 2.4). Let x be the displace-
ment of the cross bridge from its equilibrium position; when x is positive,
the cross bridge pulls in the direction required to shorten the muscle, and
when x is negative it pulls in the reverse direction. A detached cross bridge
oscillates about its equilibrium. At any stage in its oscillation when x lies
between 0 and some value h, it may attach to an adjacent actin molecule.
The probability that it will attach in a small increment of time is propor-
tional to x, but the probability that an attached cross bridge will detach
in a small increment of time is also proportional to x; therefore, in a muscle
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Fig. 2.4. Diagrams of a cross bridge (A) in its equilibrium position and (B) dis-
placed to a position in which it could pull on a thin filament.

that is contracting isometrically an attached cross bridge is equally likely
to have any value of x between 0 and h (Fig. 2.5A).

As the muscle shortens, an attached cross bridge moves to lower values
of x at which it exerts less force. If it moves to negative values of x at
which it exerts reverse forces, the probability that it will detach in a given
increment of time is greatly increased. As the rate of shortening increases
(Fig. 2.5B–D), the total force exerted by the cross bridges decreases, be-
cause cross bridges are moving to positions at which they exert less force
and in some cases reverse force. Also, the increased rate of detachment at
negative values of x results in there being fewer cross bridges attached at
any instant. When v = vmax (Fig. 2.5D), the forces exerted by cross bridges
at positive values of x are balanced by reverse forces exerted by cross
bridges at negative values of x, and the muscle exerts no force.

When an active muscle is stretched, cross bridges are pulled to greater
values of x at which they exert increased forces, but the force does not
increase indefinitely as speed of stretching increases because rates of de-
tachment are greater at high values of x.

With appropriate constants in the equations, this model predicts empir-
ical force-rate of shortening relationships well for positive rates of shorten-
ing; but the forces it predicts for muscle stretching are much too high.

The unloaded rate of shortening vmax is often expressed as fractional
length change per unit time; that is, as a negative strain rate. Its value for
any particular muscle fiber depends on the temperature; for example, for
fast fibers in the iliofibularis muscle of the clawed toad Xenopus it is 1.5
lengths per second at 5°C, 2.6 s−1 at 10°, and 5.2 s−1 at 20°C (Lännergren
1978). It varies enormously between muscles, for example (considering
only vertebrate striated muscles), from 0.6 muscle lengths per second for
a tortoise penis retractor muscle at 16οC to 24 lengths per second for a
mouse digital extensor muscle at 35°C (Woledge et al. 1985). These differ-
ences in vmax depend largely on differences in the activity of the myosin as



Fig. 2.5. The distributions of displacements of attached cross bridges from their
equilibrium positions, when a muscle is shortening at four different rates. From
Huxley (1957).
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an enzyme that breaks down ATP. Such differences account for mouse
muscles being about twice as fast as homologous muscles in cats, and for
mouse digital flexor muscles being twice as fast as mouse soleus (Close
1972). Even among the fibers of a single muscle, large differences of vmax

may be found. In the soleus muscle of horses, Rome et al. (1990b) found
fibers with unloaded shortening speeds ranging from 0.2 to 3.8 s−1.

Muscle fibers with equal ATPase activity may nevertheless have different
unloaded rates of shortening, if their sarcomeres differ in length. Consider
a muscle fascicle of length L with sarcomeres of length λ, so that it has L/
λ sarcomeres in series along its length. Let its cross bridges be capable of
making adjacent thin filaments slide past the thick filaments at a speed v fil.
The unloaded shortening speed will be

vmax = 2 1 L
λ 2 v fil (2.4)

(The factor 2 arises because there are cross bridges pulling on thin fila-
ments at both ends of the thick filament.) Muscles with short thick and
thin filaments, and correspondingly short sarcomeres, can be much faster
than muscles with long filaments and sarcomeres. For example, the tenta-
cle extensor muscles of the squid Loligo have thick filaments 0.5–0.9 µm
long with vmax around 45 s−1 (van Leeuwen and Kier 1997), while the
anterior byssus retractor muscle of the mussel Mytilus has thick filaments
around 30 µm long and vmax about 0.3 s−1 (Ruegg 1968). Equation 2.2
told us that muscles with long thick and thin filaments can exert high
stresses. Now we see that the penalty for high stress is low speed.

2.3. POWER OUTPUT OF MUSCLES

A muscle exerting a force F while shortening at a rate v has a power output
Fv (power is the rate of doing work). Figure 2.3C shows how the power
depends on the rate of shortening; it is zero in isometric contraction (when
v = 0), and also in contraction at vmax (when F = 0), but has a maximum
value at an intermediate speed. Using Hill’s equation (2.3a), the power
output P is

P =
Fisov (vmax − v)

vmax + Gv
(2.5)

It can be shown by calculus that when G = 2, P has its maximum value
when v = 0.37vmax. At this rate of shortening, the force is 0.36Fiso and the
power is 0.134Fisovmax. When G = 6, the maximum power is 0.075Fisovmax

and occurs when the rate of shortening is 0.27vmax and the force is 0.28Fiso.
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Fig. 2.6. Results of work loop experiments on a muscle fiber. (A) Length changes
of the fiber (above) and the force it exerted (below), plotted against time. (B)
Anticlockwise loop obtained by plotting the force against the length. (C–E) are
explained in the text. From Josephson (1985).

Figure 2.3 shows results of experiments in which a bundle of muscle
fibers made a single contraction at constant speed. Muscle action in loco-
motion is generally not like this. Whether moving a walking leg, flapping
a wing, or beating a fin, muscles generally contract and are reextended
repeatedly, in a regular cycle. Figure 2.6 illustrates a different type of ex-
periment, which tests the properties of the muscle in conditions more like
locomotion. A bundle of muscle fibers is fixed in an apparatus that alter-
nately stretches it and allows it to shorten. It is stimulated electrically at
an appropriate stage in each cycle, starting a little before the start of the
shortening phase. A force transducer records the force exerted by the mus-
cle, throughout the cycle. Figure 2.6A shows the length changes of a mus-
cle (above) and the force it exerted (below), plotted against time. Figure
2.6B shows the force plotted against the length. This graph forms an
anticlockwise loop. The force is low while the muscle is inactive, being
stretched, and high while it is shortening actively. Each circuit of the loop
represents a cycle of contraction and reextension. Figure 2.6C and D
shows parts of the same loop, with hatched areas that represent work.
(Remember that because work is force multiplied by displacement, areas
on graphs of force against length represent work.) The area in Fig. 2.6C
represents the work that the apparatus had to do on the muscle, to stretch
it. The area in Fig. 2.6D represents the work that the muscle did on the
apparatus, as it shortened. And the area of the loop (Fig. 2.6E) represents
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the net work done by the muscle. For a reason that should by now be
obvious, experiments of the kind that I have been describing are referred
to as work loop experiments.

The number and timing of electrical stimuli in each cycle is generally
varied, to find the pattern of stimulation that maximizes work per cycle at
each frequency. The amplitude of the length changes may also be varied.
For given amplitude, the work that can be obtained in a cycle is highest
at low frequencies, because the forces that muscles can exert are highest
at low rates of shortening (Fig. 2.3A). However, the power output (work
per cycle multiplied by cycle frequency) has a maximum at a moderate
frequency.

Askew and Marsh (1998) performed work loop experiments on mouse
soleus muscles, adjusting conditions to get as much power output as possi-
ble. They found that a sawtooth pattern of lengthening and shortening
gave more power than the sinusoidal pattern that previous experimenters
had used, and obtained a maximum power output of 94 W/kg at a
frequency of 5 Hz. This corresponds to a work output in each cycle of
19 J/kg. This is much less than could be obtained if the muscle contracted
very slowly (see above), but fairly fast contractions are needed to give maxi-
mum power . It seems likely that a work output of 20–25 J/kg in each
cycle of repetitive contraction is typical of vertebrate striated muscle in
strenuous locomotion (Alexander 1992b).

It would be reasonable to expect that the force exerted by a muscle, at
any stage in the shortening phase of a work loop experiment, would be
the same as in a single contraction at the same rate of shortening. How-
ever, this is not quite the case, because the force exerted by a muscle de-
pends to some extent on its recent history. A shortening muscle can exert
more force if it has been stretched immediately prior to shortening; this
is called stretch activation. Also, shortening has a deactivating effect, re-
ducing the force. Consequently, Hill’s equation (Equation 2.3a) does not
give accurate predictions of the forces exerted in cycles of shortening and
stretching (Askew and Marsh 1998).

2.4. PENNATION PATTERNS AND MOMENT ARMS

In the previous section we saw that a muscle can deliver its maximum
possible power output only if its rate or frequency of shortening is optimal
for its physiological properties. In this section we will see how the struc-
ture and arrangement of muscles can be optimized to take the fullest ad-
vantage of the muscles’ properties.

Figure 2.7A–C shows some of the ways in which the fascicles can be
arranged within a muscle. All these muscles are represented with tendons
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Fig. 2.7. Diagrams of (A) a parallel fibered muscle with fascicles of length L; (B)
a unipennate muscle with an angle of pennation α; (C) a bipennate muscle; and
(D) a muscle that has a moment arm r about a joint.

at both ends, which attach them to the skeleton, although there are some
muscles that attach directly to the skeleton without tendons. Figure 2.7A
represents a parallel fibered muscle, in which all the fascicles run more or
less parallel to the force that the muscle exerts. Figure 2.7B represents a
unipennate muscle. The tendons attaching the two ends of the muscle to
the skeleton run along opposite faces of the muscle, with the fascicles run-
ning obliquely between them, attaching to the tendons at an angle α
which is called the angle of pennation. Figure 2.7C represents a bipennate
muscle, with fascicles converging from both sides on a central tendon.
More complex, multipennate muscles are also found. It seems important
to explain that these are schematic diagrams, drawn with simple geometry
designed for ease of analysis. In real muscles, the fascicles and tendons are
all slightly curved, for reasons explained by van Leeuwen and Spoor (1992,
1993). Though the three muscle designs in Figure 2.7 look very different
from each other, the following calculations can be applied to them all.

Consider a muscle of volume V, with fascicles of length L. The muscle
has angle of pennation α; if the muscle is parallel fibered, this angle is zero.
Let the fascicles exert stress σ, and shorten at a strain rate dε/dt (strain ε
is fractional change of length, so strain rate is the rate of change of length
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divided by the length). The total of the cross-sectional areas of the fascicles
is V/L, so the total of the forces that they exert is Vσ/L. These forces act
at an angle α to the line of action of the muscle, so the force F transmitted
along the tendons is

F =
Vσ
L

cos α (2.6)

The rate of shortening of the fascicles is L dε/dt, which makes the muscle
as a whole shorten at a rate v (taking account of the angle of pennation)

v =
L dε/dt
cos α

(2.7)

Compare muscles with equal volumes but different fascicle lengths L.
Equations 2.6 and 2.7 tell us that (other things being equal) the muscle
with the shorter fascicles will exert more force, but shorten more slowly.

The cosines of small angles are close to one; cos 0 = 1 and cos 30° =
0.87. Angles of pennation of muscles seem generally to be less than 30°
(Yamaguchi et al., 1990), and it is often accurate enough to ignore the
cosines in Equations 2.6 and 2.7. However, angles of pennation increase
as muscles shorten, and it has been shown that when the human gastrocne-
mius muscle (in the calf) contracts, with the leg in certain positions, the
angle of pennation may rise to as much as 50°. This has been shown by
ultrasonic imaging of the muscle in the legs of intact living people (Maga-
naris et al. 1998).

Now consider the same muscle attached to a skeleton so that it crosses
just one joint, with a moment arm r (Fig. 2.6D; note that the moment
arm must be measured perpendicular to the muscle force). The moment
M about the joint is

M = Fr = Vσ 1 r
L 2 cos α (2.8)

The angular velocity ω with which the joint is moved is

ω =
v
r

= 1 L
r 2 1

dε
dt 2 cos α (2.9)

Other things being equal, increasing the moment arm enables the muscle
to exert larger moments about the joint, but reduces the angular velocity
with which it can move the joint.

In Equations 2.8 and 2.9, fascicle length L and moment arm r appear
only as the ratio r/L (or L/r). This tells us that, for a muscle of given
volume, exactly the same moment and angular velocity can be obtained
with long fascicles and a long moment arm or with short fascicles and a
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short moment arm. Which of these alternatives evolves may depend on
the need to fit the muscle into the body. Human gastrocnemius and soleus
muscles (which connect to the heel through the Achilles tendon) are pen-
nate, with relatively short fascicles (about 20–40 mm) and a moment arm
about the ankle of about 50 mm. The lower leg is long enough to accom-
modate a parallel fibered muscle with fascicles five times as long, but we
would then need ridiculously long heel bones to give the muscle an appro-
priate moment arm.

Another important principle of muscle design that has apparently af-
fected the course of evolution is that muscles can exert large forces only
over a limited range of sarcomere lengths (Fig. 2.2). Therefore, the range
of sarcomere lengths through which the fascicles have to shorten, to move
the joint through its range of movement, should not be too great. As
we have already seen, sarcomeres in vertebrate striated muscles commonly
lengthen and shorten by around one-quarter of their length, in the move-
ments of locomotion.

The ultimate tensile strength of mammalian tendon (the stress that
breaks it, in a single pull) is at least 100 N/mm2 (Bennett et al., 1986).
This is many times larger than the stresses that mammalian muscle can
exert (up to about 0.5 N/mm2 when being rapidly stretched), so a thin
tendon can transmit the force of a very much thicker muscle. Similarly in
insects, very thin tendons (apodemes) are strong enough to transmit the
forces of much thicker muscles (Bennet-Clark 1975). The tendons of ver-
tebrates consist of collagen fibers in a mucopolysaccharide matrix, and the
tendons of insects consist of chitin fibers in a protein matrix.

2.5. POWER CONSUMPTION

Resting muscle uses metabolic energy at a low rate, for example, 3 W/kg
for dog muscle (Martin and Fuhrman 1955). When the muscle is activated
and exerts force, its metabolic rate increases greatly. The additional energy
input is required principally for two processes: to provide the ATP that
drives cross bridge cycling, and to pump calcium ions back into the sarco-
plasmic reticulum after each stimulus. Cross bridge cycling is the major
consumer of metabolic energy, but calcium pumping seems to account
for around 30% of the metabolic rate of typical vertebrate striated
muscles contracting isometrically, and around 10% of their metabolic rate
when they are contracting at the rate that gives maximum efficiency (Lou
et al. 1997).

Figure 2.3B summarizes the results of experiments in which the meta-
bolic rates of active vertebrate striated muscles have been measured, while
they were shortening or being stretched. The measurements were made



32 C H A P T E R T W O

in several different ways: some experiments measured the muscle’s rate of
oxygen consumption, others measured the rate at which it generated heat,
and yet others measured the rate at which it used ATP. When the muscle
contracts isometrically, it metabolizes at a rate of about 0.07Fisovmax, where
Fiso is the isometric force and vmax is the maximum (unloaded) rate of short-
ening. Thus, more metabolic power is needed to maintain a given force
in a fast (high vmax) muscle than in a slow one. When the muscle shortens,
doing work, the metabolic rate increases because (as we have already seen)
the rate of cross bridge cycling increases. The rate of cross bridge cycling
and the metabolic rate plateau at high shortening speeds because of the
time needed for a detached cross bridge to reattach. When the active mus-
cle is stretched at increasing speeds, the metabolic rate falls and then rises.

The graph (Fig. 2.3B) can be represented by the following equations
(Alexander 1997b):

for v ≥ 0 M = Fisovmax [0.23 − 0.16 exp 1− 8v
vmax
2 ] (2.10a)

for v < 0 M = Fisovmax [0.01 − 0.11
v

vmax
+ 0.06 exp 1 23v

vmax
2 ] (2.10b)

where M is the metabolic rate. The other symbols have the same meanings
in these equations as in Equations 2.3a and 2.3b.

The efficiency of a muscle is its power output (the rate at which it is
doing work) divided by the power input (the rate at which it uses meta-
bolic energy). Figure 2.3D shows efficiencies calculated from the data of
Figure 2.3B and C. The maximum efficiency, about 0.45, is obtained at a
shortening speed of about 0.2vmax, rather lower than the speed that maxi-
mizes power output. It is important to note that power input in Fig. 2.3B
and D is calculated as the rate at which ATP energy is used, ignoring the
energy losses involved in synthesizing ATP. The efficiency with which
the enthalpy of combustion of foodstuffs is converted to ATP is only about
0.5, so the maximum efficiency of converting food energy to work in a
typical muscle is about 0.45 × 0.5 = 0.23. Values close to this are obtained
when the efficiency of human muscle is calculated from the oxygen
consumption of athletes pedaling bicycle ergometers (Dickinson 1929).
However, muscles do vary in efficiency. A tortoise leg muscle has been
shown to convert food energy to work with an efficiency of 0.40 (Woledge
et al. 1985).

Some muscle fibers depend on aerobic metabolism, releasing the energy
to power their contractions by oxidizing foodstuffs to carbon dioxide and
water. Others in vertebrates (Bone 1966), squids (Bone et al. 1981), and
crabs (Full 1987) use anaerobic metabolism, releasing energy by reactions
such as the conversion of glucose to lactic acid (in vertebrates) or glucose
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and arginine to octopine (in squids). The anaerobic processes release far
less energy from a given mass of food than the aerobic ones, but this does
not mean that they are wasteful. After a burst of anaerobic activity, some
of the lactic acid or other product is oxidized to release the energy needed
to convert the rest back to glucose.

Aerobic and anaerobic fibers are generally mixed together in the same
muscle, but fish have the aerobic muscle segregated as a red band running
along the body on the outer surface of the white anaerobic muscle. The
difference in color between the two types of muscle is very obvious in
skinned fish, whether cooked or raw. This separation of the two types of
muscle greatly aided the observations on fish that showed how the two
types of muscle function (Bone 1966; Rome et al., 1984). Slow swimming
at speeds that can be maintained for long times is powered by the aerobic
fibers, but above a critical speed the white fibers are brought into use. The
aerobic fibers contain many mitochondria, housing the enzymes of the
Krebs cycle that play a central role in aerobic respiration, but the anaerobic
fibers contain few mitochondria. The aerobic fibers have a good blood
supply, needed to bring oxygen to them, but the anaerobic fibers have a
much more restricted blood supply. Recent experiments have shown that
white fish muscle may not be as strictly anaerobic as was previously be-
lieved; dogfish (Scyliorhinus) white muscle is capable of powering a short
sequence of contractions aerobically (Lou et al., 2000). Squid have (yel-
low) aerobic muscle fibers and white anaerobic ones that differ from each
other in the same sorts of ways as the red and white fibers of fishes (Bone
et al., 1981).

Power output from aerobic muscle fibers is limited by the rate at which
the respiratory and circulatory systems can supply them with oxygen or
by the rate at which their mitochondria can use it. Anaerobic fibers are
not limited in this way, but the energy that can be made available by anaer-
obic muscle in a single bout of activity is limited, because the body cannot
tolerate excessive accumulation of lactic acid or (in squids) octopine. Also,
anaerobic fibers can contain a higher proportion of myofibrils than aerobic
ones, and so (other things being equal) can deliver more power, because
less of their volume is occupied by mitochondria. Anaerobic respiration
makes maximum sprint speeds possible, but sustained locomotion has to
be powered aerobically. Human athletes exerting maximum effort for 10
s derive about 85% of their energy output from anaerobic metabolism; but
in 10 min of maximum effort only 10–15% of the energy comes from
anaerobic metabolism, and in 2 hours of maximum effort only 1% (Åstrand
and Rodahl 1986). A 100-m sprint is powered predominantly by anaero-
bic metabolism, but the contribution of anaerobic metabolism to a mara-
thon is very small. The change from mainly anaerobic metabolism for
short races to mainly aerobic metabolism for longer ones may explain the
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change of gradient at 150 s in the graph of race speed against race duration
(Fig. 1.3A).

Even aerobic respiration cannot be sustained at its maximum rate in-
definitely, because the fuels that support it become depleted. This was
evident in a study of red deer (Cervus elaphus) stags that had been killed
by hunting with hounds (Bateson and Bradshaw 1997). The mean dura-
tion of hunts was 3 h and the mean distance covered was 19 km. Stags
killed after long hunts had very much lower blood glucose concentrations
than those killed after short hunts, indicating that their carbohydrate re-
serves had been reduced to low levels. It was also found that muscle en-
zymes had leaked into the blood in these animals, indicating that muscle
damage had occurred.

2.6. SOME OTHER TYPES OF MUSCLE

This chapter has been mainly concerned with vertebrate striated muscle.
Some invertebrates have very different muscles. Many muscles of molluscs,
annelids, and nematode worms are of the type called obliquely striated,
because the bands of thick and thin filaments do not run transversely
across them, but are arranged helically. Their filaments are long (in some
cases extremely long) and the fibers can exert high stresses, as already
noted for a mussel muscle in Table 2.1. Because they are very long with
large numbers of cross bridges, the thick filaments have to be strong
enough to withstand large forces. They have a central core of the protein
paramyosin, which makes them much thicker than the thick filaments of
vertebrates. Some obliquely striated muscles are capable of exerting sub-
stantial stresses over remarkably wide ranges of sarcomere length (J.B.
Miller 1975), but others have physiological properties more like vertebrate
striated muscle (Milligan et al., 1997). Some of the obliquely striated mus-
cles of bivalve molluscs have the property known as catch, which enables
them to maintain tension for very long times with remarkably little expen-
diture of energy (Watabe and Hartshorne 1990). However, these muscles
serve functions such as holding the shell closed, rather than locomotion,
and so need not be discussed further in this book.

The flight muscles of advanced insects, including flies, beetles, and many
bugs, bees, and wasps, have very different but equally remarkable proper-
ties (Josephson et al., 2000). They do not require a stimulus to elicit each
contraction, as other muscles do. Instead, occasional action potentials in
their nerves are enough to keep them in a state of oscillation in which they
lengthen and shorten repeatedly. In one experiment, the wing muscles of
a tethered fly beating its wings at a frequency of 120 Hz were found to
be receiving action potentials at a frequency of only 3 Hz. To behave like
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this, the muscles must be connected to a resonant system. They then drive
the system at its natural frequency of vibration (Machin and Pringle
1959). This behavior is due to properties that conventional muscles have
to a lesser extent: stretching has an activating effect on an active muscle
that persists briefly after stretching ends, and shortening has a deactivating
effect that similarly persists.

These muscles are described as fibrillar muscles (because their myofibrils
are thick and conspicuous) or asynchronous muscles (because their con-
tractions are not synchronous with action potentials). All of them work at
high frequencies, ranging from about 20 Hz in giant bugs to 1000 Hz in
small midges. Fibrillar muscles have a large advantage for high-frequency
operation, because they do not require a pulse of calcium ions to trigger
each contraction, but only for the occasional action potentials. This greatly
reduces the energy required for calcium pumping. It also greatly reduces
the volume of sarcoplasmic reticulum required in the muscle fibers, leaving
more space for myofibrils. Rattlesnake tail-shaker muscles, which operate
at 90 Hz but are not fibrillar, contain 26% sarcoplasmic reticulum. In
contrast, fibrillar flight muscle contains very little, for example 2% in a
beetle that beats its wings at 80 Hz (Table 2.2).

The elastic properties of fibrillar flight muscle are unusual. Figure 2.2A
showed that very little stress is needed to stretch resting frog muscle, until
lengths at the upper end of its working range are reached. In contrast,
unstimulated fibrillar flight muscle develops large passive elastic stresses
when stretched only slightly beyond the length at which (when stimu-
lated) it would develop maximum active stress (Fig. 2.8A).

Work loop experiments mimicking the conditions of flight have been
performed on bumblebee (Bombus) flight muscles (Josephson 1997a). The
frequency was about 150 Hz, the range of length change was about 3% of
muscle length and the temperature was 40°C. The maximum power out-
put obtained was 110 W/kg, which seems to be a little less than is possible
in the living animal; calculations of aerodynamic power output of fully
laden bumblebees in climbing flight have given values around 180 W per
kilogram of muscle (Josephson 1997b). Even this higher value represents
a work output in each wing beat cycle of only 180/150 = 1.2 J/kg, much
lower than the outputs obtainable from vertebrate striated muscle. For
example, as we saw in Section 2.3, work loop experiments with a mouse leg
muscle gave a maximum power output of 94 W/kg at 5 Hz, representing a
work output in each cycle of 19 J/kg (Askew and Marsh 1998). The net
work output of fibrillar flight muscle is low because the range of length
changes is small (3% compared to about 12% in the experiments on mice)
and because the stress in the muscle remains quite high, during the length-
ening phase of the cycle. Nevertheless, the power output is high, because
the frequency is high.



Fig. 2.8. Properties of bumblebee (Bombus) flight muscle. (A) A graph of stress
against muscle length. Squares show stress in unstimulated muscle and circles show
the additional stress that resulted from stimulation. Hollow symbols show stresses
measured while length was increasing or decreasing, as indicated by the arrows.
Filled symbols show the means of these values. (B) Examples of work loops ob-
tained in experiments simulating the conditions of flight. These go clockwise for
unstimulated muscle (above), showing that a little energy was being dissipated,
and anticlockwise for stimulated muscle (below), showing that net work was being
done. From Josephson (1997a b).
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This chapter has shown that the muscles that power locomotion vary
widely in structure and properties. Myofilament lengths are more or less
constant among vertebrates, but longer myofilaments in some invertebrate
muscles enable them to exert higher stresses. The stress that a muscle can
exert depends both on the degree to which its sarcomeres are extended
and on the rate at which they are shortening or being stretched. The prop-
erties of a muscle in a series of repetitive contractions and extensions
cannot be predicted accurately from its behavior in single contractions.
Aerobic muscles contain higher proportions of mitochondria (and corres-
pondingly less contractile material) than anaerobic muscles. The peculiar
oscillatory behavior of the fibrillar flight muscles of some insects enables
them to work at very high frequencies without the high proportion of
sarcoplasmic reticulum found in other fast muscles. The pennation pat-
terns and moment arms of muscles, as well as the properties of their fibers,
are important in matching them to their functions.

Though we know so much about muscle, scientists studying animal lo-
comotion would like to know more. Equations 2.3a and 2.3b predict the
force that a fully activated muscle will exert while contracting or being
stretched at a constant rate. Equations 2.10a and 2.10b predict its meta-
bolic rate in the same circumstances. However, during locomotion mus-
cles do not simply shorten or stretch at constant rates. They generally un-
dergo cycles of lengthening and shortening, and are activated to different
extents at different stages of the cycle. In such circumstances, Equations
2.3 do not work well (Askew and Marsh 1998), and it seems likely that
the same is true of Equations 2.10. If we had easily applicable equations
that would predict the forces and metabolic rates of muscles in cyclic activ-
ity, we could greatly improve our understanding of the muscle forces and
metabolic energy costs involved in locomotion. For example, we would
be able to calculate what the forces and energy costs would be, if an ani-
mal’s muscles had different properties or were differently arranged, or if
it used a different pattern of movement.



Chapter Three...............................................................
Energy Requirements for Locomotion

MUSCLES HAVE TO do work whenever an animal’s body is mov-
ing against a resisting force, and whenever the mechanical energy
of the body is increasing. This chapter discusses the forces and ener-

gies involved in a general way, in preparation for the discussions in later
chapters of specific modes of locomotion. It also considers the relationship
between the work that the muscles do and the metabolic rate of the body.

The major components of the mechanical energy of the body that are
important for discussions of locomotion are kinetic energy, gravitational
potential energy, and elastic strain energy. We will consider them in turn.

3.1. KINETIC ENERGY

Kinetic energy is the energy that a moving body has because it is moving.
It is very simple to calculate the kinetic energy of a particle (an infinitely
small body): the kinetic energy of a particle of mass m moving with veloc-
ity v is #mv 2. The calculation is more complicated for bodies of finite size
because different parts of them may move with different velocities. Even
if a body is rigid, different parts of it will be moving at different velocities
if it is rotating. The kinetic energy Ukin of a rigid body is

Ukin = # mvcm
2 + # Icm ω 2 (3.1)

where m is the mass of the body, vcm is the velocity of its center of mass,
Icm is the moment of inertia of the body about its center of mass, and ω is
its angular velocity (its rate of rotation, which must be measured in radi-
ans, not degrees, per unit time).

The center of mass is the point at which the mass of the body can be
considered to act for purposes of calculations like this, for example the
center of a uniform sphere or the midpoint of a uniform rod. Alexander
(1983) describes a method for locating the centers of mass of other bodies.
The moment of inertia is the constant needed to make this equation work.
It is small if the mass of the body is all located close to the center of mass,
and large if most of the mass is near the periphery. For example, it is larger
for a hollow steel sphere than for a solid steel ball of the same mass. Further
explanation, and descriptions of methods for measuring moments of iner-
tia, can be found in textbooks of mechanics and in Alexander (1983).
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The situation is even more complicated for bodies that are not rigid, for
example, human bodies whose joints bend and extend as we walk or run.
To calculate the kinetic energy of such a body, think of it as being com-
posed of a very large number of tiny particles. Particle number 1 has mass
m 1 and components of velocity u 1 , v 1 , w 1 in the X , Y, and Z directions;
particle number 2 has mass m 2 and components of velocity u 2 , v 2 , w 2 ; and
so on. The kinetic energy of the body is calculated by adding up the kinetic
energies of all the individual particles.

Ukin = # m1 (u1
2 + v1

2 + w1
2) + # m2 (u2

2 + v2
2 + w2

2) + . . . (3.2)
= # Σ [m i (u i

2 + v i
2 + w i

2 )]

The symbol Σ means “the sum of” and the subscripts i indicate that the
total has to be calculated for i = 1, 2, 3, etc., to include all the particles.
Rotational terms, like the term #Icmω 2 in Equation 3.1, do not appear in
this equation because it treats the body as an assembly of infinitely small
particles.

It is often convenient to think of the kinetic energy of the body as
having two components: energy due to movement of the body as a whole
and energy due to movement of parts of the body (for example, limb
segments) relative to each other. This is done by defining the external
kinetic energy (the energy due to the motion of the center of mass) as
#mtotal (ucm

2 + vcm
2 + wcm

2) and the internal kinetic energy (due to motion
of parts of the body relative to the center of mass) as # m1 [(u1 − ucm)2 +
(v1 − vcm)2 + (w1 − wcm)2] + # m2 [(u2 − ucm)2 + (v2 − vcm)2 + (w2 − wcm)2] +
. . . or # Σ {mi[(ui − ucm)2 + (vi − vcm)2 + (wi − wcm)2]}. Here mtotal is the total
mass of the body, and ucm, vcm, wcm are the components of the velocity of
the center of mass:

Ukin = # mtotal (ucm
2 + vcm

2 + wcm
2) (3.3)

+ # Σ {mi [(ui − ucm) 2 + (vi − vcm) 2 + (wi − wcm) 2]}

It can be shown that Equation 3.3 gives the same result as Equation 3.2
(Chorlton 1967).

An unwelcome complication in calculations using Equation 3.3 is that
the position of the center of mass is not fixed within the body. When I
swing a leg forward, my center of mass moves forward a little, relative to
my trunk, and when I raise an arm my center of mass rises a little.

3.2. GRAVITATIONAL POTENTIAL ENERGY

Gravity exerts a downward force mg on a body of mass m, where g is the
gravitational acceleration (9.8 m s−2 at the surface of the earth). This force
is known as the weight of the body. To raise the body through a height h,
work must be done equal to the force multiplied by the distance, mgh.
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This work can, in principle, be recovered if the body is allowed to fall back
to its original level, so a body of mass m with its center of mass at a height
h has gravitational potential energy mgh.

Gravitational potential energy and kinetic energy are interconvertible.
A ball thrown into the air slows down as it rises and speeds up as it falls;
it loses kinetic energy as it gains gravitational potential energy and vice
versa. Similarly, a pendulum slows down as it rises at the end of a swing
and speeds up as it falls at the beginning of the next swing. A frictionless
pendulum in a perfect vacuum would go on swinging forever, swapping
energy back and forth between the kinetic and the gravitational potential
forms. Pendulumlike energy exchanges will figure largely in our discussion
of walking in Section 7.3.

When you calculate the gravitational potential energy of a body, the
result you get depends on the level from which you measure the height h.
This does not matter, so long as you make it clear what your reference
level is, because you will be interested in changes of gravitational potential
energy rather than absolute values. It is often convenient to measure
the height from ground level, because you cannot generally fall further
than that.

3.3. ELASTIC STRAIN ENERGY

Energy is stored in an elastic structure when it is stretched or compressed.
For example, energy is stored in the rubber of a catapult as it is stretched,
and released, giving kinetic energy to the missile, when the catapult is
fired. In the case of an ideal linear spring, the force F required to stretch
it is proportional to the extension ∆l, according to Hooke’s law

F = S ∆l =
1
C

∆l (3.4)

where S is the stiffness and C (= 1/S) is the compliance of the spring. A
graph of force against extension is a line of gradient S, and the elastic strain
energy Ustrain is represented by the (triangular) area under it:

Ustrain = # F ∆l = # S ∆l 2 =
# F 2

S
(3.5)

Biological materials do not generally obey Hooke’s law. The material of
which the elastic properties will concern us most is tendon. Figure 3.1
shows the results of an experiment in which a tendon from a wallaby was
repeatedly stretched and allowed to recoil. Its elastic behavior differs in
two ways from that of an ideal, linear spring. First, contrary to Hooke’s
law, the graph is curved. Its gradient is shallower at small extensions than
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Fig. 3.1. A graph of force against extension obtained when a piece of the gastroc-
nemius tendon of a wallaby (Macropus) was stretched and allowed to recoil repeat-
edly at a frequency of 2.2 Hz (similar to the frequency with which the animal
would have hopped). Additional scales show stress and strain. From Alexander
(1988).

at large ones. Secondly, the graph for increasing force does not quite coin-
cide with the graph for decreasing force. Instead, the upward and down-
ward curves form a loop. In work loop experiments on muscle, graphs of
force against length form anticlockwise loops, showing that the muscle is
doing net work (Fig. 2.6). In Fig. 3.1, the loop is clockwise, showing that
not all the work done stretching the tendon is returned in the elastic re-
coil. Net work is being done on the tendon, and dissipated as heat. The
area of the loop is small compared to the area under the graph, showing
that the losses are small. About 7% of the work done stretching a tendon
is lost in this way (Bennett et al., 1986).

A thick tendon has higher stiffness than a thin one of the same length,
and a long tendon is less stiff than a short one of the same thickness.
However, graphs of stress (= force / cross sectional area) against strain
(= extension / length) are more or less the same for all tendons. Figure
3.1 shows scales of stress and strain as well as of force and extension. For
materials that stretch according to Hooke’s law, Young’s modulus is the
gradient of a graph of stress against strain. Because the graph for tendon
is curved, its gradient is greater at high stresses than at low ones, and there
is no unique Young’s modulus. The gradient at any particular stress is
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known as the tangent Young’s modulus at that stress. For tendon, it is low
at low stresses and rises at high stresses to about 1500 N/mm2. In later
chapters, we will be concerned also with the elastic properties of resilin, a
rubberlike protein found in insects that has a Young’s modulus of about
2 N/mm2 (Weis-Fogh 1960); and with those of a locust leg apodeme,
which has a Young’s modulus of 15,000 N/mm2 (Bennet-Clark 1975).

The elastic strain energy stored in an ideal, linear elastic structure is
proportional to the square of the applied force (Equation 3.5). Structures
are broken by excessive forces, so the energy they can store is limited.
Consider a cylinder of length l, cross-sectional area A, of a material of
Young’s modulus E, tensile strength τ, and density ρ. It can just withstand
a force Aτ, which will stretch it to a strain τ/E, that is, to an extension
τl/E. Equation 3.5 tells us that the strain energy stored in it will then be
#Aτ 2l/E. Its volume is Al and its mass is Alρ, so the strain energy stored
per unit mass is #τ 2/ρE. The ultimate tensile strength of tendon seems
to be about 100 N/mm2 or 1.0 × 108N/m2, its density is 1120 kg/m3

and its Young’s modulus is about 1.5 × 109N/m2 (Bennett et al., 1986)
Thus, the maximum strain energy that could be stored is # × (1.0 × 108)2/
(1120 × 1.5 × 109) = 3000 J/kg. This is a slight underestimate, because
we have ignored the curvature of the stress–strain graph.

No tendon would store as much strain energy as that in a normal activ-
ity. Tendons grow thick enough to ensure that the forces their muscles
can exert on them are well below the forces needed to break them, leaving
a margin of safety. However, stresses of 50 N/mm2 occur in some leg
tendons of running mammals (Biewener 1998) and, by the same calcula-
tion, store 750 J/kg in them. Compare this with the maximum work that
vertebrate striated muscle can do in a single contraction, 120 J/kg (Sec-
tion 2.1). One gram of tendon is enough to store the work that 6 g of
muscle can do.

3.4. WORK THAT DOES NOT INCREASE THE
BODY’S MECHANICAL ENERGY

Muscles have to do work, not only when the body’s mechanical energy is
increased but also when the body moves against forces that transfer energy
to the environment. For example, a crawling snake does work against fric-
tion as it slides forward over the ground. The energy used for this is de-
graded to heat and lost. A crawling snail does work against the viscosity
of the mucus (slime) under its foot, and again the energy is degraded to
heat. A swimming fish does work against drag, the hydrodynamic force
that resists its movement. Some of this work is required to overcome the
viscosity of the water in the boundary layer (the thin layer of water close
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Fig. 3.2. Diagrams of situations in which motion is resisted by (A) friction,
(B) viscosity, and (C) aerodynamic or hydrodynamic drag.

to its skin). The rest gives kinetic energy to the water that is inevitably set
moving in the fish’s wake, disturbed by the passage of the fish.

Here is how friction is calculated. Consider two surfaces that are pushed
together by a force FN (Fig. 3.2A). The subscript N indicates that this is a
normal force, a force perpendicular to the surfaces. If one surface is made
to slide over the other, the movement is resisted by a frictional force FF,

F F = µ F N (3.6)

where µ is the coefficient of dynamic friction for the surfaces in question.
Coefficients of dynamic friction between dry metal surfaces are generally
around 0.2. In a simple experiment in which I pressed my finger on a force
plate, and slid my finger across the plate I found that the coefficient of
dynamic friction between my dry finger and the smooth aluminium sur-
face of the plate was about 1.0. Lubrication can reduce coefficients of
friction greatly, for example, to around 0.01 between the metal surfaces
of engineering bearings. The work done when a body moves a distance s
against a frictional force F F is sF F.
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The limb joints of mammals are very well lubricated, with coefficients
of friction around 0.003. Consequently, the work animals have to do
against friction in their own joints is so small that it can generally be
ignored. For example, when an adult human walks the normal force in
the hip joint of the supporting leg is about three times body weight, or
just over 2000 N for a 70-kg man. (It is greater than body weight because
of the forces exerted by hip muscles, see Crowninshield et al. 1978.) In
the course of a step, the head of the femur slides about 20 mm (0.02 m)
in the acetabulum. Hence, the work done during the step, against fric-
tion in the hip joint, is about 0.003 × 2000 × 0.02 = 0.1 J. This is very
small compared to the work of about 15 J needed to increase the sum
of kinetic and gravitational potential energy in the course of the step
(Cavagna et al. 1977).

Frictional forces are more or less the same for all speeds of sliding, but
viscous forces increase with speed. Consider a plate of area A separated by
a fluid layer of thickness d, viscosity η, from a fixed surface (Fig. 3.2B). If
it slides over the fixed surface with velocity v, the viscous force that resists
its movement is

Fvisc =
η Av

d
(3.7)

The viscosity of air at atmospheric pressure at 20°C is 1.8 × 10−5 N s/m2.
Freshwater has a viscosity of 1.8 × 10−3 N s/m2 at 0°C and 1.0 × 10−3 N
s/m2 at 20°C, and seawater is slightly more viscous (Denny 1993). The
mucus under the foot of a crawling slug has much higher viscosity, about
5–10 N s/m2 (Denny 1980b).

The formula used for calculating aerodynamic and hydrodynamic drag
depends on the size and speed of the moving object and on the properties
of the fluid in which it is moving. For small objects moving slowly in
highly viscous fluids, drag is due mainly to viscosity and is proportional to
the velocity. For large objects moving fast in fluids of low viscosity, drag
is due mainly to the kinetic energy given to the fluid and is proportional
to the square of velocity. A more specific statement about this will be made
in Chapter 4, when Reynolds number is defined. For the present, it is
sufficient to know that drag is about proportional to velocity for swimming
spermatozoa and microorganisms, and to velocity squared for swimming
fishes. In this book we are concerned almost entirely with animals that are
large and fast enough for drag to be calculated using the equation

Fdrag = # ρ Av 2C D (3.8)

where ρ is the density of the fluid; A is an area that can be defined in
several alternative ways, as we shall see, v is the velocity, and CD is the drag
coefficient, a quantity that depends on the shape of the body. Confusingly,
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the drag coefficient is also affected by the size and speed of the body and
by the properties of the fluid, but I will show in Section 10.1 how account
can be taken of these effects, by the use of Reynolds numbers. Vogel
(1981) gives a very good, clear explanation of drag.

Depending on the type of body being discussed, the area A can be
defined in different ways. For bodies such as the fuselages of aircraft and
the bodies (excluding the wings) of birds it is often defined as the frontal
area, the area of the body as seen in front view (Fig. 3.2C). For the wings
of birds and aircraft it is generally defined as the plan area, the area of a
full-scale plan of the wings (Fig. 10.1A). Another possibility is the wetted
area, the total surface area exposed to the fluid. Yet another is (body vol-
ume)2/3; volume has dimensions (length)3 and area has dimensions
(length)2, and so (volume)2/3 has the dimensions of area. Different drag
coefficients apply, depending on the definition of area that is used. For
example, the drag coefficient based on frontal area of a sphere is about 0.5,
over a wide range of Reynolds numbers; the drag coefficient based on
wetted area is about 0.13, because the surface area of a sphere is four times
the frontal area; and the drag coefficient based on (volume)2/3 is about
0.6. All these drag coefficients give the same drag, when used in Equation
3.8, provided that the corresponding area is used with them.

Other shapes have different drag coefficients. The lowest coefficients are
obtained with streamlined bodies, rounded in front and tapering to a
point behind like the body shown in Fig. 3.2C. The drag coefficients of
the streamlined body of a sea lion, in the range of Reynolds numbers at
which sea lions swim, are about 0.08 (based on frontal area), 0.005 (based
on wetted area), or 0.04 (based on (volume)2/3) (Stelle et al., 2000). Com-
parison of the drag coefficients based on (volume)2/3 shows that the drag
on a sea lion’s body is only one-fifteenth of the drag on a sphere of equal
volume, moving at the same speed. Streamlining has a very large effect
on drag.

The aerodynamic or hydrodynamic forces on bodies may have compo-
nents at right angles to the direction of motion, in addition to the drag
that acts backward along the direction of motion. These components of
force are called lift. They are the forces that keep aircraft airborne. Work
is done against drag but not against lift, because work is distance moved
multiplied by the component of force in the direction of motion.

Different parts of an animal’s body may move with different velocities
and have different resistive forces acting on them. Suppose that in some
interval of time, part number 1 of the body moves a distance s1 against a
force F1, part number 2 moves a distance s2 against a force F2, and so on.
The total work done against resistive forces is

Wres = F1s1 + F2s2 + ⋅ ⋅ ⋅ = Σ (F is i ) (3.9)
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3.5. WORK REQUIREMENTS

Muscles do work when they shorten while exerting force. If the length of
a muscle changes by ∆l while it is exerting a force F, it does work −F ∆l.
The negative sign indicates that positive work is done when the length
decreases (when ∆l is negative). If the length increases (∆l is positive), −F∆l
is negative. A muscle that is stretched while exerting a force acts like a
brake and is said to do negative work.

Suppose that in some interval of time the kinetic energy of a body in-
creases by an amount ∆Ukin , the gravitational potential energy by ∆Ugrav ,
and the elastic strain energy by ∆Ustrain . Suppose that in the same interval
of time work Wres is needed to move parts of the body against resistive
forces such as friction or drag; that some of the muscles do positive work
totaling Wpos; and that others do negative work totaling −Wneg. Then con-
siderations of energy balance tell us that

Wpos − Wneg = ∆Ukin + ∆Ugrav + ∆Ustrain + Wres (3.10)

Having some muscles do positive work while others do negative work is
like driving a car with the brakes on. It may seem wasteful of energy but
it is often necessary, for several reasons.

First, the changes of kinetic energy, gravitational potential energy, and
elastic strain energy may be either positive or negative. The total mechani-
cal energy of one part of the body may rise while another falls. In that
case, muscles will have to do positive work on one part of the body while
other muscles do negative work on the other, unless there is a mechanism
that transfers energy from one part to the other.

As an example of an activity in which mechanical energy is transferred,
consider kangaroo hopping. I will show in Chapter 7 that while the feet
are on the ground, the kinetic energy of the body falls and then rises; at
the same time tendons in the lower leg stretch (storing elastic strain en-
ergy) and then recoil (returning the energy). It seems clear in this case
that kinetic energy of the body is converted to elastic strain energy in
tendons, and back again. Similarly, when a ball bounces, its kinetic energy
is converted to elastic strain energy, then returned in the rebound.

Now imagine yourself swinging your arms one-quarter of a cycle out of
phase with each other, so that when one arm is moving fastest, in mid
swing, the other is stationary at the end of its swing. The kinetic energy
of the right arm falls while that of the left arm rises, and vice versa, but it
seems unlikely that energy can be transferred from one arm to the other;
instead, the muscles of one arm must do positive work while those of the
other do negative work. This is rather an artificial example (the movement
is hard to perform) and I use it only because it can be described briefly. At
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Fig. 3.3. (A) A diagram of an arm with one-joint muscles only, making a move-
ment that is discussed in the text. (B) A two-joint muscle.

various stages of walking and running strides, the kinetic energy of one
part of the body falls while that of another rises, and it is difficult to deter-
mine how much energy transfer occurs (Winter 1990).

A second reason why one muscle must do positive work while another is
doing negative work depends on the arrangement of the muscles involved.
Consider a person holding a heavy object, who moves it slowly forward
from the position shown by the continuous line in Fig. 3.3A, to the posi-
tion shown by the broken outline. This movement leaves the gravitational
potential energies of arm and object unchanged. Throughout the move-
ment, moments that can be balanced by the muscles shown in the diagram
act about the shoulder and elbow. If these muscles are used for the move-
ment, the shoulder muscle has to shorten, doing positive work, while the
elbow muscle lengthens, doing negative work. The need for muscles to
work against each other could be reduced if use were made of the muscle
shown in Fig. 3.3B, which crosses both joints and exerts moments in the
required direction about both. The movement involves 90° rotation about
both joints, so if this muscle had equal moment arms about both joints
there would be no need for it to change length during the movement.
Though it would exert force, it need do neither positive nor negative work.
Other muscles would have to be activated at appropriate stages of the
movement to ensure that equilibrium was maintained at both joints, but
the amounts of positive and negative work required for the movement
would be reduced.

In the human arm, the brachialis muscle is arranged like the elbow mus-
cle of Fig. 3.3A, and the biceps is arranged like the muscle of Fig. 3.3B.
Alexander (1997a) presented a theoretical argument that seems to show
that the metabolic energy cost of many arm movements would be greater,
if two-joint muscles such as the biceps did not exist.
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3.6. OSCILLATORY MOVEMENTS

In this section we will ask how muscles and their tendons could be ar-
ranged to minimize metabolic energy costs in movements that are oscilla-
tory in nature. Such movements are very common in locomotion. Flying
insects and birds beat their wings up and down, swimming fishes beat
their tails from side to side, and running mammals swing their legs back-
ward and forward. In all these cases, a structure that has mass is oscillated
in a fluid (either air or water), which resists its motion. We will have to
consider two kinds of forces. Forces are required to accelerate and deceler-
ate the moving body parts; we will call these inertial forces. In addition,
forces are needed to move the body parts through the fluid against hydro-
dynamic (or aerodynamic) drag. In some cases the inertial forces may be
much larger than the hydrodynamic forces. For example, the inertial forces
needed to accelerate and decelerate the legs of a horse are much larger
than the aerodynamic drag that resists their motion. In other cases the
inertial forces may be much smaller than the hydrodynamic forces, or may
even be canceled out by springs.

Any mass that is mounted on springs will vibrate if disturbed, at a natu-
ral frequency of vibration that depends on the ratio of the mass to the
stiffness of the spring; high stiffness and low mass give a high frequency.
When a mass–spring system is vibrating at its natural frequency, kinetic
energy is being converted repeatedly to elastic strain energy and back
again. The inertial forces are balanced by elastic forces in the spring. This
seems to happen in scallops, which swim by repeatedly clapping their shells
shut (squirting out a jet of water) and allowing them to spring open (see
Section 16.2). The mass of the valves of the shell and the elastic stiffness
of the hinge that joins the two valves of the shell together interact to
give the animal a natural frequency of vibration that seems to match the
swimming frequency (De Mont 1990). When the swimming scallop
opens and closes its shell at this frequency, its muscles have only to work
against hydrodynamic forces. They do not have to contend with the iner-
tial forces, which are, however, relatively small.

Figure 3.4 shows a simple model of oscillatory movement that will help
us to establish general principles applying to a wide range of styles of loco-
motion, including the leg movements of horses, the shell movements of
scallops, and the wing movements of insects. Two muscles that have elastic
tendons contract alternately, oscillating a plate in a fluid. The plate has
mass and the fluid exerts drag on it. In addition, there may be springs in
parallel with the muscles that supply, at least in part, the forces needed to
overcome the inertia of the plate. The muscles are required to vibrate the
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Fig. 3.4. A diagram of oscillatory movement driven by muscles.

plate at a specified frequency, with specified amplitude. Alexander (1997b)
made calculations for this model, varying the unloaded shortening speed
vmax of the muscles and the elastic compliance of their tendons. For each
combination of speed and compliance I calculated the metabolic rate of
the muscles, using Equations 2.3 and 2.10.

For each stage of a cycle of oscillation I calculated the forces that
the muscles must exert. I also calculated the rates at which they would
have to shorten or lengthen, taking account of the elastic stretching and
recoil of their tendons. I put the force F and the rate of shortening v,
obtained in this way, into Equations 2.3. This enabled me to calculate Fiso,
an indicator of the cross-sectional area of muscle that would have to be
active at that stage of the cycle to supply the required force. I then put the
values of Fiso and v into Equations 2.10, which gave an estimate of the
metabolic power needed at that stage of the cycle to power the movement.
Finally, I averaged this power over a complete cycle to obtain the meta-
bolic rate.

Results are shown in Fig. 3.5. Graph A refers to a negative ratio of
inertial forces to drag. This is not impossible (it represents a spring–mass
system driven below its natural frequency), but I know no examples in
animal locomotion and will not discuss it further. Graph B represents a
system with parallel springs driven at its natural frequency, such as a swim-
ming scallop. The highest possible efficiency (star) is obtained with rela-
tively fast muscles and no tendon compliance. In (C), peak inertial and
drag forces are equal, as they are for the wing movements of some flying
insects. The muscles should still be fairly fast, for maximum efficiency, but
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Fig. 3.5. Graphs showing metabolic rates calculated for the model of oscillatory
movement (Fig. 3.4). In each graph, the vertical axis shows a muscle speed parame-
ter, the vmax of the muscles divided by the peak speed of the plate. The horizontal
axis shows a compliance parameter, the amount by which the peak hydrodynamic
force would stretch the tendons, divided by the amplitude of the oscillation. The
contours show efficiency calculated as (Work done against drag)/(Metabolic en-
ergy consumption). Efficiency is calculated in this way because the work against
drag is the essential work that the muscle must do, whereas the need to do work
against inertial forces can be eliminated by judicious choice of tendon compliance
or of the compliance of parallel springs. Maximum efficiency is marked by stars.
Shaded regions of the graphs are unattainable because the muscles would have to
shorten faster than vmax, at some stage of the cycle. In (A), the ratio of peak inertial
force to peak drag is −1; in (B) it is zero; in (C) it is +1; and in (D) it is +5. From
Alexander (1997b).
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there should in this case be some tendon compliance. In (D), inertial
forces are five times greater than drag, just a little higher than has been
estimated for some hovering hummingbirds. The optimum now requires
a much slower muscle, but efficiency is in this case much less sensitive to
muscle speed and much more sensitive to tendon compliance. Note the
closely spaced contours, which show that a small change of compliance
can result in a large change of efficiency.

We will refer back to Fig. 3.5 in later chapters, where we will discuss
the various modes of oscillatory locomotion, but I have to admit a very
serious gap in current knowledge. The swimming scallop seems to be
the only case in which we know both the tendon compliance and the vmax

of the muscle. Remember that inertial forces for the scallop seem to be
zero, canceled out by elastic forces in its springlike hinge. The scallop’s
swimming muscle has no tendon, so tendon compliance is zero, as re-
quired for maximum efficiency (Fig. 3.5B). Also, vmax has approximately
the value required for maximum efficiency. Thus, in the one case we know
about, the properties of the muscle agree well with the prediction of
the theory.

The highest attainable efficiency, marked by stars in Fig. 3.5, is between
0.43 and 0.45 in (B), (C), and (D), about the same as the maximum effi-
ciency shown in Fig. 2.3D. It is only when the inertial forces are negative
(Fig. 3.5A) that such high efficiencies cannot be attained.

Two words of caution seem necessary. First, we should not expect mus-
cles to be adapted simply to maximize efficiency. Rather, we should expect
muscle design to be a compromise between the requirements of efficiency,
speed, acceleration, etc., as discussed in Chapter 1.

Secondly, the physiological data used to make the calculations for Fig.
3.5 came from experiments in which muscles made single contractions at
constant speed. In oscillatory movements, muscles lengthen and shorten
repeatedly at constantly changing speeds. We have noted in Section 2.3
that the forces exerted by muscles in work loop experiments can be sig-
nificantly different from those predicted by Equations 2.3. Consequently,
the results shown in Fig. 3.5 may be to some extent misleading. The ap-
proach used to calculate them seems to be the best currently available. Let
us hope that advances in muscle physiology may soon make more reliable
calculations possible.

In this chapter we have seen that muscles have to do work whenever the
sum of the kinetic energy, the gravitational potential energy, and the elas-
tic strain energy of the body are increased. They also have to do negative
work, degrading mechanical energy to heat, when the sum of these ener-
gies is reduced. Additional work has to be done against friction when an
animal slides over a solid surface, against viscous forces when it slides over
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a fluid layer, and against drag when it moves through air or water. Finally,
we have seen how muscle and tendon properties can be adjusted to mini-
mize the metabolic costs of oscillatory movements. I had to add a note of
warning at the end of the discussion of oscillatory movements, because
advances in muscle physiology are needed to enable us to do the calcula-
tions properly, as I explained at the end of Chapter 2.



Chapter Four...............................................................
Consequences of Size Differences

D OMESTIC CATS and lions are very different in size, but they are
similar in shape and move in similar ways. Both walk to go slowly,
trot at intermediate speeds, and gallop to go fast. Small minnows

and large salmon are similar in shape and make similar movements when
they swim. Both hummingbirds and vultures fly by beating their wings.

There are important differences as well as similarities between the
movements of animals of different sizes. In each of their gaits, lions run
faster than cats and take longer strides, at a lower stride frequency. Min-
nows make more tail beats per second than salmon, and hummingbirds
beat their wings at higher frequency than vultures. Hummingbirds hover
but vultures cannot. Vultures soar and hummingbirds do not.

These examples suggest that we should want to understand how the
structure of animals and their patterns of movement depend on body size.
In this chapter I try to establish some of the basic principles that will be
useful in the later chapters in which I discuss particular modes of locomo-
tion. You will find further discussion of the consequences of size differ-
ences in McMahon and Bonner (1983), Schmidt-Nielsen (1984), and
Brown and West (2000).

4.1. GEOMETRIC SIMILARITY, ALLOMETRY,
AND THE PACE OF LIFE

Two shapes are geometrically similar if one could be made identical to the
other by multiplying all length dimensions by the same factor. For exam-
ple, a triangle with sides 3, 4, and 5 cm long is geometrically similar to
one with sides of 6, 8, and 10 cm.

Imagine two animals that are geometrically similar to each other, one
a precise half-scale model of the other. The larger one is twice as long as
the smaller and has twice the circumference, so has 2 × 2 = 4 times the
surface area. It is twice as long, twice as wide, and twice as high as the
smaller one, so has 2 × 2 × 2 = 8 times the volume and (if the animals are
made of the same materials) eight times its mass. More generally, geomet-
rically similar animals (or other objects) have areas proportional to
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Fig. 4.1. A graph on logarithmic coordinates of length against body mass for
whales. The slope of the regression line is 0.34. From Economos (1983).

(length)2 and volumes proportional to (length)3; and if they are made of
the same materials they have masses also proportional to (length)3. This
implies that lengths are proportional to (mass)1/3 and areas to (mass)2/3.

This suggests that when we analyze relationships between body dimen-
sions in animals of different sizes we may expect to find that our data can
be approximated by equations of the form

y = axb (4.1)

where y is a body dimension (perhaps length or area), x is another (perhaps
volume or mass), and a and b are constants. Equations like this are called
allometric equations. By taking logarithms of both sides of Equation 4.1,
we get

log y = log a + b log x (4.2)

implying that a graph of log y against log x should be a straight line of
gradient b. The allometric equation that best fits a set of data can be found
by regression of the logarithms of the data. Least-squares (model 1) re-
gression, or reduced major axis (model 2) regression may be the more
appropriate, depending on the nature of the data and the purpose for
which the equation is required (Rayner 1985a).

Figure 4.1 is a graph of length against body mass for whales. Distances
along the axes are proportional to the logarithms of length and mass, not
to length and mass themselves. Thus, the distance along the horizontal
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Fig. 4.2. A graph on logarithmic coordinates of wing area against body mass for
birds. The slopes of the lines, fitted by reduced major axis regression, are 1.09 for
hummingbirds and 0.72 for other birds. From Rayner (1987).

axis from 10 to 100 kg is the same as the distances from 100 to 1000 kg,
and from 1000 to 10,000 kg. Drawn like this, the graph is equivalent to
a graph of log(length) against log(mass). The equivalence of a graph on
logarithmic coordinates, like this, and a graph of logarithms is made ex-
plicit in Fig. 4.3, which has a scale of logarithms at the bottom and a
logarithmic scale at the top. If whales of different sizes were geometrically
similar to one another, their lengths would be proportional to (body
mass)1/3, and all the points in Fig. 4.1 would lie on a line of slope 1/3.
The slope of the line is actually 0.34, almost exactly as predicted.

In contrast, in Fig. 4.2 wing area is plotted against body mass for birds,
again on logarithmic coordinates. If birds of different sizes were geometri-
cally similar to each other, all the points would lie on a line of slope 2/3.
In fact, the points form two lines of different slopes. The smallest birds are
hummingbirds. The points for them (filled circles) are scattered around a
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Fig. 4.3. A graph of the logarithm of wing beat frequency against the logarithm
of body mass for euglossine bees. Scales of frequency and mass are also shown.
From Casey et al. (1985).

line of slope 1.09, and the points for other birds around a line of slope
0.72. Both these slopes are significantly greater than the predicted slope
of 2/3, showing that the wing areas of large birds are generally larger
than they would be, if large birds were geometrically similar to small ones.
Notice, however, that the points in Fig. 4.2 are quite widely scattered
above and below the lines. This reflects differences between the birds’
ways of life. For example, 10-kg vultures have wings of about twice the
area of those of 10-kg albatrosses.

As well as being useful for describing how the dimensions of animals’
bodies are related to body mass, Equation 4.1 is also often useful for de-
scribing how the rates of animal movements and of physiological processes
are related to body size. Figure 4.3 shows that wing beat frequencies of a
group of species of bees tend to be proportional to (body mass)−0.35. Again
there is a good deal of scatter about the line.
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Fig. 4.4. A graph of logarithmic coordinates of resting metabolic rate against
body mass for mammals. From Alexander (1999).

Figure 4.4 shows that the resting metabolic rates of mammals tend to
be proportional to (body mass)0.76. This is just one example of a general
tendency: the resting metabolic rates of similar animals of different sizes
tend to be about proportional to (body mass)3/4 (Peters 1983). Maximum
active metabolic rates of similar animals also tend to be roughly propor-
tional to (body mass)3/4. For example, Taylor et al. (1981) found that the
maximum rates of oxygen consumption while running, of mammals rang-
ing from mice to cattle and elands, were proportional to (body mass)0.81.

If the metabolic rates of animals are proportional to (body mass)3/4,
metabolic rates per unit mass are proportional to (body mass)−1/4. This fits
in with a general tendency for the frequencies of animal movements to
be about proportional to (body mass)−1/4 and for the times required for
biological processes to be about proportional to (body mass)1/4. For exam-
ple, the gestation periods of mammals are about proportional to (body
mass)0.24 and their heart beat frequencies to (body mass)−0.25 (Peters 1983).
If the energy used in each repetition of a movement (for example, a stride
or a heart beat) is proportional to body mass, and the frequency of repeti-
tion is proportional to (body mass)−1/4, the rate at which energy is used
will be proportional to (body mass)3/4.

However, there are some marked deviations from the general rule. Fig-
ure 4.3 has shown us that the wing beat frequencies of bees tend to be
proportional to (body mass)−0.35 ± 0.06 (95% confidence limits), and Heglund
et al. (1974) found that the galloping stride frequencies of mammals are
proportional to (body mass)−0.14 (confidence limits not calculated).
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West et al. (1997) have tried to explain why metabolism and other bio-
logical processes tend to proceed at rates proportional to (body mass)−1/4.
Their theory seems to have great explanatory power, but does not fully
satisfy me, as I have explained elsewhere (Alexander 1999).

4.2. DYNAMIC SIMILARITY

Lions are much larger than domestic cats and take fewer strides per second,
but apart from that the movements of a galloping lion are very like those
of a galloping cat. Large salmon beat their tails at lower frequencies than
minnows, but may leave similar patterns of eddies in their wake. The con-
cept of dynamic similarity will help us in comparisons like these and will
enable us to make generalizations about the movements of animals of dif-
ferent sizes.

Two shapes are geometrically similar if one could be made identical to
the other by multiplying all lengths by some factor λ. By an extension of
the same kind of thinking, two motions are dynamically similar if one
could be made identical to the other by multiplying all lengths by a factor
λ, all times by a factor τ and all forces by a factor φ. As an example of
dynamically similar motion, think of two pendulums of different lengths
swinging through the same angle.

What does dynamic similarity imply? If all lengths are multiplied by λ
and all times by τ, all velocities must be multiplied by λ/τ and all accelera-
tions by λ/τ 2. Newton’s second law of motion tells us that force equals
mass multiplied by acceleration, so if all forces are multiplied by φ, all
masses must be multiplied by φ/(λ/τ 2) = φλ/(λ/τ)2. In other words,

Ratio of masses =
Ratio of forces × Ratio of lengths

Ratio of velocities2

or

Ratio of masses × (Ratio of velocities)2

Ratio of forces × Ratio of lengths
= 1 (4.3)

This tells us that for two motions to be dynamically similar, the following
condition must be satisfied. Let m 1, m 2 be corresponding masses in the
two motions (for example, the masses of corresponding parts of two
animals’ bodies); let v 1, v 2 be corresponding velocities (for example, the
velocities of corresponding body parts at corresponding stages of the mo-
tion); let F 1, F 2 be corresponding forces (for example, peak forces on the
feet) and let l 1, l 2 be corresponding lengths (for example, stride lengths).
If the motions are dynamically similar,
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m1v1
2

F1l 1
=

m2v 2
2

F2 l 2
(4.4)

Both motions must have the same value of mv 2/Fl.
This must be true for all the kinds of forces that are important for

the motion. Suppose, for example, that gravitational forces are impor-
tant, as they are for running mammals. The force F exerted by gravity on
a mass m is mg, where g is the gravitational acceleration. Thus, mv 2/Fl =
v 2/gl. When gravity is important, motions can be dynamically similar
only if they have equal values of v 2/gl, a quantity that is called a Froude
number.

This rule helps us to predict the speeds at which terrestrial animals
change gaits. Quadrupeds walk at low speeds, trot at intermediate speeds,
and gallop at high speeds. Walking, trotting, and galloping are markedly
different patterns of movement, as every horse rider knows, and as the
descriptions in Section 7.2 will show. Alexander and Jayes (1983) formu-
lated the hypothesis that quadrupeds tend where possible to move in dy-
namically similar ways, which implies, among other things, that they will
change gaits at equal Froude numbers. We took v to be running speed and
l to be leg length (or, more precisely, the height of the hip joint from the
ground in normal standing). We analyzed film of a wide variety of mam-
mals ranging in size from small rodents to rhinoceros and concluded that
in almost every case the change from trotting to galloping was made at a
Froude number between 2 and 3. Our data seem also to show that the
changes from walking to trotting in quadrupeds, from walking to running
in humans, and from shuffling to hopping in kangaroos are all generally
made at Froude numbers between about 0.3 and 0.8.

So far, we have assumed that gravitational forces are important. Now
we will consider instead motions, such as swimming, in which viscous
forces are important. Figure 3.2B showed a plate of area A moving with
velocity v over a layer of thickness d of a fluid of viscosity η. Equation 3.7
told us that the force required to drive this motion is ηAv/d. In dynami-
cally similar motions, corresponding areas are proportional to the squares
of corresponding lengths l 2, and corresponding thicknesses must be pro-
portional to l. Thus, forces are proportional to ηlv. Also, the masses of
corresponding regions of fluid are proportional to ρl 3, where ρ is the
density of the fluid. Thus, mv 2/Fl (Equation 4.4) is proportional to
(ρl 3v 2)/(ηlvl ) = ρlv/η. The quantity ρlv/η is called a Reynolds number.
Motions in which viscosity is important can be dynamically similar only if
their Reynolds numbers are equal.

The fluids that will concern us most in our discussions of locomotion
are air and water. To calculate Reynolds numbers in them we need to know
values of η/ρ, the quantity that is known as kinematic viscosity. For air at
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20°C at a pressure of one atmosphere, it is 1.5 × 10−5 m2/s; and for fresh-
water or seawater at 20°C it is 1.0 × 10−6 m2/s (Denny 1993).

Reynolds numbers will appear in our discussions both of swimming
and of flight. For example, fluid flow in the boundary layer around a
streamlined body of length l traveling at velocity v becomes turbulent if
the Reynolds number ρlv/η rises above about 2 × 106, causing an abrupt
increase of drag. We will need to know the range of Reynolds numbers
involved when we discuss the drag that acts on swimming dolphins (Sec-
tion 14.4).

We have considered motions in which gravitational forces are important
and ones in which viscous forces are important, and turn now to elastic
forces. A force S ∆l is needed to stretch a spring of stiffness S by an amount
∆l (Equation 3.4). In dynamically similar motions, extensions ∆l will be
proportional to lengths l, so forces will be proportional to Sl. Thus, mv 2/
Fl = mv 2/Sl 2, and the condition for dynamic similarity (Equation 4.4) is
that the motions being compared must have equal values of mv 2/Sl 2. The
natural frequencies of vibration of spring–mass systems are proportional
to (S/m)0.5, so this implies that the motions must have equal values of v 2/
f 2 l 2, where f is the natural frequency of the system; hence, they must have
equal values of f l/v, which is called the Strouhal number. The reduced
frequency referred to in many discussions of animal swimming and flight
is simply 2π times the corresponding Strouhal number.

Strouhal numbers are applicable to cyclic motions in general, whether or
not elastic forces are important. Consider two dynamically similar motions
that repeat in regular cycles. All times in one of them are τ times corres-
ponding times in the other, and all lengths are λ times corresponding
lengths. Thus, frequencies are proportional to 1/τ and velocities to λ/τ.
It follows that f l/v is proportional to (1/τ)λ/(λ/τ): in other words, it
is constant. Any two dynamically similar cyclic motions must have equal
Strouhal numbers. I will show in Section 11.1 that hovering humming-
birds of different sizes beat their wings at frequencies that make their
Strouhal numbers about equal.

Froude numbers, Reynolds numbers, and Strouhal numbers are all di-
mensionless; they have no units. However, it is essential when calculating
them to use a consistent system of units. The easiest way to do this is
to express everything in SI units: lengths in meters (not millimeters or
kilometers), times in seconds, masses in kilograms, forces in newtons, etc.

4.3. ELASTIC SIMILARITY AND STRESS SIMILARITY

McMahon (1973) suggested that animals and plants of different sizes
should be built in such a way as to deform under gravity in geometrically
similar ways; gravity should cause equal strains in corresponding parts of
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Fig. 4.5. Diagrams of (A) a branch and (B) a mammal, showing elastic deforma-
tions due to gravity. Broken outlines show their shapes as they would be in the
absence of gravity.

their bodies. For example, Fig. 4.5A shows a branch of length l that bends
elastically under its own weight, depressing its end by ∆h. The theory of
elastic similarity predicts that branches of different sizes will have equal
values of ∆h/l.

The theory is an attractive one for trees. Gravity is one of the principal
forces they have to withstand (the other is drag exerted on them by wind).
Less energy is needed to grow a thin branch than to grow a thick one of
equal length, but too thin a branch will bend so much that its leaves are
not well positioned to receive sunlight. It seems likely that the optimum
compromise would result in branches of different sizes being elastically
similar. McMahon and Kronauer (1976) published evidence that branches
of different sizes are indeed proportioned so as to be, more or less, elas-
tically similar.
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The theory is less attractive for animals. McMahon (1975) applied it to
the leg bones of mammals, but elastic deformation of leg bones is not a
problem in any mammal known to me. McMahon (1973) also applied it
to the trunks of mammals, arguing that these should be proportioned so
as to sag under gravity in geometrically similar ways, with equal values of
∆h/h (Fig. 4.5B).

Geometrically similar structures have lengths and diameters propor-
tional to (body mass)1/3, but McMahon showed that his theory predicted
that leg bones and trunks should have lengths proportional to (mass)1/4

and diameters proportional to (mass)3/8. This would make them relatively
shorter and stouter in larger animals. He found good agreement with
these predictions, both for the leg bones of Bovidae (cattle and antelopes
[McMahon 1975]) and for the chests of Primates (McMahon 1973).
However, in other groups of mammals (Alexander 1979a), and especially
in smaller mammals (Economos 1983), leg bones scale more nearly as
predicted for geometric similarity.

Because leg bones bend only by amounts that seem trivial, I am inclined
to think their proportions more likely to depend on the need to be strong
enough, than on the need to be stiff enough. We will examine a theory
along these lines shortly.

The theory of elastic similarity seems more promising for structures
that undergo substantial elastic deformations in life, for example, the leg
tendons of mammals. Consider two mammals of different sizes that run
in dynamically similar ways, and suppose that their leg tendons stretch
to equal strains. Dynamic similarity implies forces proportional to body
weight, so forces proportional to body weight would be causing similar
elastic deformations; the animals would have to be elastically similar.
However, we will see in Section 7.4 that the leg tendons of kangaroo rats
do not stretch to the same strains as those of kangaroos, when they hop
like kangaroos.

Biewener (1989, 1990) shifted the emphasis, in discussions of mammal
leg design, from elastic strain to stress. He suggested that forces propor-
tional to body weight should set up equal stresses in the skeletons and
muscles of mammals of different sizes; mammals of different sizes should
show stress similarity. In animals built of the same materials, equal stresses
imply equal elastic strains, so stress similarity and elastic similarity are
two aspects of the same design principle. The difference of viewpoint is
nevertheless important. There was no obvious reason why the tiny elastic
strains that occur in leg bones should be expected to be the same in ani-
mals of different sizes, but there is a clear reason why we might expect to
find equal stresses. Bones must be strong enough to withstand the forces
that act on them. Leg bones of different sized mammals are built of essen-
tially the same material, capable of withstanding the same stress.
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Figure 4.6A represents an imaginary one-legged terrestrial animal that
will help us to work out how stress similarity might be possible. A vertical
force equal to the animal’s weight mg acts on the foot, exerting a moment
mgl sin θ about the joint halfway up the leg. The muscle has cross-sectional
area A and has a moment arm r about the joint, so when it exerts a stress
σ the force is Aσ and the moment about the joint is Aσr. Balancing the
moments about the joint gives

Aσr = mgl sin θ (4.5)

σ =
mgl
Ar

sin θ

If animals of different sizes were geometrically similar, A would be
proportional to (body mass)2/3, l and r would be proportional to
(body mass)1/3, and θ would be constant; stresses in a 3000-kg elephant
would be ten times as high as in a 3-kg rabbit.

How could animals be built to avoid this unacceptable result? I will
make two assumptions. The first of these is that muscle mass is the same
proportion of body mass in animals of all sizes. I assume this because
muscles make up so large a proportion of body mass in mammals of all
sizes that there can be little scope for increase. For example, a blacktail
jackrabbit (Lepus californicus) was found to have 46% muscle in its body
(Grand 1977). Secondly, I assume that the fascicles of the muscles have
lengths proportional to the moment arm r. This implies that if the fascicles
of different-sized animals shorten by the same fraction of their length,
they will move the joint through the same angle. Together, these two
assumptions imply that Ar is proportional to the volume, and hence the
mass, of the body. Hence, from Equation 4.5, the stress in the muscle is
proportional to l sin θ.

This tells us that one way of making muscle stress the same in animals
of different sizes would be to keep l constant, but that would not be feasi-
ble; the legs of an elephant could not be made as short as those of a rabbit.
Alternatively, θ could be made smaller in larger animals. This seems to be
the case. Larger mammals generally do stand and run on straighter legs
than small ones. Elephants hold their legs straighter than rabbits.

Let us look at the terms in Equation 4.5 and see how they actually
scale. Biewener (1989) made measurements of the extensor muscles of the
principal limb joints of mammals ranging in size from mice to horses. He
described r/(l sin θ) as the effective mechanical advantage of a muscle
and found that it was about proportional to m0.26, where m is body mass.
Alexander et al. (1981) dissected mammals ranging from shrews to an
elephant and found that limb muscles generally had cross-sectional areas
about proportional to m0.8. Hence, by Equation 4.5, muscle stresses should
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Fig. 4.6. Diagrams of (A) a terrestrial animal, represented as having only one leg,
and (B) a flying animal seen in front view. These diagrams are used in a discussion
of the stresses in bones and muscles of animals of different sizes.

be about proportional to m/(m0.8m0.26) = m−0.06; they should be somewhat
smaller in larger animals. The straightness of their legs is more than ade-
quate to explain how large mammals can be supported by their leg muscles.

Now consider how bones should be built to ensure that they are strong
enough to support animals of all sizes. The force mg on the foot (Fig.
4.6A) has an axial component mg cos θ along the length of the lower leg
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bone and a transverse component mg sin θ at right angles to it. The axial
component compresses the bone along its length and the transverse com-
ponent bends it. Calculations of the stresses in limb bones in locomotion
tell us that the transverse components of force generally give rise to much
larger stresses than the axial components (Rubin and Lanyon 1982). This
should not surprise us; long, slender structures such as bones or sticks are
more easily broken by bending than by axial compression. For this reason,
we will consider only stresses due to transverse forces.

The transverse component of force in Fig. 4.6A exerts bending mo-
ments on the lower leg bone, which increase from zero at the distal end
of the bone to a maximum value of mgl sin θ close to the joint. The peak
stress in a cross section of a bent beam (or a bent bone) is Bending
moment/Section modulus. Section modulus is a quantity that depends
on the diameter and shape of the cross section; for cross sections of the
same shape, it is proportional to (diameter)3 (Alexander 1983). Thus,
the peak stress in the bone is proportional to (mgl/d 3) sin θ. If animals of
different sizes were geometrically similar to each other, l and d would
both be proportional to m0.33 and θ would be constant, so the stress would
be proportional to m0.33. Either rabbits would have bones far stronger
than necessary, or elephants would fracture their bones when they tried
to stand.

Just as we found for muscles, the tendency for larger mammals to stand
and run on straighter legs helps to avoid excessive stresses in bones. We
have already seen that r/(l sin θ) is about proportional to (body mass)0.26.
Biewener (1990) found that muscle moment arms r tend to be propor-
tional to m0.44, making l sin θ proportional to m0.44/m0.26 = m0.18. Alexander,
Jayes et al. (1979a) found that the diameters of mammal leg bones are
generally about proportional to m0.36. Thus, (mgl/d 3) sin θ is expected to
be proportional to mm0.18/(m0.36)3 = m0.10. Bone stress should be propor-
tional to m0.10, implying that it should increase with animal size, but not by
nearly as much as if mammals of different sizes were geometrically similar.

These arguments suggest that muscle stresses in standing animals
should decrease slowly with increasing body size, in proportion to m−0.06,
and that bone stresses should increase slowly, in proportion to m0.10. There
is too much uncertainty about both exponents for us to be confident that
either is different from zero, so our conclusion should probably be simply
that bone and muscle stress change far less with changing body size than
they would if mammals of different sizes were geometrically similar.

We have been thinking of the weight of the body as the load on an
animal’s legs. This is correct for standing, but much larger forces act on
feet in running and jumping. For example, the peak forces on the feet of
a galloping greyhound were four times as high as when it was standing
still (Bryant et al., 1987). The two hind feet of bushbabies (Galago moholi)
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taking off for a jump together exerted a force of up to 13 times body
weight (Günther et al. 1989).

The faster an animal runs, the lower the duty factor (the fraction of the
duration of the stride for which each foot is on the ground). The force
exerted on the ground, averaged over a complete stride, must match body
weight, so the lower the duty factor, the larger the forces that must be
exerted while the foot is on the ground; fast running requires large forces.
Alexander et al. (1977) filmed African ungulates, ranging from small ga-
zelles to giraffes, galloping fast in their natural habitat. We found that duty
factors were about proportional to (body mass)0.14, implying that the forces
exerted by the larger animals were smaller multiples of body weight. In
contrast, Bennett (1987) filmed kangaroos of different sizes hopping fast
and found that duty factors were proportional to (body mass)−0.10, implying
that the forces on the feet of larger kangaroos were larger multiples of
body weight. I do not know which group is more typical of mammals in
general. However, the very largest terrestrial mammals, rhinoceros and
elephants, are less athletic than smaller ones, presumably because their
legs are not strong enough to exert such large multiples of body weight.
Elephants neither gallop nor jump. The lowest duty factor that I have
observed for an elephant (0.49 [Alexander 1979b]) is much higher than
the duty factors of around 0.2 that Alexander et al. (1977) observed for
small antelopes galloping fast.

Flying animals as well as running ones have to support their own weight.
A flying bird of weight mg requires an upward lift mg/2 on each wing
(Fig. 4.4B). This lift is distributed along the length of the wing, but the
moment it exerts about the shoulder is the same as if the whole force acted
at the center of pressure, at a distance l from the wing base. Thus, the
moment is mgl/2. It must be balanced by the pectoralis muscle, which has
cross-sectional area A and moment arm r, and exerts stress σ. Hence,

σ =
mgl
2Ar

(4.6)

The argument that we used in our discussion of Equation 4.5 tells us that
if birds of different sizes were geometrically similar, muscle stress would
be proportional to m0.33; stresses would be ten times as high in a 10-kg
swan as in a 10-g tit. Birds of different sizes are not geometrically similar.
Wingspan, and therefore the length l, tends to be proportional to m0.39

(Rayner 1987), but that deviation from geometric similarity makes the
problem worse rather than better. Not enough seems to be known about
the scaling of bird wings and wing muscles to tell us how muscle stresses
actually scale in birds of different sizes.

This chapter has introduced the concepts of geometric similarity, dy-
namic similarity, elastic similarity, and stress similarity. These concepts
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will be very helpful when we compare the structure and movements of
animals of different sizes, but it is important to remember that no animal is
a precisely scaled model of another. We may discuss what the consequences
would be if animals were, for example, geometrically similar or moved in
dynamically similar ways, but the similarity is never exact. The chapter has
also explained some dimensionless numbers that will be important when
we compare the locomotion of animals of different sizes.



Chapter Five...............................................................
Methods for the Study of Locomotion

T HIS CHAPTER outlines some of the principal techniques that
have been used in the research that is described in later chapters.
Many of them have been used in research on several different

modes of locomotion, described in separate chapters. My aim is to help
readers to understand what was done in the experiments that I will de-
scribe, not to supply the practical details they will need if they wish to
perform similar experiments themselves.

5.1. CINEMATOGRAPHY AND VIDEO RECORDING

Cinematography or video recording is often the best way of recording
movement. Cinematography has had a great deal of use in the past, but
film and processing are expensive, and processing takes time. Video re-
cording has become by far the more common means of making moving
images of locomotion, especially since high-speed video cameras have be-
come available. Standard video cameras record only 30 frames per second
(in North America) or 25 frames per second (in Europe), so are much too
slow to record fast animal movements such as the wing beats of insects.
Weis-Fogh (1973) took cine film at 7150 frames per second to capture
the details of the wing movements of a tiny wasp (Encarsia) that beats its
wings with a frequency of 400 Hz. That gave him 18 frames for each wing
beat cycle. As a rough general rule, about 20 frames per cycle of movement
will usually provide the information that a researcher needs.

That example was of a very fast movement that required an exceptionally
fast framing rate. High-speed video cameras taking up to 500 frames per
second are readily available, though expensive. Faster cameras are seldom
needed in research on animal movement.

A single view can provide information only about movement in two
dimensions. For three-dimensional information, two views are needed.
Sometimes it is convenient to record the two views with one camera; for
example, a side view and a top view of an animal can be obtained in the
same frame if a mirror is set at 45° in the field of view. Alternatively, two
synchronized cameras may be used. It may seem convenient to set these
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up at 90° to each other so that one shows a side view and the other a front
or top view of the animal, but this is not essential. Software is available
for extracting three-dimensional information from two cameras set at any
angle to each other. It is sometimes necessary to have more than two
cameras if there is a danger of the points of interest getting hidden at some
stages of the movement behind other parts of the body.

It is often helpful to put marks on the points of interest on the animal’s
body. For example, in many studies of running, marks have been put on
the skin over the principal joints of the legs. In some cases these marks
have been painted on; in others, adhesive markers have been used. One of
the disadvantages of using skin markers is that a marker that is directly
over the center of a joint in one frame may be well away from it in another,
if the skin moves relative to the underlying skeleton.

Quantitative analysis of a film generally depends on determining the
coordinates of a number of points on the body, in successive frames of the
film. This can be done by displaying each frame in turn on a video moni-
tor, and placing a digitizing cursor over each point of interest in turn. This
can be very laborious, if the numbers of frames and of points of interest
are large. However, several commercially available systems will do the job
automatically, finding the markers in each frame of the film and recording
their coordinates.

Data obtained by film analysis can be used to calculate the forces acting
on the body and the body’s kinetic and gravitational potential energy at
successive stages of the movement. The body is treated as an assembly of
rigid segments (thigh, lower leg, foot, etc.). The mass and moment of
inertia of each segment must be known, and the position of the center of
mass within the segment. The coordinates of the joints between segments,
measured from the film, can be used to calculate the velocity and angular
velocity of each body segment at each stage of the motion, and so its ki-
netic energy. Further calculation gives the acceleration and angular accel-
eration of each segment, from which forces can be calculated. For animals
with many body segments that can be moved relative to each other, the
procedure requires collecting and processing a great deal of information
(see Winter [1990] for more detail). It is prone to error, because the pro-
cess of differentiation that gets velocities from successive positions, and
accelerations from successive velocities, magnifies random errors. This
kind of analysis should not be undertaken lightly.

X-ray cinematography systems are available, and are sometimes very
useful. For example, Jenkins et al. (1988) took X-ray cine film of starlings
in flight, and were able to show how the wishbone bends in each wing
beat cycle. They took their film at 200 frames per second, obtaining about
15 frames for each wing beat cycle. Some of the limitations of X-ray cine-
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matography are that very high framing rates are not available, resolution
is not very good (at least in the films that I have seen), and only a small
field of view can be filmed. Pictures can be obtained of the whole body of
a starling, or of the thorax of a labrador dog (Bramble and Jenkins 1993),
but not of the dog’s whole body.

5.2. STATIONARY LOCOMOTION

Research on animal locomotion often involves connecting the animal to
large items of equipment. For example, a researcher may want to collect
the animal’s breath and pass it along a tube to gas analysis equipment, so
that its rate of oxygen consumption can be measured. Alternatively, he or
she may want to have wires connecting electrodes in the animal’s muscles
to recording equipment, to show when the muscles are active. For experi-
ments like these, it is often inconvenient to have the animal moving
around. However, Langman et al. (1995) collected the breath of an ele-
phant as it walked round a zoo, by placing the gas analyzer on a golf cart
that was driven alongside the animal.

Figures 5.1 and 5.2 show how a running, swimming, or flying animal
can be kept stationary relative to the laboratory. In each case the diagram
shows provision for measuring the rate at which the animal is using oxy-
gen, but discussion of this is deferred to the next section. In Fig. 5.1A the
animal is running on a treadmill (a moving belt), matching its speed to
the speed of the belt so as to stay on the belt. A wide variety of mammals,
birds, and reptiles have been trained (usually without difficulty) to do
this, but it is sometimes advisable to have a safety rope to prevent the
animal from falling off the belt. With a sufficiently large, fast treadmill it
is possible to have a racehorse galloping in a laboratory (Young et al.,
1992). Much smaller treadmills have been used for running insects (Full
et al., 1990).

When an animal is running on fixed ground out of doors, its movement
and any wind together ensure that air is moving around its body. There
is no such air movement around an animal running on a treadmill indoors,
unless a fan is used, as shown in the diagram. The air movement may be
important to ensure that the animal does not overheat. It will generally
have little effect on the energy cost of locomotion, unless a strong wind
is simulated.

Figure 5.1B shows how a flying animal can be kept stationary in a wind
tunnel. A powerful fan draws a current of air through the tunnel, and
the animal matches its speed to the air flow, so as to remain stationary in
the tunnel. Many birds and bats have been trained to do this. The grid



Fig. 5.1. Diagrams of (A) a mammal running on a treadmill, and (B) a bird flying
in a wind tunnel. In both cases the air that the animal breathes out is drawn
through an oxygen analyzer, so that the rate at which the animal is using oxygen
can be measured. From Alexander (1975a).

Fig. 5.2. Diagrams of (A) a fish swimming in a water tunnel and (B) a duck swim-
ming in a flume. Provision is made, in both cases, for measuring the animal’s rate
of oxygen consumption. From Alexander (1999).
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behind the animal ensures that it cannot be blown backward and chopped
up by the fan.

The aim in experiments like this is generally to simulate flight through
still air. For air flow round the stationary bird to be the same as if it
were moving through still air, the flow in the working section of the
tunnel must be smooth and steady and have the same velocity through-
out the cross section of the tunnel. Wind tunnels are carefully designed
to achieve this as nearly as possible. If they were parallel-sided throughout,
the air would flow more slowly near the walls than at the center. The
marked narrowing at the entrance to the working section largely elimi-
nates this problem. The honeycomb (represented by a band of parallel
lines across the entrance to the tunnel) is a grid of metal plates that
helps to make the air flow parallel to the axis of the tunnel, without swirl-
ing around.

The cross section of the tunnel must be large compared to the animal’s
wingspan. Otherwise, the aerodynamic forces on the animal are affected
by interaction with the tunnel walls (Rayner 1994). The effects are small
if the diameter of the working section is at least 2.5 wingspans and the
animal flies near the center of the tunnel, but large wind tunnels are expen-
sive, and many experiments have been done in tunnels much smaller than
the ideal. An excellent, unusually large wind tunnel at Lund (Pennycuick
et al., 1997) has a working section 1.2 m wide and is used for birds up to
the size of small ducks. Ducks fly fast, but the fan motor of this tunnel is
powerful enough to blow air through it at speeds up to 38 m/s, which is
sufficient. Very much smaller, slower tunnels suffice for experiments with
insects (Dudley and Ellington 1990a).

Figure 5.2A shows a fish swimming against a current of water in a water
tunnel. Fish quickly learn to match their swimming speed to the flow. The
principle is the same as for the wind tunnels used in experiments on flight,
but the water is recirculated instead of being allowed to flow away. (Simi-
larly in some wind tunnels, the same air is used repeatedly.) As in wind
tunnels, a marked reduction of diameter at the entrance to the working
section helps to make the velocity uniform across the cross section, and a
honeycomb reduces swirling. Also as in wind tunnels, it is important to
have the diameter of the working section large enough to avoid serious
hydrodynamic interactions between the animal and the tunnel wall. Much
research on fish swimming has been done in undesirably narrow tunnels,
in which significant artifacts are inevitable (Webb 1993).

Figure 5.2B shows the equivalent experiment for a duck swimming on
the water surface. In the working section, the water has a free surface
exposed to air, so this is a flume rather than a water tunnel.
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5.3. MEASUREMENT OF ENERGY CONSUMPTION

Researchers often want to know how much energy is being used for loco-
motion. By far the commonest way of doing this is by measuring the rate
at which the animal is using oxygen. This works, of course, only when
locomotion is being powered by aerobic metabolism. For example, it can
be used to measure energy consumption by humans running at speeds up
to about 6 m/s, the highest speed that athletes can sustain aerobically. It is
not suitable for measuring the energy cost of sprinting, which can involve
speeds exceeding 10 m/s.

Conveniently for physiologists, a liter of oxygen releases almost the same
amount of energy, whatever food is being oxidized. For example, it releases
20.9 kJ if glucose is oxidized, and 19.6 kJ if palmitic acid (a fatty acid) is
oxidized. More than twice as much oxygen is needed to oxidize a gram of
fatty acid as to oxidize a gram of glucose, but more than twice as much
energy is released, and the energy per unit volume of oxygen is almost the
same.

In Fig. 5.1, the dog and the bird each has a mask attached over its face.
The masks fit loosely, so air can flow in freely round their edges. A pump
draws air through the mask and on through a flowmeter and an oxygen
analyzer. The flow must be fast enough to ensure that it carries with it all
the air that the animal breathes out; it does not matter that air that the
animal has not breathed also passes through the analyzer. The flowmeter
records the volume of air that is analyzed, and the analyzer measures the
concentration of oxygen in it. Hence, knowing the composition of fresh
air, it is possible to calculate how much oxygen has been removed. This is
the oxygen that has been used in the animal’s metabolism.

In Fig. 5.2B, the same principle is used to measure the oxygen consump-
tion of the duck, but instead of wearing a mask the whole animal is covered
by a hood. Hoods covering the whole animal are also used in some experi-
ments with animals running on treadmills. It is generally convenient to
use masks for large animals (such as horses) and whole-body hoods for
small ones (such as mice).

In Fig. 5.2A the water is being recirculated, so the concentration of
dissolved oxygen in it is gradually reduced by the animal’s metabolism.
Plainly, it must not be allowed to fall too far. An oxygen electrode measures
the falling oxygen concentration. If the volume of water in the system is
known, the volume of oxygen used can be calculated.

The methods that have been described so far are suitable for laboratory
experiments, but not for measuring the oxygen consumption of animals
moving around in the field. This can be done by the doubly labeled water



74 C H A P T E R F I V E

technique. The animal is given an injection of water labeled with isotopes
both of hydrogen and of oxygen, that is, of water to which both 2H2O and
H2

18O have been added. The animal is released for a period of hours or days
and then recaptured, and the concentrations of the isotopes in a sample of
its blood are measured. While free it will have lost both 2H and 18O in the
water that has left its body by evaporation and as urine. It will also have
lost 18O in the carbon dioxide produced by respiration. If the changes in
concentration of both isotopes are known, the quantity of carbon dioxide
produced can be calculated. This is not quite as useful as it would be to
be able to calculate oxygen consumption, because it does not give as reli-
able an indication of the metabolic rate. Production of a liter of carbon
dioxide is accompanied by the release of 28 kJ of energy if fat is being
oxidized, but only 21 kJ if it comes from oxidation of carbohydrate. Never-
theless, a fairly good estimate of the metabolic rate is generally possible.
A disadvantage of this method is that it gives only the total amount of
energy used over a period of hours or days, with no indication of fluctua-
tions of metabolic rate within that period.

It is generally easier in field experiments to measure heart beat frequency
than to measure oxygen consumption. Animals’ hearts generally beat
faster while their metabolic rates are high, and oxygen consumption
can be calculated from heart beat frequency if the two variables can be
shown to be well correlated. This method has been used, for example, to
calculate metabolic rates for free-ranging albatrosses (Bevan et al., 1995).
Signals from electrocardiograph electrodes were recorded as explained
in Section 5.7.

Another method that can be used to determine an animal’s metabolic
rate is to measure its heat output. If the animal is in a steady state, with
constant body temperature, the metabolic rate equals the rate of heat loss
plus the rate at which the animal is doing mechanical work on the environ-
ment. Because muscles generally work with efficiencies of 25% or less, the
work output is much smaller than the heat output. Ward et al. (1999) used
an infrared thermograph to make thermal images showing the distribu-
tion of surface temperature on flying starlings. From these they calculated
the rate of heat loss from the body.

5.4. OBSERVING FLOW

Flying and swimming animals set the air or water around them moving.
Observation of the fluid movements can provide valuable information.
For example, observation of the moving fluid in the wakes that flying birds
and bats leave behind them showed that they use different gaits at differ-
ent flying speeds (Section 12.1). Observation of the flow of air over the
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wings of flying moths revealed the aerodynamic mechanism that enables
them to fly (Section 11.1). Much of the work required for flight and swim-
ming is used giving kinetic energy to the wake, so if that energy can be
measured it provides information about the work that the animal has to
do. For these reasons, it is often useful to be able to observe or measure
the flow in the fluid around the animal.

One approach is to use flowmeters, such as electrically heated thermis-
tors. A thermistor is a small bead of metal oxide or oxide mixture with
electrical leads attached. The electrical resistance of thermistors falls as
the temperature rises. When an electrically heated thermistor is placed in
moving air or water, the flow cools it and its resistance increases. The
change in resistance gives a measure of the rate of flow. Wood (1970) used
a flowmeter of this kind to measure the velocity of air flow in the wake of
the beating wings of tethered flies. A serious disadvantage of this approach
is that a flowmeter can record the flow in only one place at a time.

It is often more useful to make the flow visible, by suspending particles
in the fluid. Plainly, particles should be chosen that will move with (as
nearly as possible) the velocity of the surrounding fluid, neither sinking
nor rising through the fluid. Ideally, the particles should have the same
density as the fluid. Airflow in the wake of flying birds and bats has been
made visible by filling the room with a cloud of tiny soap bubbles filled
with a mixture of helium and air. Ordinary (air-filled) soap bubbles sink,
and helium-filled bubbles rise, but the mixture was adjusted to match the
density of the bubbles to the air (Spedding et al., 1984). For making water
movements visible, polystyrene or nylon spheres are available that have
densities sufficiently close to that of water, with diameters ranging from a
few micrometers upward.

The tiny water droplets that form fog sink only exceedingly slowly in
air, because they are so small. Similarly, if the particles used to make flow
visible are small enough it does not matter what their density is. A smoke-
like suspension of minute oil droplets has been used to make visible the
flow of air around the wings of moths in tethered flight (Willmott et al.,
1997).

The flow may be observed in three dimensions by using two cameras
viewing it from different directions. Alternatively, a plane in the field of
view may be illuminated by a thin sheet of light, so that only particles in
the sheet of light are visible. A picture of the whole field of flow can be
built up from repeated observations with the sheet of light vertical or
horizontal, and at different positions in the field.

Identifying the same particles and measuring their positions in succes-
sive frames of a film is difficult and very time-consuming. Fortunately, it
can be done automatically, by the technique of particle image velocimetry.
This produces plans of a plane in the field of flow, showing the speed and
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direction of flow at many different points in the plane. It has been used,
for example, to analyze the flow in the wake of swimming fish (Müller et
al., 1997).

5.5. FORCES AND PRESSURES

Transducers are devices that translate a signal into a different modality; for
example, force transducers give an electrical output in response to applied
forces. Many of the force transducers used by biologists incorporate strain
gauges, which do not measure forces directly but register stretching and
compression. For example, a horizontal beam is bent by vertical forces
acting on its end. If strain gauges are glued to its upper and lower surfaces,
one of them will be stretched and the other compressed when the beam
is bent. The electrical output of the strain gauges can be used to measure
the force on the beam.

A strain gauge is a strip of thin metal foil, or a thin slice of semiconduc-
tor material, mounted on a plastic backing. Stretching increases the elec-
trical resistance of metal foil strain gauges, but decreases the resistance of
semiconductor gauges.

The forces that animals exert on the ground can be measured by means
of force plates, which are instrumented panels set into the floor. They are
usually rectangular, with a force transducer under each corner. These may
be beams with strain gauges bonded to them, or piezoelectric devices.
Ideally, each transducer should register components of force along three
mutually perpendicular axes; these are usually forces parallel to the direc-
tion of locomotion, transverse forces, and vertical forces. The force plate
is then capable of reporting not only the magnitude and direction of any
force that acts on it, but also the coordinates of the point on the platform
at which the force acts. The vertical component of force on the plate is
the sum of the vertical forces registered at the four corners, and similarly
for the forward (or backward) component and the transverse component.
If the point of action of the force is near the front of the plate, the trans-
ducers at the front corners will register larger forces than the ones at the
rear; and if the point of action is on the left side of the plate, the transduc-
ers on the left will register larger forces than those on the right. Thus, the
coordinates of the point of action on the plate can be calculated. In addi-
tion, the horizontal components of the forces at the four corners can be
used to calculate the moment exerted by the forces on the plate, about a
vertical axis. All these calculations are performed automatically by a com-
puter connected to the force plate.

Figure 5.3 is a force plate record of a sheep walking across a force plate.
Only four of the six outputs of the plate are shown; the transverse compo-
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Fig. 5.3. A record of the output from a force plate, as a sheep walked over it. Fx is
the component of force in the forward direction; Fy is the vertical component of
force; ax and az are the coordinates in the forward and transverse directions of the
point of application of the force on the plate; and the event marker is a signal used
to synchronize the record with a cine film taken simultaneously. Bars below the
record show when each foot was on the platform (continuous bars) or on the floor
off the platform (broken bars). LF, left fore; RF, right fore; RH, right hind; LH,
left hind. From Jayes and Alexander (1978).

nent of force and the moment of the force about a vertical axis are omitted.
The right fore foot was set down 0.1 m behind the center of the plate;
then the left fore foot was placed 0.2 m in front of the center of the plate;
then the right hind foot was placed almost 0.2 m behind the center of the
plate; and finally the left hind foot was placed almost 0.2 m in front of the
center. At times when two feet were on the plate simultaneously, the force
records indicate the total force and the ax record indicates the position
between the two feet at which the resultant of the forces on them acted.
This has made it possible to calculate separately the vertical component of
force exerted by each foot (shown as broken lines on the Fy record).

A force plate should be stiff enough to deflect very little, under the
forces that are to be recorded. Otherwise, it will alter the forces it is de-
signed to measure; running across a platform that deflected a lot would
be like running on mattresses. Also, the platform should be capable of
registering faithfully the most rapid fluctuations of force that it is desired
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to record. This demands a high natural frequency of vibration; the signifi-
cance of this will become apparent when we discuss pressure transducers.
Further details of the construction and use of force plates are given by
Biewener and Full (1992).

Pressure is the force acting per unit area in a fluid. There is sometimes
a need to measure it, for example, in research on animals swimming by jet
propulsion (Section 16.1). The instruments generally used are pressure
transducers incorporating a small metal diaphragm, one side of which is
exposed to the pressure. Distortion of the diaphragm is registered by strain
gauges, so that the output of the strain gauges indicates the pressure.
Large pressure transducers generally have to be connected through a fluid-
filled tube to the point where pressure is to be measured. However, minia-
ture pressure transducers are available with diameters less than 2 mm,
which can be placed within the bodies of all but the smallest animals.

Figure 5.4 illustrates basic principles of design that apply not only to
pressure transducers, but to transducers generally. The essential point is
that any mass mounted on a spring will vibrate at a natural frequency; the
smaller the mass and the stiffer the spring, the higher the frequency. Lau-
der (1980) wanted to ensure that his pressure transducer was capable of
recording the fast changes of pressure inside the mouths of feeding fish.
It was too large to implant in the fishes’ bodies, so it had to be connected
through a water-filled cannula. To test it, he connected it through a water-
filled tube to an inflated balloon. He burst the balloon to obtain a very
rapid pressure change, and obtained the records shown. In Fig. 5.4A the
connection was made through a short (20-mm) metal tube. Oscillations
follow the bursting of the balloon, at the natural frequency determined
by the stiffness of the transducer diaphragm and the mass of water in the
connecting tube. Their frequency is 250 Hz, and they continue for about
70 ms. This is not a faithful record of the pressure change in the balloon.
For the remaining records, a much longer (500-mm) plastic tube was
used. In Fig. 5.4B, as in A, the tube was filled with water that had been
boiled to ensure that no air bubbles formed in it. Oscillations again con-
tinue for about 70 ms (note that the time scale has been changed). The
frequency of the oscillations is lower (65 Hz) because the tube is longer
(increasing the vibrating mass) and because its plastic wall is more compli-
ant than the metal wall of the other tube (reducing the effective spring
stiffness of the system). If there had been air bubbles in the tube, they
would have reduced the stiffness and natural frequency further. In Figs.
5.4C and D, the tube has been filled with solutions of glycerol in water,
instead of pure water. The viscosity of the glycerol damps out the vibra-
tions, more completely in (D), in which the concentration is slightly
higher, than in (C). Figure 5.4D shows critical damping, the degree of
damping that gives the transducer the fastest possible response. With more
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Fig. 5.4. The pressure change in a balloon, as it was burst, recorded by means of
a pressure transducer. In (A) the transducer was connected to the balloon by a
water-filled metal tube 20 mm long. In (B–D) the tube was 500 mm long. In (B)
it was filled with water, in (C) with a 50% aqueous solution of glycerol, and in (D)
with a 55% glycerol solution. From Lauder (1980).

severe damping, there would be no oscillation, but the signal would move
more slowly to its final level. Following an instantaneous change of pres-
sure or whatever else it is designed to measure, the output of a critically
damped transducer reaches 99% of its final value in a time about equal to
the period of vibration it would have had, if there had been no damping.
Thus, transducers of all kinds should have undamped natural frequencies
that are high, compared to the highest frequency component of the event
that is to be recorded, and they should be critically damped. The system
represented in Fig. 5.4D, with an undamped natural frequency of 65 Hz,
is suitable only for recording pressure changes that take times substantially



80 C H A P T E R F I V E

Fig. 5.5. A diagram of an electrode being inserted into a muscle for electromyo-
graphy. From Gans (1992).

longer than 1/65 s. Lauder (1980) would not have had to take so much
trouble, to ensure that his system’s frequency response was adequate, if
pressure transducers small enough to put inside the fish had been available
at the time. Miniature pressure transducers are now readily available, but
it remains important for workers in biomechanics to be aware of the fre-
quency responses of their transducers.

5.6. RECORDING MUSCLE ACTION

When muscle fibers are activated, action potentials travel along them, simi-
lar to the action potentials that transmit information along nerves. In an
action potential, the potential difference across the cell membrane is
briefly reversed. This reversal of potential travels along the muscle fiber or
axon. While it is traveling there are differences of electrical potential be-
tween one part and another of the fiber’s outer surface. By recording these
electrical events, we can find out when each muscle is active as the animal
moves. The technique is called electromyography. It is explained, with
many practical details, by Basmajian and de Luca (1985) and by Loeb and
Gans (1986).

Figure 5.5 shows one of several types of electrode that are used for
electromyography. It consists of two very fine insulated wires, twisted and
glued together, with the insulation removed only from the regions labeled
“bare 1” and “bare 2.” The wires are threaded down a hypodermic needle,
and their ends bent back as shown. The needle is inserted into a muscle in
a living animal and then withdrawn, leaving the electrode in place. If the
needle and wires are fine enough, this causes little discomfort, as many
humans who have had electrodes placed in their muscles can testify. The
electrode should be placed so that the dipole axis defined by the two bare
patches is parallel to the muscle fibers. The leads are connected to an ampli-
fier and recording equipment. Figure 5.6 is an example of a record ob-
tained in this way. It shows electromyographic records from the principal
wing muscles of a flying pigeon; there were two electrodes in the pectoralis
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Fig. 5.6. Electromyographic records from the principal wing muscles of a flying
pigeon (Columba livia). The outlines above, drawn from film taken simultane-
ously, show the stages of the wing beat cycle corresponding to selected points on
the record. From Dial et al. (1988).

muscle and one in the supracoracoideus. In some of the experiments, long
(18-m) wires trailed behind the birds, carrying the electrical signals to the
amplifiers. In others, radio transmitters were used, as explained in Section
5.7. The record shows that the pectoralis muscle was active at the begin-
ning of the downstroke of the wings, and the supracoracoideus at the
beginning of the upstroke.

The electrical potentials recorded in this way are small, of the order of
1 mV. The changes of potential difference across the cell membrane are
very much larger, of the order of 100 mV, but can be recorded only by
inserting electrodes into individual muscle fibers. Electrodes of the kind
shown in Fig. 5.5 record potential differences between two points in the
extracellular space, and pick up action potentials from all the muscle fibers
in the immediate vicinity. They will generally not detect action potentials
from all parts of the muscle, and they may pick up action potentials from
adjacent muscles. The very small spikes in the record from the supracora-
coideus muscle, in Fig. 5.6, are probably action potentials in the pectoralis.

The length changes of muscle fibers can be recorded by sonomicrogra-
phy (see Griffiths 1991). This requires insertion into the muscles of piezo-
electric crystals, connected by fine wires to recording equipment. They
are inserted by means of hypodermic needles, in the same way as electro-
myographic electrodes. One crystal has to be inserted at each end of the
same muscle fascicle. This is difficult to do, in an intact animal, so it is
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Fig. 5.7. A buckle transducer for measuring the forces acting in tendons. From
Biewener (1992).

advisable to kill and dissect the animal after the experiment to make sure
that the crystals were satisfactorily placed. Pulses of ultrasound are emitted
by one crystal and received by the other. The time that the ultrasound
takes to travel between them indicates the distance.

The forces that individual muscles exert in locomotion can sometimes
be measured by fitting buckle transducers to their tendons. This requires
a surgical operation, and is feasible only if there is an adequate length of
tendon outside the muscle belly. Biewener (1992) explains the procedure.
A buckle transducer (Fig. 5.7) is an E-shaped piece of metal with a strain
gauge bonded to it. Fitting it onto a tendon leaves the tendon slightly
bent where it winds round the arms of the E. Tension in the tendon
straightens the tendon and distorts the E, and the distortion is detected
by the strain gauge. The amount of distortion and so the strength of the
signal from the strain gauge depend on the dimensions of the buckle and
the thickness of the tendon, so it is necessary to calibrate the transducer
for every tendon that it is used on. This is done after the experiment by
killing the animal, dissecting out the tendon with the buckle still in place,
and then stretching it in a testing machine of the kind described in Section
5.8. In that way a graph can be obtained of the output of the transducer
against the force in the tendon.

The forces exerted by muscles can also sometimes be calculated from
measurements of the force that the animal is exerting on the environment,
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for example, from force plate records. Calculations of this kind often in-
volve assumptions about how the effort is being shared by several muscles
that have similar effects. For a discussion of the difficulties involved see
Herzog and Leonard (1991).

5.7. RECORDING MOVEMENT AT A DISTANCE

Many of the methods described so far require wires connecting the animal
to recording equipment. This is often not convenient. For example, in the
electromyographic study of pigeon flight (Fig. 5.6) the bird had to fly
trailing 18-m wires behind it, when it was connected directly to the re-
cording equipment. There are two alternative methods of getting re-
cordings without connecting wires. Both of them require the animal
to carry a piece of equipment, which must be made appropriately small
and light.

One possibility is for the animal to carry a small radio transmitter, which
will transmit the signals from whatever electrodes or transducers may be
being used. This method was used for some of the electromyographic re-
cording from pigeons. The transmitter must be small enough to have no
appreciable effect on the animal’s movements. In particular, transmitters
attached to birds that are feeding nestlings should be light in weight,
compared to the food loads carried in foraging flights (Pennycuick et al.,
1989). The weight of the transmitter is less critical if the animal is not
going to fly, but should still be kept reasonably small. A variant of the
method that has sometimes been applied to aquatic animals uses an ultra-
sonic transmitter (which will work satisfactorily when submerged) instead
of a radio transmitter (which will not). Both types of transmitter were
used by Thompson and Fedak (1993) in their research on gray seals (Hali-
choerus grypus) in their natural habitat off the west coast of Scotland. They
attached to the seals a pair of electrodes to record the electrocardiogram,
a pressure transducer to measure the depth at which the animal was swim-
ming, and a paddlewheel flowmeter to measure the swimming speed. The
outputs from all of these were transmitted continuously as ultrasonic sig-
nals, which were received by a hydrophone on a yacht a few hundred me-
ters away. In addition, they glued a radio transmitter to the seal’s head,
which transmitted effectively only when the seal was at the surface. This
told them when the seal’s head was out of water, and was also useful for
locating it if it moved out of range of the hydrophone.

The alternative to a transmitter is a data logger (a miniature computer)
attached to the animal to record the output of the transducers. The animal
is recaptured and the data logger recovered (if all goes well) at the end of
the experiment. This method was used by Bevan et al. (1995) in a study
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of black-browed albatrosses (Diomedea melanophrys) in the South Atlan-
tic. The birds were nesting, so could be recaptured easily when they re-
turned to their nests from foraging trips. The sensors attached to them
included electrocardiograph electrodes, and a thermistor that measured
the temperature in the abdominal cavity. The function of the thermistor
was to show when the bird was feeding; the temperature in the abdomen
fell briefly, whenever it swallowed a cold squid. The data logger recorded
the heartbeat frequency every 30 s, and the abdominal temperature every
minute.

The animals mentioned in the examples in this section are all moderate
or large in size: pigeons, seals, and albatrosses. It does not at present seem
feasible to build radio transmitters or data loggers small enough for attach-
ment to small animals such as ants or flatworms.

5.8. PROPERTIES OF MATERIALS

The skeletons and tendons of animals must be strong enough to withstand
the forces that act on them in locomotion, and their elastic properties
may be important; for example, tendons function as springs in running
mammals (Section 7.4). Dynamic testing machines of the kind that engi-
neers use for measuring the strength and elasticity of metals and plastics
are often the most suitable machines for mechanical tests on animal mate-
rials. Figure 5.8A is a diagram of one of these machines. It has a rigid steel
frame. At the top is a load cell, a transducer that gives an electrical output
proportional to any vertical force that acts on it. At the bottom is a hydrau-
lically driven actuator that can be made to move up and down. The dia-
gram shows the machine set up to stretch a specimen, perhaps a tendon.
One end of the specimen is clamped to the load cell and the other to the
actuator, so that when the actuator moves down the specimen is stretched
and the force is registered by the load cell. An electrical output from the
machine indicates the movements of the actuator, but this may give a
misleading impression of the length changes of the specimen if it is se-
verely distorted, in and near the clamps, by the pressure required to grip
its ends firmly. An alternative is to use an extensometer like the one shown
in Fig. 5.8B. This is a transducer that registers the length changes of an
undistorted section of the specimen. Further practical details are ex-
plained by Ker (1992).

This chapter has reviewed the range of methods available for research
on animal locomotion. Many of them will be referred to repeatedly in
later chapters. Though recently introduced methods enable us to make
observations that would have seemed impossible ten or twenty years ago,
there are still a great many things that we would like to do, but cannot.
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Fig. 5.8. Diagrams of (A) a dynamic testing machine and (B) an extensometer.
From Alexander (1988).

It would be very useful to have an imaging system that could record the
movements of the whole skeleton of large animals in fast locomotion. At
present, we can take whole body cine X-ray of small mammals and birds,
but if we want to study the movements of large ones we have to rely on
optical systems that record the movements of markers on the skin, which
may move relative to the underlying skeleton. Treadmills and wind and
water tunnels are excellent for studying locomotion at constant velocity,
but we need better facilities for studying acceleration and turning. There
are well-established methods for measuring oxygen consumption, but we
cannot easily measure the rates of anaerobic metabolism that make fast
locomotion possible. Force plates that record the vertical component of
force are being incorporated into treadmills, but it would be very helpful
to be able to record the horizontal components as well. Tendon buckles
and sonomicrography crystals enable us to investigate the forces and
length changes in muscles and tendons during locomotion, but the sur-
gery involved in implanting them restricts the number of muscles that can
be investigated simultaneously. Less invasive alternatives would be very
helpful.



Chapter Six...............................................................
Alternative Techniques for
Locomotion on Land

T HERE ARE many possible ways of traveling over land, some using
legs and some not. This chapter reviews the possibilities, using
very simple models to introduce the principles and to make rough

estimates of energy costs. Descriptions and explanations of the movements
of real animals and actual measurements of energy costs follow in later
chapters.

A few definitions are needed. A stride is a complete cycle of movement;
for example, from the setting down of a foot to the next setting down of
the same foot. The stride length is the distance traveled in one stride,
and the stride frequency is the number of strides taken in unit time. The
mechanical cost of transport is the work required to move unit mass of
animal unit distance. The metabolic cost of transport is the metabolic en-
ergy used when unit mass of animal travels unit distance.

6.1. TWO-ANCHOR CRAWLING

Figure 6.1A shows an imaginary animal, crawling in a very simple way.
Bristles are shown on the underside of its body that slope backward so
that the animal can slide forward over the ground much more easily than
it can slide back. The animal alternately lengthens its body and shortens
it. When it is lengthening, the bristles prevent the hind part of the body
from sliding back, so the fore part is pushed forward. When it is shorten-
ing, the bristles prevent the fore part from sliding back, so the hind part
is pulled forward. Thus, the simple action of lengthening and shortening
the body moves the animal forward over the ground. If the animal length-
ens and shortens by λ, it advances in each cycle of lengthening and short-
ening by a distance λ, so λ is the stride length.

Let the mass of the animal be m, let the gravitational acceleration be g,
and let the coefficient of friction between the animal and the ground for
forward sliding be µforward. The coefficient of friction for backward sliding
(µback) is greater, because of the bristles. The weight of the animal is mg,
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Fig. 6.1. (A) Successive stages of crawling by a simple model designed to illustrate
the two-anchor principle. (B) The three-part crawler discussed in the text.

and the frictional force resisting its forward motion is µforwardmg. The work
that must be done against friction to move the animal forward by one
stride length λ is µforwardmgλ. The mechanical cost of transport T is the
work per unit mass and per unit distance

Tfriction = µforward g (6.1)

This is a good estimate of the cost of transport if the animal is moving
slowly, but not if it travels fast. As the animal moves, each end of its body
is repeatedly accelerated and halted. When it is accelerated, work is needed
to give it kinetic energy. When it is halted, the kinetic energy is lost. To
keep our argument simple, we can think of the body as three equal parts
(Fig. 6.1B). In steady crawling at velocity v, the middle third of the body
moves forward with constant velocity v, but the front and rear thirds are
each stationary for half the time, and move forward at velocity 2v for
the other half. The kinetic energy gained and lost in the course of a
stride, by the two thirds of the body that are accelerated and halted, is
#(2m/3)(2v)2 = 4mv 2/3. This amount of work must be done in each
stride, while the animal advances by a distance λ. Thus, the inertial cost
of transport (work divided by mass and by distance) is

Tinertia =
4v 2

3λ
(6.2)

At low speeds, the frictional cost of transport (Equation 6.1) is greater
than the inertial cost (Equation 6.2), and at high speeds the reverse is the
case. They are equal when v 2/λg = 0.75µforward. Notice that v 2/λg is a
Froude number (Section 4.2) that uses the stride length as the scale of
length. At Froude numbers lower than this, Equation 6.1 gives the better
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Fig. 6.2. Successive stages of crawling by peristalsis. In (A) the waves of contraction
travel backward along the body, as in earthworms. In (B) they travel forward, as
in such worms as Polyphysia. From Alexander (1982).

estimate of the cost of transport, and at higher Froude numbers Equation
6.2 gives the better estimate. I have not added the two costs together,
because the kinetic energy that is lost when one end of the body is halted
can be used to do work against friction.

Maggots (larval Diptera) crawl more or less like this simple model, ad-
vancing 0.15–0.25 body lengths in each stride (Berrigan and Pepin 1995).
However, they lack the bristles shown in Fig. 6.1. Instead, they anchor the
anterior end when shortening the body by hooking the head downward.

6.2. CRAWLING BY PERISTALSIS

Figure 6.2A shows how earthworms crawl. Instead of the body lengthen-
ing and shortening as a whole, successive segments lengthen and shorten
in turn, each segment changing length a little after the one in front.
Thus, waves of lengthening and shortening travel backward along the
body. Each segment remains stationary while it is short, and moves for-
ward while it is long; we will discuss the conditions in which this will
happen in the next paragraph. The diagram shows two successive positions
of the animal. In the interval between them, segment 3 lengthens. The
segments immediately behind it are prevented from sliding back, so the
segments in front are pushed forward. Meanwhile, segment 8 has short-
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ened. The segments in front of it cannot be pulled back, so the segments
behind are pulled forward.

The number of segments that can be in motion at any instant is limited.
Let the coefficients of friction for forward and backward sliding be µforward

and µback. These coefficients may be equal, but may be made different, for
example by backward-sloping bristles such as earthworms have on the ven-
tral surface of the body. Let a fraction q of the segments be moving for-
ward at any time. For this to be possible, the frictional force potentially
available to stop the short segments from sliding backward, (1 − q)mgµback ,
must be greater than the frictional force on the long segments, qmgµforward.
This implies

q < µback

µback + µforward
(6.3)

That condition applies if the animal is crawling slowly enough for inertial
forces to be negligible. If it were crawling fast enough for inertial forces
to be important, friction on the stationary segments would have to bal-
ance the inertial forces as well as the frictional forces on the moving seg-
ments, and fewer segments could be simultaneously in motion.

Now we will estimate the work required for crawling. The frictional
cost of transport is the same as for the two-anchor model (Equation 6.1).
Let one wavelength of the animal’s motion extend over n segments, so
that when segment 3 is the first of one group of short segments, segment
n + 3 is the first of the next. Let m be the mass of this group of n segments.
Let each segment have length l when it is long, and length (l − ∆l ) when
it is short, as shown in the diagram. Let it be long and moving forward
for a fraction q of the time, so that each wavelength consists of qn long
segments and (1 − q)n short ones. This means that to move the worm
forward with a mean speed v, the moving segments must have speed v/q.
In the interval between the two instants represented in Fig. 6.2A, mass
m/n of animal is given velocity v/q. Thus, the work done giving it kinetic
energy is mv 2/2nq 2. While this work is being done, the animal advances
through a distance ∆ l. This equals λ/n, where λ is the stride length, the
distance traveled while every segment makes a complete cycle of lengthen-
ing and shortening. The inertial cost of transport is the work divided by
the mass and by the distance

Tinertia =
v 2

2q 2 λ
(6.4)

As for the two-anchor model, the frictional cost is dominant at low speeds
and the inertial one at high speeds. They are equal when the Froude num-
ber based on stride length, v 2/λg, equals 2µforwardq 2.
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Fig. 6.3. Diagrams of an animal attempting to crawl by passing waves of bending
posteriorly along its body. In (A) the body slides easily sideways, and no progress
is made. In (B) the body slides more easily along its long axis than at right angles
to it, and the animal crawls successfully. Each sketch is displaced to the right of
the previous one, to avoid overlap.

6.3. SERPENTINE CRAWLING

Figure 6.3 shows a simple model of another technique of crawling. It
resembles serpentine crawling of snakes, but the body is shown as a zigzag
instead of a smooth curve, to simplify the mathematical analysis (Bekker
1956). Waves of bending travel backward along the body, pushing the
animal forward. This could have either of two effects, depending on how
easily the body can slide over the ground in different directions. In Fig.
6.3A, the body easily slides sideways. Waves pass backward along it, but
the animal makes no progress. In Fig. 6.3B, the body slides more easily
along its own length than at right angles to it, and the animal moves
forward, the hind parts of the body traveling along the track made by the
fore parts.

Let the coefficients of friction for the body be µaxial for sliding along its
own axis and µtransverse for sliding at right angles to it. To slide a segment of
the body of mass δm forward along its own axis requires a force δmgµaxial ,
and to slide it sideways at right angles to its axis requires a force
δmgµtransverse . For the animal to move as in Fig. 6.3B, the forward compo-
nent of the available transverse frictional force must exceed the backward
component of the axial frictional force
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µtransverse sin φ > µaxial cos φ (6.5)

tan φ >
µaxial

µtransverse

In this style of crawling, the stride length λ is equal to the wavelength of
the waves formed by the body (Fig. 6.3B). We will calculate the work
required to move the body (mass m) forward by one wavelength. To ad-
vance a distance λ, the body must slide a distance λ/cos φ along its zigzag
path, so the work that has to be done against friction is µaxialmgλ/cos φ.
When the animal crawls at speed v, each segment of the body slides with
speed v/cos φ at an angle ±φ to the direction of travel, so its velocity has
a transverse component ±v tan φ. Each time the segment passes a bend in
the zigzag, this transverse component of velocity is lost and regained. The
associated kinetic energy #δmv 2 tan2φ is lost and has to be replaced. In a
complete stride, this happens twice to every part of the body, so the iner-
tial work that has to be done by the whole animal is mv 2 tan2φ.

The frictional cost of transport is the frictional work divided by the mass
of the body and by the stride length

Tfriction =
µaxial g
cos φ

(6.6)

The inertial cost of transport is

Tinertia =
v 2 tan2 φ

λ
(6.7)

The frictional cost is the larger at low speeds, and the inertial cost at high
speeds. They are equal when the Froude number based on stride length,
v 2/λg equals µ axial/(sin φ tan φ).

6.4. FROGLIKE HOPPING

Frogs travel in a series of jumps, coming to a halt between each jump and
the next. No work is done against friction with the ground unless the feet
skid while pushing off, but work is required to give the body kinetic en-
ergy for each jump. Consider the model shown in Fig. 6.4A, which jumps
like a frog. Its total mass is m. It travels in a series of jumps at speed v,
taking off for each jump as soon as it has landed from the previous one. It
takes off at an angle α to the horizontal. The horizontal component of its
velocity at takeoff is v, so the resultant velocity is v/cos α, and the kinetic
energy it has to be given for the jump is #m (v/cos α)2. To calculate the
jump length, note that the vertical component of the animal’s velocity is



Fig. 6.4. Diagrams representing (A) successive positions of an animal hopping like
a frog; (B) an animal with mass only in its body and feet; (C) an animal with its
foot on the ground, showing how two dimensions are defined; and (D) successive
positions of an animal hopping like a kangaroo.
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+v tan α at takeoff and −v tan α when the animal lands. The time for which
the animal remains airborne is the time required for the gravitational ac-
celeration g to change the velocity by this amount; it is 2v tan α/g. Since
the horizontal component of the velocity is v, the animal travels a distance
2v2tan α/g in this time. The cost of transport is the kinetic energy divided
by the mass and by this distance

T =
# m (v/cos α)2

2mv 2 tan α/g
=

g
2 sin 2α

(6.8)

The cost of transport will have its lowest possible value, g/2, when the
takeoff angle α is 45°.

Two assumptions are hidden in that very simple argument. First, we
have assumed that the time taken by the animal to accelerate and deceler-
ate is small enough to be ignored. If the animal jumps like a frog by ex-
tending its legs, the distance over which it accelerates is approximately
equal to the length of the legs, and this assumption is in effect that the
length of the jump is much greater than the length of the legs. Secondly,
we have assumed that the mass of the legs is small enough to be ignored.
We will investigate the effect of this second assumption.

Real animals have mass distributed all along the length of the leg, but
to keep the mathematics simple we will imagine an animal that has mass
only in its body and its feet (Fig. 6.4B). Let the feet have mass am and the
body (1 − a)m. The length of the jump depends on the velocity of the
animal’s center of mass at takeoff. The feet remain stationary on the
ground while the body is being accelerated, so to give the center of mass
the required velocity v/cos α the body must be accelerated to velocity
v/ [(1 − a) cos α]. A body of mass (1 − a)m moving with this velocity has
kinetic energy #mv 2/ [(1 − a) cos2 α]. The cost of transport is this kinetic
energy divided by the mass of the animal and the length of the jump

T =
g

2 (1 − a) sin 2α
(6.9)

Thus, the greater the fraction of body mass that is in the feet, the greater
the cost of transport. It will be an advantage for an animal that moves in
this way to have the lightest possible legs and feet.

6.5. AN INELASTIC KANGAROO

Our next model travels in a series of hops like the last, but with an im-
portant difference; it does not come to a halt between one hop and the
next. Thus, it moves more like a kangaroo than a frog. However, it differs
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from kangaroos in having no springs in its legs. (I will show in Section 7.4
that tendons in the legs of kangaroos function as energy-saving springs.)

This model is shown in Fig. 6.4D. Its mass is m and it travels with
velocity v, taking strides of length λ. Its feet are on the ground for a frac-
tion β of the time. The vertical component of the force on the ground,
averaged over a complete stride, must equal the animal’s weight mg. Thus,
the mean vertical force while the feet are on the ground is mg/β. We will
make the simple assumption that the vertical component of the force on
the ground is constant and equal to mg/β, throughout the time that the
foot is on the ground.

We will assume that while the feet are on the ground, the force they
exert on the ground is always in line with the animal’s center of mass.
There are two reasons for this assumption. First, if the force is not in line
with the center of mass, it will make the animal rock. Secondly, it will be
shown in Section 7.3 that the energy cost of hopping would be greater, if
the force were not kept more or less in line with the center of mass. If the
vertical component of the force is mg/β and the center of mass is at a
height h and at a distance x in front of the foot (Fig. 6.4C), the horizontal
component of force needed to keep the resultant in line with the center
of mass is mgx/βh. As the animal moves forward by a small amount δx,
this component of force does work amounting to (mgx/βh) δx. The foot
remains on the ground until x ≈ βλ/2. By integrating the work we have
just calculated from x = 0 to x = βλ/2, we find that the work done as the
center of mass moves forward over this distance is mgβλ2/8h.

The animal moves forward from x = 0 to x = βλ/2 in time βλ/2v.
During this time, the vertical component of force mg/β gives it an upward
acceleration (g/β) − g = (1 − β)g/β. A body accelerating from rest with
acceleration a for time t moves a distance #at 2, so the animal rises by
#[(1 − β) g/β] (βλ/2v)2 = (1 − β) gβλ2/8v 2. The work done equals the
force multiplied by the distance, (1 − β) mg 2λ2/8v 2. At high speeds (when
the Froude number v 2/gh is large) this work done against vertical forces
is small, compared to the work done against horizontal forces.

The total work done during the stride is the sum of the work done by
the horizontal and vertical components of force. It is (mgλ2/8) [(β/h) +
(1 − β) (g/v 2)]. The cost of transport is obtained by dividing this work
by the mass of the animal and the stride length

T =
gλ
8 3

β
h

+ (1 − β)
g
v 2 4 (6.10)

In deriving that equation, we assumed that the vertical force on the
ground was constant, throughout the time that the feet are on the ground.
Alexander (1977a) made the more realistic assumption that the vertical



A L T E R N A T I V E L A N D L O C O M O T I O N 95

Fig. 6.5. Models of walking and running. (A) the minimal bipedal walker; (B) the
synthetic wheel; (C, D) walking models with heavy legs; (E, F) mass–spring models
of running; and (G) a model discussed in Section 7.7. From Alexander (1995a).

component of force rises and then falls while the feet are on the ground,
like half a cycle of a cosine curve. This led to the equation

T =
gλ
8 3 1

0.73β
h 2 + (1 − 0.73β)

g
v 2 4 (6.11)

At high speeds, the second term in the square brackets would be small,
and T would be approximately 0.09gβλ/h.

These arguments assume that the feet leave the ground when x = βλ/
2. This is not exactly true, because the horizontal components of the forces
on the feet make the animal travel a little more slowly while the feet are
on the ground than when they are off it. Alexander (1977a) showed how
the velocity fluctuations can be calculated.

This section has been concerned with kangaroo-like hopping, but simi-
lar arguments can be applied to bipedal running. To obtain equations for
running, it is necessary only to substitute λ/2 for λ and 2β for β, in Equa-
tions 6.10 and 6.11. We will return to hopping and running in Section
6.9, where we will consider the possible role of structures that function
as springs.

6.6. A MINIMAL MODEL OF WALKING

Figure 6.5A shows the simplest of all models of walking (Alexander 1976).
It consists of a point mass mounted on rigid legs of negligible mass. Each
foot is set down as the other is lifted. The body moves forward in a series
of arcs of circles, of radius equal to the length of the legs. The body rises
and falls in each step. Similarly, when humans walk we keep each leg
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straight, while its foot is on the ground. Consequently, our centers of mass
are about 40 mm higher in midstep, when the supporting leg is vertical,
than at the stage of the stride when we have both feet on the ground
(Margaria 1976).

This style of walking becomes impossible at high speeds, because gravity
cannot give the body a downward acceleration greater than g. A body
moving at speed v along an arc of a circle of radius r has an accelera-
tion v 2/r toward the center of the circle. Let the walker’s body have veloc-
ity v0, at the stage of the stride when the leg is vertical. Then at this stage
the body has a downward acceleration v0

2/h, where h is the length of
the legs:

g ≥ v0
2

h
(6.12)

and the Froude number v0
2/gh cannot be greater than 1. Adult hu-

mans have legs about 0.9 m long, and the gravitational acceleration is
9.8 m/s2, so this argument predicts a speed limit for human walking of
3.0 m/s.

Adult humans generally walk at speeds below about 2 m/s, and run
at higher speeds (Thorstensson and Roberthson 1987). However, we are
capable of walking faster. In my experience, more or less normal walking
is possible at speeds up to 2.7 m/s (data of Alexander and Jayes 1980).
Athletes in walking races attain much higher speeds; the world records for
the 10-km race imply mean speeds of 4.4 m/s for men, and 4.0 m/s for
women. These speeds are made possible by peculiar hip movements that
flatten the arc traversed by the center of mass, so that its radius of curvature
is greater than the length of the leg (see Alexander 1984).

Now we will calculate the work required for walking, for the model
shown in Fig. 6.5A. While only one foot is on the ground, and the body
is moving along a circular arc, no work is required. The body slows down
a little as it rises, and speeds up again as it falls. Kinetic energy is converted
to gravitational potential energy and back again, as in a swinging pendu-
lum. Work is required only at the instant when one foot hits the ground
and the other leaves it, at which stage both legs make angles θ with the
vertical. Immediately before this instant, the center of mass is traveling
with velocity vθ at an angle −θ to the horizontal (vθ is a little greater than
v0, because some potential energy has been converted to kinetic energy).
The vertical component of its velocity is −vθ sin θ. Immediately after this
instant, the center of mass is traveling with velocity vθ at an angle +θ to
the horizontal, and the vertical component of its velocity is +vθ. sin θ. The
mass of the body is m, so it loses and regains kinetic energy amounting to
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#mvθ
2sin2θ. This amount of work has to be done twice in each stride, once

for each foot, so the cost of transport is vθ
2sin2θ/λ. The stride length λ

equals 4hsin θ, so the cost of transport is

T =
vθ

2λ
16h2

(6.13)

McGeer (1990a) presented an argument that predicted a cost of transport
4 cos2θ times this. The difference, as he pointed out, is that his model was
entirely passive, with no control over the forces its feet exerted on the
ground. In my model, only the vertical component of velocity is affected
by the impact of the foot with the ground. In his, the horizontal compo-
nent of velocity is reduced by the impact. To avoid this, the forces exerted
by the feet must be controlled so that the two feet exert equal forces at
the instant when both are on the ground.

We have noted that vθ is a little greater than v0, but we have not worked
out by how much. The difference in height between the body’s highest
point and its lowest is h(1 − cos θ). The kinetic energy gained equals the
gravitational potential energy lost

#m (vθ
2 − v0

2) = mgh (1 − cos θ) (6.14)

vθ
2 = v0

2 [1 + 1 2gh
v0

2 2 (1 − cos θ)]

For an adult human walking at a comfortable speed of 1.5 m/s, v0
2/gh is

about 0.25 and θ is about 25°, whence vθ is approximately 1.3v0.

6.7. THE SYNTHETIC WHEEL

The model just discussed had legs of negligible mass, but real legs are quite
heavy. Inertial work must be done to swing them forward and back in
walking, unless their swinging can be driven by gravity like the swinging
of pendulums. Figure 6.5B shows a model of walking devised by McGeer
(1990a), in which the legs swing like pendulums.

In this model, the legs have mass, but this mass is too small for their
swinging to have an appreciable effect on the motion of the trunk. Each
leg is a sector of a wheel. The model rolls forward at constant velocity, first
on one foot and then on the other, as the legs swing forward and back.
While its rim is on the ground, each wheel rolls with constant angular
velocity. When it leaves the ground, it swings freely as a pendulum. It
completes its backward swing, swings forward, and starts swinging back
again, before it is set down on the ground for its next step. It is set down
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at the instant when the foot is once again stationary relative to the ground.
McGeer (1990a) shows that this occurs 0.65 of a pendulum period after
it was lifted. Once the mathematical model is set in motion on level
ground, no further work is needed to keep it moving. A physical model
would of course need a little work, to overcome air resistance and friction
in its joints.

Electromyographic records of human walking show very little activity
in the leg muscles, while the foot is off the ground. This suggests that
the legs may swing like pendulums. However, this model cannot explain
the cadence of human walking at normal speeds. If each foot is off the
ground for 0.65 of a pendulum period, the duration of a stride is 1.3
periods. An adult human leg, pivoted at the hip and swinging like a pendu-
lum, would have a period of about 1.5 s (Mochon and McMahon 1980).
Thus, the model suggests that the stride period for human walking should
be 1.3 × 1.5 = 2.0 s. Observed stride periods range from about 2.0 s in
extremely slow walking at 0.4 m/s, to 1.0 s in brisk walking at 1.6 m/s
(Zarrugh et al., 1974).

An important difference between this model and real human walking
is that people rise and fall as they walk, but the model does not. This is
not a realistic model of human walking. It nevertheless seems interesting
to ask whether it would be advantageous for animals to walk in the manner
of the model. At first sight, the very low cost of transport seems most
attractive.

This synthetic wheel model shares the advantages and disadvantages of
real wheels. A wheeled vehicle can travel at constant velocity on smooth
level ground at very low energy cost. Cycling on roads is far more econom-
ical of energy than walking or running, as Section 18.2 shows. However,
wheels are much less satisfactory on rough terrain. Indeed, many places
that are accessible to legged animals are inaccessible to wheeled vehicles.
For example, wheels cannot climb vertical steps that are higher than about
half their radius (Bekker 1956; LaBarbera 1983).

6.8. WALKERS WITH HEAVY LEGS

Figure 6.5C shows a model of walking that is more realistic than the previ-
ous one. The legs are allowed to be heavier. The feet are again arcs of
circles, but their radius is much less than leg length. Consequently, the
model rises and falls as it walks, much like Fig. 6.5A. McGeer (1990a)
analyzed the motion of this model by computer simulation. He showed
that the rise and fall of the body affected the movement of the legs, making
them swing slightly faster than they otherwise would. The model would
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walk passively down a slope with a stride period of about 1.2 times the
pendulum period of the legs, corresponding to 1.8 s for adult humans.

As well as analyzing the mathematical model, McGeer (1990a) built a
physical one. He found that it would walk down gradients as small as
2.5%. A model of mass m walking a distance λ down a 2.5% gradient loses
potential energy 0.025mgλ, so the cost of transport is 0.025g. Kinetic
energy is lost at each impact of a foot with the ground, as in the minimal
biped (Fig. 6.5A).

Figure 6.5D shows another mathematical model that walks on heavy
legs. The knee bends passively as the foot leaves the ground, but straight-
ens (again passively) as it swings forward. Mochon and McMahon (1980)
and McGeer (1990a) analyzed the motion of this model. The gait is more
realistic, in that the bending of the knee makes the foot clear the ground,
but the cost of transport is a little higher because energy is lost when the
knee hits the stop that limits its extension. The stride duration is realistic
for human walking, when the segments of the legs are given realistic
lengths and masses (Mochon and McMahon 1980).

6.9. SPRING–MASS MODELS OF RUNNING

Figure 6.5E shows a model in which the legs are springs of negligible
mass. It bounces along like a bouncing ball. Each time it lands on the
ground, a spring is compressed. The animal loses kinetic energy, which is
stored as elastic strain energy in the spring. Then the spring recoils, restor-
ing the kinetic energy. If the springs were perfect and there were no air
resistance, the model would continue bouncing forever, once set in mo-
tion. The cost of transport would be zero. The motion of this model has
been studied by computer simulation, by Blickhan (1989) and by McMa-
hon and Cheng (1990).

Figure 6.5F is a slightly more elaborate model (McGeer 1990b). The
upper parts of the legs have appreciable mass, but the springs, and the
rounded feet on their ends, have negligible mass. As well as compression
springs in the legs there are torsion springs at the hips, which make the
legs oscillate backward and forward in a scissorlike action. McGeer showed
by computer simulation that the model would run with a stride frequency
very close to the frequency that the scissorlike oscillations would have if
the feet were kept off the ground. Speed could be increased by increasing
the amplitude of scissoring. If the stiffness of the springs is kept constant,
increasing the amplitude leaves the stride frequency little changed but
increases the length of the strides. If the springs were perfect, if there were
no friction in the joints, and if there were no air resistance, the cost of
transport would be zero.
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Table 6.1.
Mechanical costs of transport for the models of terrestrial locomotion analyzed
in this chapter

Model Frictional cost Inertial cost Conditions

Two-anchor crawling µforward g 4v 2/3λ µback > µforward

Peristaltic crawling µforward g v 2/2q 2λ q < µback/(µback + µforward)
Serpentine crawling µaxial g/cos φ v 2 tan 2 φ/λ tan φ > µaxial/µtransverse

Froglike hopping 0 g/2 sin 2α
Inelastic kangaroo 0 (gλ/8) [(0.73β/h) + (1 − 0.73β) (g/v 2 )]

≈ 0.09gβλ/h at high speeds
Inelastic runner 0 (gλ/16) [(1.46β/h) + (1 − 1.46β) (g/v 2 )]

≈ 0.09gβλ/h at high speeds
Minimal walker 0 vθ

2 λ/16h 2 1 ≥ v0
2/gh

Synthetic wheel 0 0
Walker with heavy legs 0 ≈ 0.025g
Spring–mass running 0 0

Note. Conditions that must be satisfied, for each technique of locomotion, are also shown. Symbols: g,
gravitational acceleration; h, leg length; q, fraction of segments in motion; v, velocity; α, takeoff angle; β,
duty factor; φ, angle shown in Fig. 6.3; λ, stride length; µ, coefficient of friction for sliding in the direction
indicated by the subscript.

6.10. COMPARISONS

Table 6.1 shows the costs of transport that we have calculated. The most
striking of the points shown by the table are the following:

1. Work is done against friction only in the three crawling techniques, at the
top of the table. If the coefficients of friction are the same, this work is greater
for serpentine crawling than for the other techniques, because a serpentine
crawler takes a longer, sinuous route.

2. Neither frictional nor inertial work is required for the synthetic wheel, or
for the spring–mass models of running.

3. The inertial cost of transport is proportional to v 2, and so can be expected
to increase rapidly with increasing speed, for the three crawling techniques and
for the minimal walker. The techniques of locomotion represented by these
models are unlikely to be favored at high speeds. The minimal walker is in any
case incapable of traveling fast.

We will now compare the inertial costs shown in the table using rough
estimates for the values of the variables. For two-anchor crawling, the
cost is 1.33v 2/λ. For peristaltic crawling, if the backward and forward
coefficients of friction are equal, q cannot exceed 0.5 and the inertial cost
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cannot be less than 2.0v 2/λ. However, if the backward coefficient is much
higher than the forward one, q can approach 1.0 and the cost may be little
more than 0.5v 2/λ. For serpentine crawling, if the axial and transverse
coefficients of friction are equal, tan φ cannot be less than 1 and the lowest
possible inertial cost is 1.0v 2/λ. In human walking at moderate speeds,
stride length λ is typically about 1.5 times leg length h, making the cost
of transport for the minimal walker 0.14 vθ

2/λ. This is less than for any of
the crawling techniques. However, it may not be reasonable to assume
that a peristaltic crawler, serpentine crawler, and a legged walker traveling
at the same speed would take strides of equal length.

Froglike hopping has no frictional cost of transport, and the inertial
cost, with the optimal takeoff angle of 45°, is 0.5g. This is less than
0.5v 2/λ, if the Froude number based on stride length, v 2/gλ, is greater
than 1.0. Thus, froglike hopping is more economical than any of the
crawling techniques, at high speeds. However, inelastic kangaroolike
hopping is much more economical than frog hopping, because the animal
does not lose all its kinetic energy every time it lands. A kangaroo hopping
very slowly, with a Froude number based on leg length (v 2/gh) equal
to 1, would have a stride length of about 2.1 leg lengths (Hayes and
Alexander 1983). The cost of transport for an inelastic kangaroo hopping
like this would be 0.26g. At very high speeds, the second term in the
square brackets in Equation 6.11 would be small, and the cost would be
little more than 0.09gβλ/h. For a kangaroo hopping very fast, β would
be about 0.25 and λ/h would be about 12 (Bennett 1987), so the cost
of transport calculated from the inelastic model would be little more than
0.3g. Springs could make the cost of transport even less, but the zero cost
of transport predicted by the mass–spring models is an unattainable ideal.

This analysis has shown that crawling techniques like those of earth-
worms and snakes would be expensive of energy at high values of the
Froude number based on stride length, v 2/gλ. Appropriately, they are
used only at relatively low Froude numbers. Earthworms with masses
around 0.8 g crawl at speeds up to 6 mm/s, with stride lengths up to 20
mm (Quillin 1999). At this speed and stride length, v 2/gλ = 0.0002.
Cockroaches of the same mass run at speeds up to 1.5 m/s taking 60-mm
strides (Full and Tu 1991); for them, v 2/gλ = 3.8. Black racer snakes
(Coluber constrictor) with masses of about 100 g attain crawling speeds up
to 1.5 m/s in short bursts (Walton et al., 1990). If their stride length at
that speed is the same as at lower speeds (0.3 m), v 2/gλ = 0.75. Desert
iguanas (Dipsosaurus dorsalis) of slightly lower mass (70 g) go much faster
on legs. They can run for short distances at 5 m/s taking 0.4-m strides,
which makes v 2/gλ = 6 (Marsh 1988).
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This chapter has presented extremely simple models of various means
of traveling overland. We cannot expect the costs of transport that we have
calculated for these models to be accurate for real animals. The value of the
calculations is that they reveal general principles that might be obscured by
the complexity of more realistic models.



Chapter Seven...............................................................
Walking, Running, and Hopping

I N CHAPTER 6, we used simple models to compare locomotion on
legs with other means of moving over land. In this chapter, we will
examine walking, running, and hopping in much more detail, refer-

ring much more to observations and experiments. We will be concerned
with all legged animals, both tetrapods (amphibians, reptiles, birds, and
mammals) and arthropods (insects, crabs, etc.).

7.1. SPEED

In almost every case, legged animals can move faster over land than ani-
mals of similar size that lack legs. Figure 7.1 shows some data for mam-
mals. Figure 7.1A shows maximum sprint speeds, which cannot be sus-
tained for long because they are powered largely by anaerobic metabolism;
and Figure 7.1B shows the lower speeds that can be sustained by aerobic
metabolism.

It is very difficult to get reliable maximum sprint speeds for large mam-
mals. Small mammals have been chased and filmed in the laboratory, but
sprint speeds of large animals have to be measured in the field. A very
large proportion of published speeds are estimates, based probably on the
observer’s experience of motor traffic (see Garland 1983). These are highly
unreliable. Even speeds read from the speedometer of a vehicle driving
alongside the animal may be unreliable, because if the animal swerves
away from the vehicle, the vehicle will have to travel a longer path, on the
outside of the bend. The most reliable data are for human athletes and for
racehorses and greyhounds. Elite human athletes run 100-m races in about
10 s, at a mean speed of 10 m/s. They continue accelerating through-
out the first half of the race, and reach a peak speed of over 11 m/s (Reilly
et al., 1990). The results of experiments on fast treadmills indicate that
80% or more of the energy for the race is liberated by anaerobic metabolism
(Margaria 1976). Times given in the sporting pages of newspapers
show that most greyhound races are won at 15–16 m/s, and most horse
races over distances up to 1600 m (one mile) at 16–17 m/s. It seems
possible that horses could go even faster without a rider, and also that they
might attain higher peak speeds over shorter distances. Eaton et al.



Fig. 7.1. Maximum speeds of mammals, plotted against body mass: (A) maximum
sprint speeds; (B) the maximum speeds that can be sustained by aerobic metabo-
lism. Filled circles, Carnivora; hollow circles, Artiodactyla; diamonds, Perissodac-
tyla; triangles, Rodentia. From Alexander (1993a), with the point for the cheetah
moved to take account of Sharp’s (1997) record.
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(1995a) measured the oxygen consumption of thoroughbred horses gal-
loping on a treadmill at speeds that they could not sustain for long, and
calculated that anaerobic metabolism may supply less than 30% of the en-
ergy for races.

Cheetahs (Acinonyx jubatus) seem to be the fastest of all runners. A
widely quoted record of one running at 32 m/s has been discredited, but
Sharp’s (1997) measured speed of 29 m/s can be relied on. Sharp is an
experienced athletics timer. His record is of an animal that had been
tamed, but had been allowed to return to the wild. Sharp measured the
times it took to cover a 200-m course from a flying start, in both direc-
tions. The animal was induced to run by towing a piece of meat behind a
vehicle. Cheetahs have remarkably large thigh muscles; Alexander (1993a)
weighed the thigh muscles of a cheetah and found that they were 50%
heavier than predicted by allometric equations for a typical quadrupedal
mammal of the same body mass. A lion and a tiger, however, had thigh
muscles very close to the allometric predictions for their body masses.

Figure 7.1A shows that, as a general rule, larger mammals can run faster
than small ones. However, the very largest mammals seem to be relatively
slow. Alexander and Pond (1992) were unable to induce white rhinoceros
(Ceratotherium simum; adult mass around 2 tonnes) to run faster than 7.5
m/s. I know no reliable measurements of high speeds for elephants. The
graph also shows substantial differences in speed between mammals of
similar mass. For example, horses are faster than bears, and kangaroo rats
are faster than other mammals of similar mass.

Ostriches (Struthio camelus) seem to be as fast as horses. I have driven
alongside one with the speedometer reading 60 km/h (17 m/s) (Alexan-
der et al., 1979c). I have already pointed out that speeds measured in this
way are not always reliable, and quote this speed only because no better
measurements are available. Birds that can fly are much slower runners
than ostriches, which should not surprise us, because their leg muscles
make up a much smaller proportion of the mass of the body. Many lizards
are as fast as mammals of similar mass. Bonine and Garland (1999) re-
corded a 16-g Cnemidophorus running at 6 m/s, which is slower than the
kangaroo rat in Figure 7.1A, but faster than the other small mammals.
Some arthropods run at speeds that seem high for animals of their size.
Ghost crabs (Ocypode quadrata, about 50 g) can run short distances at 1.6
m/s (Blickhan and Full 1987). Cockroaches (Periplaneta americana, 0.8
g) sprint at up to 1.5 m/s (Full and Tu 1991).

Speeds that can be sustained by aerobic metabolism are generally much
lower than maximum sprinting speeds. For example, elite human sprinters
run 100-m races at 10 m/s, but the (different) elite athletes who race over
10,000 m achieve only 6 m/s over the longer distance. Figure 7.1B shows
some data for animals, most of it obtained by running them on treadmills.
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In the cases of dogs, horses, and elands (Taurotragus) the treadmill could
not be driven as fast as the animal’s maximum aerobic speed on level
ground. Accordingly, the animal’s oxygen consumption was measured
when it was running as fast as possible uphill on a sloping treadmill, and
used to estimate the maximum aerobic speed on level ground. Maximum
aerobic speeds, like sprint speeds, are generally higher for larger animals.
However, species of similar size may have very different maximum aerobic
speeds. For example, dogs are faster than goats of equal mass, and horses
are faster than cattle. These particular differences may be to a large extent
the result of selective breeding; dogs and horses have been bred for tasks
that involve running substantial distances, whereas it is probably an advan-
tage to have goats and cattle that do not run too fast.

The pronghorn antelope (Antilocapra americana) of the North Ameri-
can prairies seems to be able to maintain higher speeds than any other
mammal. There is a field observation of pronghorn running 11 km in 10
min, a speed of 18 m/s. The maximum rate of oxygen consumption has
been measured for captive pronghorn galloping uphill on a sloping tread-
mill. It is five times as high as the maximum rate of oxygen consumption
of a goat of equal mass, and it has been estimated from it that the maxi-
mum aerobic speed may be 20 m/s (Lindstedt et al., 1991). Differences
between pronghorn and goats, which help to explain the difference in
athletic performance, include the following. Pronghorn have lungs more
than twice the volume of the lungs of goats of the same mass. Pronghorn
hearts can pump blood three times as fast as goat hearts, and the hemoglo-
bin concentration is higher than in goat blood; consequently, the rate at
which hemoglobin can be pumped round the body is almost five times as
high as in goats. Pronghorn have only a little more muscle in their bodies
than goats, but the concentration of mitochondria in the muscles is much
higher than in goats, making the total volume of muscle mitochondria 2.5
times as high as in goats. Maximum sprinting speed may depend largely
on the mass of muscle in the body, as a proportion of body mass, but
maximum aerobic speed depends on the capacity of the lungs and blood
system to supply oxygen to the muscles, and on the capacity of the mito-
chondria to use it.

The maximum aerobic speeds of ghost crabs are one-tenth or less of
their maximum sprinting speeds (Full 1987).

The speed of an animal is stride length multiplied by stride frequency,
so speed can be increased by taking longer strides, by increasing stride
frequency, or by a combination of the two. Mammals generally increase
both stride length and stride frequency to increase speed within the walk-
ing and trotting range; but once they have reached the high speeds at
which they gallop, further increases of speed depend on increased stride
length, with stride frequency kept more or less constant (Heglund et al.
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1974). The lizard Dipsosaurus dorsalis and the cockroach Periplaneta
americana increase both stride length and stride frequency as they in-
crease speed (Fieler and Jayne 1998; Full and Tu 1991).

Relative stride length is stride length divided by the height of the hip
joint from the ground. Animals of different sizes moving in dynamically
similar fashion (see Section 4.2) would have equal relative stride lengths.
Dynamically similar movement is possible only when they are traveling
with equal Froude numbers, (Speed)2/Hip height x Gravitational accelera-
tion). Figure 7.2A is a graph of relative stride length against Froude num-
ber for eleven species of mammal ranging from small rodents to rhinoc-
eros. Data are shown for each species walking or running at several
different speeds. Open and filled symbols distinguish between the two
groups of mammals that Jenkins (1971) described as noncursorial and
cursorial. Noncursorial mammals, such as rodents and small carnivores,
stand and run on strongly bent legs, with the humerus and femur more
nearly horizontal than vertical. Cursorial mammals, such as ungulates and
large carnivores, keep their legs much straighter, with the femur and often
also the humerus more nearly vertical than horizontal. Most mammals of
less than 3 kg mass are noncursorial, and most mammals of more than 3
kg are cursorial. Domestic cats are unusually small cursorial mammals, and
coypu (Myocastor coypus, about 7 kg) are unusually large noncursorial ones.
Figure 7.2A shows that each species of mammal increases stride length as
it increases speed, except for a drop in stride length at the transition from
walking to trotting. At any given Froude number, noncursorial mammals
use larger relative stride lengths than cursorial ones.

Figure 7.2A includes no primates and no bipeds. At the same Froude
number, nonhuman primates use even larger relative stride lengths than
noncursorial mammals (Alexander and Maloiy 1984). Humans and kanga-
roos use about the same relative stride lengths as cursorial mammals at the
same Froude numbers (Fig. 6 of Alexander 1989c), and hopping birds use
relative stride lengths within the range for noncursorial running mammals
(Hayes and Alexander 1983). When running fast, the lizard Dipsosaurus
takes longer strides than noncursorial mammals of equal hip height, run-
ning at the same speed (Fieler and Jayne 1998). Cockroaches run with
higher stride frequencies and shorter strides than predicted for mammals
of the same mass, running at the same speed (Full and Tu 1991).

Step length is the distance traveled while a particular foot is on the
ground. Duty factor is defined as the fraction of the duration of a stride,
for which a foot is on the ground, but is approximately equal to step length
divided by stride length. As an animal increases its speed and takes longer
strides, it must increase step length, or reduce duty factor, or both. Mam-
mals and birds increase step length a little as they increase speed, but
achieve longer strides mainly by reducing the duty factor. Step length is



Fig. 7.2. Stride lengths and duty factors of mammals, related to speed. In (A)
relative stride length and in (B) duty factor is plotted against Froude number.
Different symbols are used for different species. Hollow symbols refer to noncurso-
rial species (rodents and ferret) and filled symbols to cursorial species (dog, cat,
sheep, camel, horse, and two species of rhinoceros). From Alexander and Jayes
(1983).
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limited by leg length, but higher relative step lengths (step length/hip
height) are possible in birds and rodents that run with their legs strongly
bent than in cursorial mammals such as horses that run with their legs
straighter (Hoyt et al., 2000). Figure 7.2B shows that quadrupedal mam-
mals reduce their duty factors from around 0.7 in slow walking to 0.2 (in
dogs) or 0.3 (in ferrets, Putorius putorius) in fast galloping. Duty factors
of humans, kangaroos, and crows fall through similar ranges as speed in-
creases (Alexander and Maloiy 1984; Hayes and Alexander 1983). An os-
trich running fast had a duty factor of 0.29 (Alexander et al., 1979c). The
lizard Dipsosaurus reduces its duty factor from 0.63 to 0.34 as it increases
its speed from a slow walk to a fast run (Fieler and Jayne 1998). In contrast,
the cockroach Blaberus discoidalis reduces the duty factors of its feet only
a little as it increases speed (Ting et al. 1994). It seldom uses duty factors
outside the range 0.50 to 0.75.

7.2. GAITS

Gaits in which the duty factors are greater than 0.5 are generally described
as walks, and those with smaller duty factors as runs. By this criterion,
there are inevitably stages in a running stride at which both feet of a pair
are off the ground. Quadrupedal mammals and humans generally change
from walking to running at Froude numbers close to 0.5 (Alexander and
Jayes 1983; Alexander 1989a). The change is often abrupt, but in sheep
the two gaits merge into each other (Jayes and Alexander 1978). At about
the same Froude number, kangaroos change from a shuffling gait (using
all four feet and the tail) to a bipedal hop, and crows change from walking
to hopping (Hayes and Alexander 1983). If runs are defined as gaits
involving duty factors less than 0.5, cockroaches seldom run, even at
high speeds.

The Froude number is (Speed)2/(Gravitational acceleration × Hip
height), so if animals of different sizes change gaits at equal Froude num-
bers, they do so at speeds proportional to the square root of hip height.
For example, dogs change gaits at about half the speeds at which horses
with legs four times as long make the corresponding changes. In normal
life, the gravitational acceleration is almost constant, but if the speed of
gait change depends on the Froude number, we should expect an animal
that is tested in different gravitational environments to change gaits at
speeds proportional to the square root of the gravitational acceleration.
For example, the gravitational acceleration on the surface of Mars is 0.4
of the value on earth, so a person walking on Mars could be expected to
change from walking to running at !0.4 = 0.63 of the speed at which the
change is made on earth. Other mechanically equivalent speeds, for exam-
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ple, the speed at which the mechanical cost of transport is least, should be
reduced by the same factor.

Kram et al. (1997) have performed ingenious experiments in which they
simulated low gravity by having people walk while suspended by an elastic
rope that partially counteracted their weight. They found that this re-
duced the speed of the walk/run transition, but left the Froude number
(calculated using the simulated gravitational acceleration) unchanged.
However, the simulation of low gravity in these experiments was not en-
tirely satisfactory. Though the gravitational force on the body as a whole
was partially counteracted, the gravitational forces on limb segments were
unaltered. Thus, the periods with which the limbs would swing passively,
as pendulums, were unaltered. If the speed at which running becomes
more economical than walking depends in part on the energy needed to
swing the limbs, this speed might not be the same in the simulation as in
real reduced gravity.

A more satisfactory (but much more expensive) experiment was per-
formed by Cavagna et al. (1998). Their subjects walked across a force plate
fixed to the floor of an aircraft, while it executed parabolic flights. As the
aircraft flew to the top of the parabola and down again, it had a large
downward acceleration that remained more or less constant for 30 s. Dur-
ing this time, the gravitational acceleration for bodies in the aircraft, rela-
tive to the floor of the aircraft, matched the gravitational acceleration on
Mars. We saw in Section 6.6 that walking involves pendulumlike energy
exchanges between kinetic energy and gravitational potential energy. Ca-
vagna and his colleagues used the force plate records to calculate how well
kinetic energy losses were matched by potential energy gains, and vice
versa. They found that the speed at which kinetic and potential energy
were most effectively exchanged in simulated Martian gravity was about
0.63 of the speed of most effective exchange on earth. In other words,
the energy exchange was most effective at the same Froude number in the
two gravitational environments.

Animals use four bipedal gaits. In walking and running, the left and
right legs move alternately, half a stride out of phase with each other. In
in-phase hopping they move in phase with each other. Finally, in out-of-
phase hopping gaits (called skipping gaits by Minetti [1998]) the two legs
are clearly out of phase with each other, but by less than half a stride.
Humans and some birds walk at low speeds and run at high ones. Kanga-
roos and some rodents and birds use the in-phase hop. Crows walk at
Froude numbers less than about 0.5, and use the out-of-phase hop at
higher Froude numbers (Hayes and Alexander 1983).

Quadrupedal gaits are described as symmetrical if the left and right legs
of each pair move half a stride out of phase with each other. Other gaits
are described as asymmetrical. The walking gaits used by quadrupedal
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Fig. 7.3. Horses (A) trotting and (B) galloping. From Gambaryan (1974).

mammals are symmetrical. The feet move in the order left fore, right hind,
right fore, left hind, left fore again, and so on; the significance of this
order will become apparent when we discuss the stability of walking, in
Section 7.9. Hildebrand (1976) has shown that different groups of mam-
mals regularly use different variants of the quadrupedal walk. Some move
the feet of the same side of the body in rapid succession, with a longer
interval before the feet of the other side move; some move diagonally
opposite feet in rapid succession; and some move all four feet at approxi-
mately equal intervals.

The trot, the pace, and the amble are symmetrical quadrupedal runs. In
trotting (Fig. 7.3A), diagonally opposite feet move in phase with each
other; in pacing, the two feet on the same side of the body move in phase
with each other; and in ambling, the four feet move at roughly equal inter-
vals, in the same order as in walking. Most mammals trot when traveling
at moderate speeds, but camels pace and elephants sometimes amble
(Gambaryan 1974).

At high speeds, quadrupedal mammals use asymmetrical gaits, generally
making the change from a trot or pace to an (asymmetrical) gallop at a
Froude number of about 2.5 (Alexander and Jayes 1983). Several variants
of galloping are recognized (Gambaryan 1974; Hildebrand 1977). The
canter, which is recognized by horse riders as a distinct gait, is a form of
gallop used at low speeds. Galloping mammals arch their backs during the
part of the stride when the fore feet are on the ground, and straighten
them while the hind feet are on the ground (Fig. 7.3B). This enables them
to take advantage of the elastic properties of a sheet of tendon in the back,
as described in Section 7.5.
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Cursorial mammals and birds move their legs more or less in parasagittal
planes (i.e., in vertical planes, parallel to the long axis of the body [Jenkins
1971]). At the midpoint of a step, their feet pass vertically under the hip
and (in quadrupeds) the shoulder joints. In a set of footprints, the line of
left footprints is close to the line of right footprints (see, for example,
tracks of fox and deer in Lawrence and Brown [1974]). Noncursorial
mammals hold the femur and humerus at an angle to the sagittal plane,
and the separation between the lines of their left and right footprints is a
larger fraction of stride length (see, for example, tracks of weasels and
rodents). Modern reptiles and amphibians walk and run with the feet far
lateral to the hip and shoulder joints, but fossil footprints show that dino-
saurs walked more like birds and mammals (Thulborn 1990). If the feet
are lateral to the body, bending the body to the left moves the right fore
foot forward relative to the left fore foot, and the left hind foot forward
relative to the right hind foot (Fig. 7.4A). Bending to the right has the
reverse effect. Lizards and salamanders take advantage of this to extend
their steps, by bending their backs from side to side as they walk or run
quadrupedally.

This side-to-side bending throws the body into waves. These may be
standing waves or traveling waves; Fig. 7.4B and C shows the difference.
Lizards with well-developed legs use standing waves at low speeds, and
traveling waves that move posteriorly along the body at high speeds (Ritter
1992). Lizards that have reduced or rudimentary legs use traveling waves
at all speeds. Section 9.4 describes how snakes crawl, using traveling
waves.

Whether standing or traveling waves are used, the wavelength is twice
the distance from the shoulders to the hips. Thus, the shoulders are turned
to the left while the hips are turned to the right, and vice versa. For this
to lengthen the step, the left fore foot must be on the ground while the
pectoral girdle is turning to the left, and the right hind foot must be on
the ground while the pelvic girdle is turning to the right. Lizards use
symmetrical gaits in which diagonally opposite feet commonly move more
or less simultaneously, as in the mammalian trot (White and Anderson
1994). Tortoises and turtles, which do not (and cannot) bend their backs
from side to side, move diagonally opposite feet slightly out of phase with
each other, as described in Section 7.9. At high speeds, many lizards run
bipedally on their hind legs (Irschick and Jayne 1999). Bipedal running is
possible because the long tail brings the center of mass of the body back
to a position near the hip joints.

Cockroaches and other insects, running on all six legs, move them in
two groups of three. Each group consists of the front and hind legs of one
side, and the middle legs of the other. The two groups move half a stride
out of phase with each other, so the animal is supported alternately by the
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Fig. 7.4. (A) Successive stages in the stride of a newt (Triturus). RF, right fore;
LF, left fore; LH, left hind; RH, right hind. From Roos (1964). (B, C) Successive
positions of (B) a standing wave and (C) a traveling wave.

two tripods of legs (Fig. 7.5A: see, for example, Ting et al., [1994]). The
cockroach Periplaneta americana runs on all six legs at speeds up to 1.0
m/s, but at higher speeds uses only the middle and hind legs, or the hind
legs alone (Full and Tu 1991).

Short-legged centipedes such as Scolopendra move each leg slightly after
the leg immediately in front, so waves of leg movement travel backward
along the body. In Scutigera (a centipede with very long legs) and in milli-
pedes waves of leg movement travel forward along the body (Manton
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Fig. 7.5. (A) A cockroach. The three legs marked by asterisks move together, and
then the other three. (B, C) Forces on a fore (prothoracic) and a hind (meta-
thoracic) foot, respectively, of a walking cockroach. Small circles mark the position
of the foot, in each case. (B) and (C) are from Full et al. (1991).

1973). Waves of lateral bending travel posteriorly along the body of Scolo-
pendra as it runs. Anderson et al. (1995) showed that this bending is
caused actively by contractions of longitudinal muscles; it is not the passive
consequence of forces exerted by the legs.

7.3. FORCES AND ENERGY

When an animal walks or runs, little energy is dissipated by friction (Sec-
tion 3.4) or air resistance (unless there is a strong wind [Pugh 1971]).
Therefore, we will have to concern ourselves in this section only with
kinetic, gravitational, and elastic strain energy. Each of these energies has
the same value at corresponding stages of successive strides, if the animal
is traveling at constant speed on level ground. Therefore, the positive work
and the negative work that the muscles have to do are almost exactly equal.

Figure 7.6A shows the forces on the feet of a hopping kangaroo rat,
recorded by means of a force plate. Both hind feet landed on the plate,
followed 0.1s later by the fore feet, which exerted much smaller forces.
We will look in detail only at the forces on the hind feet. The vertical
component of force rises to a peak of 2.5 N (3.2 times the animal’s weight)
and then falls. The mean value of this component of force over a complete
stride must equal body weight. It is because the feet are off the ground



Fig. 7.6. (A) Records of the vertical
(Fy) and horizontal (Fx) components
of the forces on the feet of a kangaroo
rat (Dipodomys spectabilis) as it hopped
across a force plate. Above the force
record are tracings from an X-ray cine
film taken simultaneously, with
arrows representing the forces. From
Biewener et al. (1981).

(B) An outline traced from a photograph of a
dog, showing (hollow circles) the hip and
shoulder joints and (filled circles) the points
through which the forces on the feet tend to act
throughout a step. Distances are expressed as
multiples of the hip height h. From Jayes and
Alexander (1978).
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for much of the stride that the force while they are on the ground must
exceed body weight. The record of the horizontal component shows a
decelerating force followed by an accelerating one. If the animal is hop-
ping at a steady speed, the mean horizontal component of force, over a
complete stride, must be zero. The outlines at the top of the figure show
three stages of the step, traced from an X-ray cine film. Superimposed on
them are arrows showing the resultant forces on the feet, calculated from
the force records below. Throughout the step, the line of action of the
force passes through the central part of the body, close to the presumed
position of the animal’s center of mass. The mean moment of the force
about the center of mass, over a complete stride, must be zero; otherwise,
the animal would somersault at an ever increasing rate. There is no re-
quirement for the moment to be zero throughout the step, but if the line
of action is always close to the center of mass, keeping the moments small,
the animal will rock very little as it hops.

Other bipeds similarly keep the lines of action of the forces on their feet
close to the center of mass of the body when they hop or run or walk;
see, for example, Alexander and Vernon (1975a) on kangaroos, Clark and
Alexander (1975) on quail (Coturnix), and Alexander and Vernon
(1975b) on humans. In quadrupedal mammals, as in bipeds, each foot
exerts a decelerating followed by an accelerating horizontal component of
force in each step. The forces on the fore feet tend to keep in line with a
point above the shoulder, and the forces on the hind feet tend to keep in
line with a point above the hips. Figure 7.6B shows the positions of these
points for dogs. The positions for sheep are very similar (Jayes and Alexan-
der 1978).

Force plate records of lizards show that each foot exerts a decelerating
horizontal component of force, followed by an accelerating one, while on
the ground (Farley and Ko 1997). The feet also exert transverse compo-
nents of force, the right feet pushing toward the right and the left feet
toward the left, making the lines of action of the ground forces slope
inward toward the shoulder and hip (Ritter 1995). The feet of walking
turtles exert near-vertical forces on the ground, so that much larger mo-
ments act about the shoulder and hip than about the elbow and knee
(Jayes and Alexander 1980; van Leeuwen et al., 1981). The feet of cock-
roaches exert transverse as well as vertical and longitudinal components
of force, so that the resultant force on each foot is more or less aligned
with the leg (Fig. 7.6B) (Full et al., 1991, 1995).

In Section 6.5 we discussed an inelastic kangaroo model of hopping or
running. Our analysis of it showed that at high speeds most of the work
required for locomotion was due to the horizontal components of force
on the feet. This suggests that the energy cost of locomotion might be less
if the forces on the feet were kept vertical throughout the step. However, if
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Fig. 7.7. Diagrams of a running animal, showing the trunk and one leg. (A–C)
Three possible patterns of muscle action. (I), (II), and (III), in each case, represent
successive stages of a step. Muscles doing positive and negative work are labeled +
and −, respectively. The mass of the leg is ignored, in the discussion of this diagram.
From Alexander (1988).

the force were kept vertical, energy would be wasted by muscles doing
work against each other, in the same sort of way as arm muscles work
against each other in Fig. 3.3A. In Fig. 7.7A the force on the foot remains
vertical throughout the step. At all three stages, the force on the foot
exerts a clockwise moment about the knee, so the knee extensor muscle
(illustrated) must be active. Between stages I and II the knee is bending,
so the extensor muscle is being stretched, doing negative work. Between
stages II and III, however, it is extending, and the muscle must be doing
positive work. Between stages I and II the force exerts an anticlockwise
moment about the hip, so the hip extensor muscle must be active. The hip
joint is extending, so the muscle is doing positive work. Similarly, between
stages II and III the hip flexor muscle is active and is doing negative work,
resisting the continued extension of the hip. Throughout the stride, one
muscle is doing positive and another negative work. Energy is being
wasted by muscles doing work against each other.

In Fig. 7.7B, the forces are still vertical throughout the step. In this
case, however, each muscle crosses both the hip joint and the knee, ex-
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Fig. 7.8. Records of the force on one foot of a 70-kg man walking at (A) 0.9
m/s; (B) 1.5 m/s, and (C) 2.1 m/s; and (D) running at 3.6 m/s. From Alexander
and Jayes (1980).

erting moments about both. The muscles shown could balance the mo-
ments about both joints, if the ratios of their moment arms about the two
joints were right. In that case, their lengths would remain constant while
they were active; they would have to exert forces, but they would do no
work. This is a possible design for economical locomotion, but evolution
does not seem to have adopted it. The muscle shown in (III) resembles the
rectus femoris muscle of mammals, but kangaroos are the only mammals I
know to have a muscle like the one shown in (I) (the femorococcygeus
muscle).

In Fig. 7.7C, the force on the foot is kept in line with the hip joint. It
exerts no moment about the hip, so no hip muscle need be active. The
knee extensor muscle must be active throughout, doing negative work as
the knee bends followed by positive work as it extends. Work is done, but
it is not work against other muscles.

Alexander (1991b) considered a leg like the one in Fig. 7.7A and C,
with muscles that each crossed only one of the two joints. I calculated the
work done by the muscles, as the hip moved forward horizontally, for
different directions of the force on the foot. I showed that the work (both
positive and negative) was least if the force on the foot was kept in line
with the hip joint as in (C). I assumed that the hip moved precisely hori-
zontally, and I did not consider how the optimum force direction might
change if some of the muscles crossed both joints. However, this simple
analysis suggests that animals may be able to save energy by exerting hori-
zontal components of force with their feet as they walk and run.

Now we will consider the vertical components of force in more detail.
Figure 7.8 shows force plate records of a man walking at three different
speeds, and running. In slow running (A) the vertical component of the
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force on a foot rises, plateaus, and falls. In faster walking (B) the force
record has two peaks, and in very fast walking (C) the peaks are higher.
In running (D), however, there is only a single main peak of force (I am
ignoring a small initial peak that occurs in walking as well as running and
is due to the foot being brought suddenly to rest when it hits the ground).
As speed increases, starting with a slow walk, the force pattern becomes
more and more two-peaked, then changes abruptly to the single-peaked
pattern of running. The duty factor is between 0.55 and 0.70 throughout
the range of walking speeds, then drops abruptly to 0.3–0.4 when running
commences (Fig. 1.5A).

To progress further, we need a more precise means of describing the
one- and two-peaked patterns of force. Let a foot be on the ground from
time −τ/2 to time +τ/2. At any time t within this interval, let the vertical
component of force on the foot Fy be

Fy = A [ cos 1 πt
τ 2 − q cos 1 3πt

τ 2 ] (7.1)

where A is the constant needed to make the mean value of Fy , over a
complete stride, equal to body weight; and q is a parameter that is called
the shape factor because it determines the one- or two-humped shape of
the force record (Alexander and Jayes 1978). Obviously, when q = 0 a
graph of force against time is a half cycle of a cosine curve. As q increases,
the graph becomes flatter-topped and eventually, for values exceeding
0.15, two-humped. Negative values of q make the graph bell-shaped.
Equation 7.1 successfully imitates the patterns of vertical force observed
in human walking and running. The shape factor q is 0.22 in Fig. 7.8a,
0.36 in (B), 0.55 in (C), and −0.07 in (D). More generally, it increases
gradually from about 0.2 in slow walking to 0.7 in fast walking, then falls
abruptly to about −0.1 when running starts (Fig. 1.5B).

Figure 7.9 shows the consequences of different combinations of shape
factor and duty factor. In (i) the shape factor is 0.4, so the force curves are
markedly two-peaked; and the duty factor is 0.75, so there are quite long
periods of overlap, when both feet are on the ground. The total force
(broken curves) is greater than body weight when both feet are on the
ground, and less than body weight when only one foot is on the ground,
with the supporting leg vertical. That implies that the body must have an
upward acceleration when both feet are on the ground, and a downward
acceleration when the supporting leg is vertical as in the stiff-legged mod-
els of walking shown in Fig. 6.5A and C. It must be lowest when both feet
are on the ground, and highest when the supporting leg is vertical.

In Fig. 7.9(iv), the shape factor is 0, so the force curves are half-cycles
of cosine curves. The duty factor is only 0.55, so the times when both feet
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Fig. 7.9. Schematic graphs of the vertical components of force acting on the feet
of a biped, with different shape factors q and duty factors β. Each graph shows the
forces exerted by the left and right feet in several successive steps, and (by broken
lines) the total force when both feet are on the ground. (i) q = 0.4, β = 0.75; (ii)
q = 0.4, β = 0.55; in (iii) q = 0, β = 0.75 and (iv) q = 0, β = 0.55. From Alexander
and Jayes (1978).

are on the ground are short. In this case, the total force is less than body
weight when both feet are on the ground, and more than body weight
when only one foot is on the ground, with the supporting leg vertical.
This is the opposite of the situation in (i). The body must be highest when
both feet are on the ground, and lowest when the supporting leg is verti-
cal, which is how a mass–spring model (Fig. 6.5E and F) would behave.
In Fig. 7.9(iv) the duty factor is 0.55, so the gait is a walk; it can be de-
scribed as a compliant walk, to distinguish it from the stiff-legged walk of
Fig. 7.9(i). However, the motion resembles running, in which the force
is zero and the body is highest while both feet are off the ground.

In Fig. 7.9, parts ii and iii are graphs for two other combinations of
shape factor and duty factor, which make the force rise above body weight
twice in each step.

Both in walking and in running, each foot exerts horizontal compo-
nents of force that tend to decelerate the animal in the first half of a step
and accelerate it in the second half, as we have already noted. Conse-
quently, the kinetic energy of a biped is least when the supporting leg is
vertical and greatest when both feet are on the ground (in walking) or
neither foot is on the ground (in running). The biped’s gravitational po-
tential energy is least when its body is lowest. In stiff-legged walking, this
is when both feet are on the ground, but in compliant walking and in
running it is when the supporting leg is vertical. In stiff-legged walking,



W A L K I N G , R U N N I N G , A N D H O P P I N G 121

kinetic energy is high when gravitational potential energy is low, and vice
versa; but in running kinetic and gravitational potential energy fluctuate
in phase with each other. Some authors use this to define walking and
running (McMahon 1985). They regard a gait as a walk if kinetic and
potential energy are out of phase, and as a run if they are in phase.

Dogs, sheep, and horses, like humans, use higher shape factors when
walking than when running (Alexander and Jayes 1978, 1983; in the latter
paper, the quantity a 3/a 1 equals −q).

Cavagna et al. (1977) studied the fluctuations of kinetic and gravita-
tional potential energy during walking and running of various mammals
and birds. They used a very long force plate, long enough to record several
successive footfalls. From force records of the animals traveling over this
plate they were able to calculate the fluctuations of external kinetic energy
and of gravitational potential energy. (The distinction between external
and internal kinetic energy is explained in Section 3.1. All references to
kinetic energy so far in this chapter refer to external kinetic energy.) Ca-
vagna and his colleagues found that when turkeys and a rhea walked
slowly, kinetic and potential energy fluctuations were out of phase with
each other, as they were also in human walking. Their records of quadru-
pedal walking of monkeys, dogs, and sheep are hard to interpret, because
the fore and hind legs do not move simultaneously. A much clearer picture
would probably have emerged if it had been possible to measure the energy
changes of the fore and hind quarters separately. They got very different
results for running by humans, turkeys, and the rhea; for hopping by kan-
garoos and a spring hare; and for trotting by the monkeys, dogs, and
sheep. In all these cases, the fluctuations of kinetic and potential energy
were in phase. There was no difficulty in interpreting the records of the
quadrupeds trotting, because in the trot fore and hind feet are set down
simultaneously.

Farley and Ko (1997) performed similar experiments with two species
of lizard. At low speeds, gravitational potential energy fluctuations were
sometimes in phase with external kinetic energy fluctuations, and some-
times 180° out of phase with them. The gait was sometimes a stiff-legged
walk, and sometimes a compliant walk. At higher speeds, however, the
kinetic and potential energy fluctuations were always in phase. The highest
speed at which stiff-legged walking was observed corresponded to a
Froude number of about 1.

Full and Tu (1990) ran cockroaches (Blaberus discoidalis) over a force
plate and showed that external kinetic energy fluctuations and gravita-
tional potential energy fluctuations were in phase with each other at all
speeds. We have already noted that this species almost always uses duty
factors greater than 0.5 at all speeds. Thus, its gait at all speeds is a compli-
ant walk.
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7.4. ENERGY-SAVING SPRINGS

Simple models in Chapter 6 showed how springs can reduce the work that
muscles have to do in hopping and running. If the kinetic and potential
energy that the animal loses in the first half of a step can be stored as elastic
strain energy, and returned in the second half of the step, the muscles
will be relieved of the necessity to do work. The inelastic kangaroo model
(Section 6.5) required a substantial input of muscular work in each step,
but the mass–spring model required none during steady locomotion.

Early evidence that springs might play an important energy-saving role
in running came from measurements of human oxygen consumption.
Cavagna et al. (1964) used their force plate to determine the fluctuations
of external kinetic energy and of gravitational potential energy that occur
in running. Using these data and measurements of oxygen consumption,
they calculated the efficiency of the muscles, assuming that every increase
in the mechanical energy of the body was supplied by muscular work. The
calculated efficiency was much higher than the efficiencies of 25% or less
that had been measured in experiments on bicycle ergometers. The para-
dox would be resolved if about half of the positive and negative work were
done by springs.

At that time, anatomists were taught dogmatically that tendon is not
elastic. However, Alexander (1974a) used a force plate to record the forces
on the feet of a dog taking off for large jumps. I took films simultaneously
that enabled me to calculate the moments of the measured forces about
the ankle. Hence, I calculated the forces that must act in the gastrocne-
mius and plantaris tendons (the tendons of the principal extensor muscles
of the ankle), and the amount by which these forces could be expected to
stretch the tendons. These calculations led to the unexpected conclusion
that the bending and reextension of the ankle that occurred in takeoff was
largely due to passive elastic stretching and recoil of the tendons, with
very little change in the lengths of the gastrocnemius and plantaris muscle
fibers. A similar force plate study of kangaroo hopping (Alexander and
Vernon 1975a) led to a similar conclusion; the gastrocnemius and plan-
taris tendons were stretching substantially, and recoiling elastically, in
each step.

Subsequent developments in technology have made possible much more
direct investigation of the muscles and tendons in kangaroo hopping.
Biewener et al. (1998b) put tendon buckles on the tendons of wallabies
(Macropus eugenii) to measure the forces acting in them, and implanted
sonomicrometry crystals in the muscles to measure the length changes
of their fascicles. They recorded the forces and length changes while the
wallabies hopped on a treadmill, at various speeds. Afterward they killed
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the animals, calibrated the tendon buckles, checked that the sonomi-
crometry crystals had been correctly placed and measured the elastic prop-
erties of the tendons. They found that the plantaris muscle fascicles length-
ened and shortened by 0.5 mm or less, and the gastrocnemius fascicles 2.2
mm or less, during the part of the stride while the feet were on the ground
and the muscles were exerting substantial forces. These length changes
are so small that they may have been due to elastic distortion of the muscle
cross bridges, with no need for cross bridges to detach and reattach. While
the muscles were changing length very little, the tendons were stretching
and recoiling far more. Biewener and his colleagues calculated that work
done by elastic recoil of tendons averaged 20 times as much as the work
done by the muscle fascicles. They investigated only the muscles of the
ankle joint. Tendon elasticity probably contributes much less to the work
done by knee and hip muscles, but the elastic extension and recoil of the
tendons of ankle extensor muscles is enough to reduce the total work re-
quired of the leg muscles by 45% at 6 m/s, the fastest speed of hopping
that was investigated.

Roberts et al. (1997) had performed similar experiments on turkeys.
Instead of using a tendon buckle, they measured the force in the gastroc-
nemius tendon by means of a strain gauge glued to an ossified part of
the tendon. They found that the gastrocnemius muscle fascicles changed
length very little while the foot was on the ground (but much more while
it was off the ground, when the muscle was exerting very little force). Most
of the work done by the muscle came from elastic recoil of the tendon.

Elastic stretching and recoil of tendons has been demonstrated by much
simpler means in camels and horses (Alexander et al., 1982; Dimery et al.,
1986). In these species, some of the distal leg muscles have such extremely
short muscle fascicles that their changes of length in locomotion must be
almost entirely due to elastic extension and recoil of their tendons. For
example, the plantaris muscle of the camel is a stout tendon 1.3 m long,
extending from the distal part of the femur to the phalanges, with the
muscle belly represented only by a small quantity of muscle fascicles, 1 to
3 mm long. The digital flexor muscles of the forefoot of a pony had tendons
about 0.7 m long, and muscle fascicles only 3 mm long in the superficial
muscle and 6 mm in the deep one. In the investigations both of camels
and of horses, the animals were filmed walking and running at various
speeds, and the angular movements of the leg joints were measured. Ex-
periments were performed on carcasses to discover the combinations of
joint angles that each short-fascicled muscle allowed if its tendon was kept
taut but not stretched (each of the muscles in question crosses several
joints). This made it possible to calculate the length changes of the ten-
dons that were occurring in running. It was found, for example, that the
superficial digital flexor of the horse was extended 60 mm beyond its un-
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stretched length, while the foot was on the ground in galloping. It is
inconceivable that 3-mm muscle fascicles could extend as much as that.
The extension must have been very predominantly elastic stretching of the
tendons. The tendons investigated in the horse were stretched while the
foot was on the ground by 3–6% in walking, 3–7% in trotting, and 4–9%
in galloping. While the foot was off the ground, the tendons became slack
and apparently folded. Biewener (1998) made force plate records of
horses, and calculated the forces in the tendons of distal leg muscles, mak-
ing plausible assumptions. He calculated that, in galloping, stresses of 40–
50 MPa occurred in several tendons. This would be enough to stretch the
tendons by about 5%. He estimated that elastic recoil of tendons contrib-
uted up to 40% of the positive work required for trotting and galloping.

Antelopes also have long tendons and very short fascicles in distal leg
muscles that function as springs (Alexander et al., 1981). Metabolic energy
is needed to develop tension in muscles, even when the contraction is iso-
metric and no work is done. Consequently, energy can be saved by having
short muscle fascicles where long ones are not needed. Monkeys have much
longer fascicles than antelopes, in the homologous muscles, a difference
that may be related to their arboreal habits. A climbing animal may need
to be able to exert large forces with its limbs bent or extended, depending
on the position of the next foothold. In contrast, for an animal that travels
only on the ground, every step is much like the one before. The climbing
animal needs to be able to adjust its limb length over a much wider range,
and needs fairly long muscle fascicles to make the adjustments.

In humans, the plantaris muscle is rudimentary, but the tendon of the
gastrocnemius and soleus muscles (the Achilles tendon) is an important
energy-saving spring. The peak force exerted by the muscles in running at
4 m/s (4.9 kN [Thorpe et al., 1998]) divided by the cross-sectional area
of the tendon (89 mm2 [Ker et al., 1987]) gives a stress in the tendon of
55 MPa. The free part of the tendon, outside the muscle bellies, is quite
short. However, the tendon continues on and in the muscle bellies as apo-
neuroses, which also stretch under load (Maganaris and Paul 2000). In
addition to the Achilles tendon, ligaments in the arch of the foot serve as
springs. Films of barefoot runners show that at the stage of a running step
at which the force on the foot is greatest, the ankle joint is about 10 mm
nearer the ground than when the foot is rested lightly on the ground
(Alexander 1987). This is due to flattening of the arch of the foot, stretch-
ing its ligaments. Ker et al. (1987) compressed amputated feet in a dy-
namic testing machine, in a rig that imitated the pattern of forces that acts
in running. We showed that the foot behaves as a passive spring, returning
in its elastic recoil 78% of the work done flattening the arch. We estimated
that of the external kinetic energy and gravitational potential energy lost
and regained by the body in each running step, 35% is stored and returned
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by stretching and recoil of the Achilles tendon, and a further 17% by flat-
tening and recoil of the arch of the foot.

Though tendon springs play so important an energy-saving role in large
mammals, they may be much less important in small ones. Biewener and
Blickhan (1988) assessed the role of tendon springs in kangaroo rats,
which hop like kangaroos but are much smaller. The body masses of their
specimens averaged 107 g, far less than the 3.6- to 5.8-kg wallabies studied
by Biewener et al. (1998b). In earlier experiments, they had used a tendon
buckle to measure the total force in the tendons of the two principal exten-
sor muscles of the ankle, the gastrocnemius and plantaris. They found that
in steady hopping, stresses of 5–10 MPa were developed in these tendons,
far less than the 20–30 MPa that can be calculated from the data of Bie-
wener et al. (1998b) for wallabies. Because the stresses are low, the tendons
must stretch very little and can store only a little strain energy. Much
larger stresses act in the large jumps that the animals make to escape from
predators. The penalty for having tendons strong enough for the large
jumps is that the energy savings in steady hopping are small.

We saw in Section 3.3 that about 7% of the work done stretching a
tendon is not returned in its elastic recoil, but is dissipated as heat. This
raises the temperature of the tendon, to as much as 45°C in the case of
the superficial digital flexor tendons of galloping horses. This may damage
the tendon (Birch et al., 1997).

7.5. INTERNAL KINETIC ENERGY

So far we have ignored internal kinetic energy, the kinetic energy due to
movements of parts of the body relative to its center of mass (Section
3.1). The internal kinetic energy of the animal changes whenever a limb
is accelerated or decelerated as it swings forward and back. The following
argument shows that internal kinetic energy fluctuations must contribute
more to the energy cost of running at high speeds than at low ones. To
keep the argument simple, we will ignore the masses of the upper parts of
the legs, and consider only the mass of the feet. Consider an animal of
mass m running at speed v, taking strides of length λ. Let the total of the
masses of its feet be km. When the feet are on the ground, they have
velocity −v relative to the body. Every foot is given this velocity once in
each stride, so internal kinetic energy kmv 2/2 has to be supplied in each
stride. The contribution to the cost of transport, obtained by dividing this
by body mass and stride length, is kv 2/2λ. Something should be added to
this for the internal kinetic energy associated with the forward swing of
the feet while they are off the ground, but we will ignore that. Stride
frequency f equals v/λ, so the contribution of internal kinetic energy re-
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quirements to the cost of transport can be written kvf/2. Stride frequen-
cies of mammals remain more or less constant once they have reached
galloping speeds (Heglund et al., 1974), making this contribution to the
cost of transport proportional to speed. In contrast, the cost of transport
for the inelastic kangaroo model, which ignores internal kinetic energy,
decreases as speed increases, approaching an asymptotic value at high
speeds (Equation 6.10). If the contribution of internal kinetic energy in-
creases in proportion to speed while other components of the cost of trans-
port decrease, internal kinetic energy becomes increasingly important as
speed increases.

Fedak et al. (1982) calculated the internal kinetic energy changes in
running of four species of birds and three of mammals, ranging from a 44-
g quail (Excalfactoria chinensis) to a 99-kg pony. Each animal was filmed
running at various speeds on a treadmill, using high-speed X-ray cinema-
tography for the small species and light cinematography for the large ones.
Each film was analyzed to determine the coordinates of the joints between
body segments in successive frames over several strides. The animals were
killed and cut up into segments (foot, lower leg, thigh, etc.). The mass of
each segment and the position of its center of mass were determined. From
these data, Fedak and his colleagues were able to calculate the velocities
of the segments and of the center of mass of the whole body, and hence
the internal kinetic energy (the second term on the right-hand side of
Equation 3.3). They expressed their result as the power requirement per
unit body mass. From it we can calculate that the contribution of internal
kinetic energy requirements to the mechanical cost of transport is 0.5v 0.5

J/kg m (where the speed v is expressed in meters per second) for all the
species. It increases with speed, but not as rapidly as our simple argument
suggested.

Heglund et al. (1982) used force plate data to calculate the fluctuations
of gravitational potential energy and external kinetic energy for 13 species
of birds and mammals, ranging from kangaroo rats and quails to humans
and sheep. From their results it can be calculated that the contribution to
the cost of transport of the work needed to supply these energies is about
0.7 J/kg m for all species and all speeds. This agrees well with the cost
predicted for high speeds by Equation 6.11 if βλ/h (= step length/hip
height) is a little less than 1. As speed increases, this component of the
cost of transport remains more or less constant while the component asso-
ciated with internal kinetic energy increases. Internal kinetic energy de-
mands the majority of the work of running when 0.5v 0.5 is greater than
0.7, that is, at speeds greater than 2 m/s.

The elastic mechanisms that we have been discussing save energy that
would otherwise have had to be provided by muscles, to supply external
kinetic energy and gravitational potential energy. They do nothing for



W A L K I N G , R U N N I N G , A N D H O P P I N G 127

Fig. 7.10. Diagrams of successive stages in a galloping stride, with schematic
graphs showing energy changes. “External energy” means external kinetic energy
plus gravitational potential energy. From Alexander et al. (1985).

internal kinetic energy, but springs could help there too. The model of
running shown in Fig. 6.5F had legs of appreciable mass, so internal ki-
netic energy fluctuated as it ran. However, it had torsion springs at the
hips as well as the compression springs in its legs. The function of the
torsion springs was to store up the kinetic energy lost when a leg was
halted at the end of its forward or backward swing, and to return the
energy by elastic recoil, to provide kinetic energy for swinging the leg in
the opposite direction. No animal that I know has springs like this at the
tops of its legs, but mammals do seem to take advantage of springs in their
backs when they gallop. It is at the high speeds, at which galloping is the
preferred gait, that it is most useful to have springs to save and return
internal kinetic energy.

The springs are the aponeurosis (tendon sheet) of the principal extensor
muscle of the back, and the lumbar part of the vertebral column (Alexan-
der et al., 1985). The back bends and extends in the course of a galloping
stride, as shown by the diagrams at the top of Fig. 7.10. At stage 3, when
the back is most bent, the fore legs have been swinging back and are about
to swing forward; and the hind legs have been swinging forward and are
about to swing back. All four legs are halted and set swinging in the reverse
direction; internal kinetic energy is lost and immediately regained. The
forces needed to reverse the directions of swinging exert bending mo-
ments on the back, requiring the extensor muscle to be active. The force
exerted by the muscle stretches its aponeurosis, storing up energy that is
returned in an elastic recoil. We measured the elastic properties of strips
of aponeurosis from dogs and deer, in a dynamic testing machine. From
the results, we calculated that the aponeurosis was capable of storing and
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returning a substantial proportion of the internal kinetic energy lost and
regained in each stride.

As well as stretching the aponeurosis, tension in the extensor muscle
compresses the lumbar part of the vertebral column, especially the inter-
vertebral disks. We compressed vertebrae and disks in the dynamic testing
machine, and showed they could supplement the spring action of the apo-
neurosis. They could store less energy than the aponeurosis, but enough
to seem useful.

The direction of swing of the legs is also reversed, and internal kinetic
energy lost and regained, at the stage of the stride shown in Fig. 7.10(6).
There is no structure that seems likely to serve as effectively as a spring, at
this stage of the stride, as the aponeurosis of the back does at stage (3).
However, the tendon of a muscle in the hind leg (tensor fasciae latae) may
make a useful contribution (Bennett 1989).

We will see in the next section that galloping requires less metabolic
energy than trotting at high speeds. The energy-saving role of the springs
in the back may explain why. They cannot function in trotting, in which
each left leg swings forward while the corresponding right leg swings
back, and vice versa, and bending moments on the back are therefore
small.

7.6. METABOLIC COST OF TRANSPORT

Hoyt and Taylor (1981) trained ponies to walk, trot, or gallop on com-
mand, so that they could, for example, make them trot at speeds at which
they would have preferred to gallop. They measured the rates of oxygen
consumption of these ponies, as they walked, trotted, and galloped on a
treadmill at various speeds. An example of their results is shown in Fig.
7.11. Notice how the graphs for the three gaits cross. Below 1.7 m/s,
walking is more economical of energy than trotting, but above 1.7 m/s
the reverse is the case. Below 4.6 m/s, trotting is more economical than
galloping, but above that speed the reverse is the case. Accordingly, the
pony should walk when traveling at less than 1.7 m/s, trot between that
speed and 4.6 m/s, and gallop at higher speeds. That is what it did.

The graph shows energy per unit time plotted against distance per unit
time. Therefore, the slope of a line from the origin to a point on the curve,
like the broken line in Fig. 7.11, gives the energy cost of traveling unit
distance at the speed represented by the chosen point on the line. The
broken line is the tangent to the walking curve, and has a lower gradient
than any other line joining the curve to the origin. That tells us that the
energy cost of walking unit distance at the speed it represents (1.2 m/s)
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Fig. 7.11. Graphs of metabolic rate against speed for a 140-kg pony walking, trot-
ting and galloping on a treadmill, from the data of Hoyt and Taylor (1981). Boxes
on the speed axis show the speeds at which it and other ponies used each gait when
moving spontaneously around their paddock. The tangent is explained in the text.
From Alexander (2000a).

is less than at any other walking speed. A tangent to the trotting curve
would show that the most economical speed for trotting is 3.2 m/s. A
pony wishing to travel at a mean speed of 2 m/s would do best to walk
part of the way at 1.2 m/s and trot the rest at 3.2 m/s. The boxes on the
speed axis show the ranges of speed in which the pony used each gait,
when moving spontaneously in its paddock. They show that it avoided the
expensive speeds near gait transitions.

Similar data have been obtained for humans. Graphs of metabolic rate
against speed for walking and running cross at 2.2 m/s (Margaria 1976;
Minetti et al., 1994). The speed at which adult humans change voluntarily
from walking to running is about the same, 1.9–2.1 m/s (Thorstensson
and Roberthson 1987; Minetti et al., 1994). Young adults in city streets
walk on average at 1.5 m/s (Wirtz and Ries 1992), close to the speed that
minimizes energy cost per unit distance.

Kangaroos similarly change from their slow shuffling gait to hopping
at approximately the speed at which the faster gait becomes the more eco-
nomical. A remarkable property of kangaroo hopping is that the rate of
oxygen consumption remains almost constant throughout the range of
hopping speeds (Dawson and Taylor 1973). This seems to be due to much
more energy being saved by elastic storage in tendons at higher speeds,
due to larger forces acting on the tendons (Biewener et al. 1998b). The
metabolic cost of transport is high at low speeds, compared to quadrupedal
mammals of similar mass, and similar to quadrupeds at high speeds (see
the graph in Alexander [1982]).

Figure 7.11A shows three intersecting curves but, if we were not inter-
ested in differences between gaits, a single straight line would approxi-
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mate the data reasonably well. Taylor et al. (1982) measured the metabolic
rates of various mammals and birds running on treadmills, and analyzed
them together with similar data for many other species, from earlier inves-
tigations. The species included in their analysis ranged from 20-g mice to
250-kg cattle, and from 18-g plovers (Charadrius wilsonia) to 100-kg
ostriches. For each species they drew a straight-line graph of metabolic
rate against speed, ignoring gait changes. From the results they calculated
a general equation relating metabolic rate while running to speed and
body mass, which can be applied to mammals or birds of any size. From
their equation it is easy to derive an equation giving metabolic cost of
transport (Tmetab , in J/kg m) in terms of body mass (m kg) and speed
(v m/s). The equation is

Tmetab = 10.7m−0.32 +
6.0m−0.30

v
(7.2)

At high speeds, the metabolic cost of transport approaches its asymptotic
value 10.7m −0.32. This minimum metabolic cost of transport is plotted
against body mass in Fig. 7.12. The figure shows not only data for the
mammals and birds studied by Taylor and his colleagues, but also data for
reptiles, amphibians, and arthropods collected from other sources. Re-
markably, all the metabolic data cluster around a single line. There are
some quite large deviations from the line. The asymptotic metabolic cost
of transport is 1.9 times as high for a penguin as for a turkey of similar
mass, and three times as high for a lion cub as for a dog of similar mass.
However, the one line expresses well the trend for arthropods as well as
vertebrates.

The figure also shows the mechanical cost of transport (ignoring both
internal kinetic energy and elastic savings) for a smaller range of species.
This is always less than the metabolic cost, which is not surprising; muscles
are not 100% efficient. What is surprising is that the efficiency (mechanical
cost/metabolic cost) is much lower for small runners than for large ones.
Efficiencies (calculated from the lines, not from individual points) are
shown at the bottom of the graph. Runners of the size of ponies and os-
triches (100 kg) have efficiencies of about 0.4, but a cockroach (Peripla-
neta, represented by the symbol P) has an efficiency of only 0.01.

These efficiencies have been calculated by dividing positive work by the
metabolic energy cost calculated from oxygen consumption. Measure-
ments of the oxygen consumption of people walking on sloping treadmills
or pedaling bicycle ergometers have shown that, at the optimum rate of
working, about 4 J of metabolic energy are needed to do 1 J of positive
work (so the efficiency is 0.25). At equal negative rates of working, about
0.8 J metabolic energy is needed to do 1 J of negative work (an efficiency
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Fig. 7.12. Graphs of cost of transport against body mass for various legged ani-
mals. The sloping line shows the asymptotic value that the metabolic cost of trans-
port approaches at high speeds (the first term on the right-hand side of Equation
7.2). The lower, horizontal line shows the mechanical cost of transport, calculated
from the fluctuations of external kinetic energy and gravitational potential energy
(ignoring both internal kinetic energy changes and savings due to elastic mecha-
nisms). The symbols are as explained on the right, except P, the cockroach Peripla-
neta. From Full and Tu (1991).

of −1.25, negative because the work is negative). Thus, almost 5 J meta-
bolic energy are needed to do 1 J negative work followed by 1 J positive
work (Margaria 1976). The muscles have to do almost equal amounts of
negative and positive work. Thus, we might expect the efficiencies shown
by Fig. 7.12 to be 1/5 = 0.2.

The high efficiencies shown by the graph for large animals are easily
explained. Some of the negative and positive work is done by tendons that
stretch and recoil, reducing the work that has to be done by the muscles.
We saw in Section 7.4 that in large mammals, such as kangaroos, horses,
and humans, elastic mechanisms may reduce the work required of the mus-
cles by 40–50%, so an efficiency of 0.4 calculated from Fig. 7.12 may be
achieved by muscles doing 50–60% of the work with efficiencies of 0.20–
0.24, aided by tendon springs doing the rest. We also saw that elastic
energy savings seem to be unimportant in small mammals, so we should
not be surprised that small mammals do not show elevated efficiencies.
However, this line of reasoning cannot explain why the efficiencies
shown in Fig. 7.11 for small animals are far less than the values of around
0.2 that experiments on frog and mouse muscles lead us to expect
(Woledge et al 1985; Barclay 1994; note that the efficiencies given by
Barclay refer to the conversion of ATP energy to work, and should be
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divided by two to get efficiencies of conversion of food energy to work, as
explained in Section 2.5).

Kram and Taylor (1990) proposed an ingenious theory to explain the
paradox. They ignored the metabolic energy cost of doing work, and con-
sidered only the cost of exerting force. They explained their theory very
concisely, and I have tried in this paragraph to fill in some of the steps in
their argument. Equations 2.10 show that in isometric contraction (rate
of shortening v = 0), the metabolic rate of a muscle is proportional to the
force multiplied by vmax , the rate at which the muscle could shorten if the
force was zero. Kram and Taylor argued that for animals of different sizes,
the mean forces (averaged over a stride) that their feet exert on the ground
must equal body weight, so the forces required of the muscles should be
proportional to body mass. Also, the muscles that are active while a foot
is on the ground must complete their contractions while it remains on the
ground, in a time equal to (Step length)/Speed). Therefore, their un-
loaded shortening speeds vmax should be proportional to Speed/Step
length). Metabolic rate, proportional to force multiplied by vmax , is thus
expected to be proportional to (Mass × Speed)/(Step length). Metabolic
cost of transport is Metabolic rate/(Mass × Speed), so should be inversely
proportional to step length.

Kram and Taylor (1990) tested their theory by experiments on mam-
mals ranging from 30-g kangaroo rats to 140-kg ponies, each species run-
ning at several speeds. They measured oxygen consumption and the time
for which each foot remained on the ground, and calculated metabolic
cost of transport and step length. They found that metabolic cost of trans-
port was proportional to (body mass) −0.30 ± 0.05 (mean ± 95% confidence
limits), in good agreement with the more extensive data shown in Fig.
7.12. Larger animals take longer steps. If animals of different sizes were
geometrically similar to each other, and if they moved in dynamically simi-
lar fashion, step length would be proportional to (body mass)0.33. Kram
and Taylor’s result was not significantly different from that prediction;
they found that step length was proportional to (body mass)0.25 ± 0.09. The
confidence limits are wider than might have been hoped, but the results
are consistent with the theoretical prediction that metabolic cost of trans-
port would be inversely proportional to step length.

In further experiments, Roberts et al. (1998b) and Roberts et al.
(1998a) tested Kram and Taylor’s theory on birds. Again, they found that
metabolic cost of transport was inversely proportional to step length, but
the constant of proportionality was 1.7 times higher than for mammals.
They explained the difference by showing that turkeys have longer fascicles
in their leg muscles than dogs of equal body mass. More energy is needed
to develop a given force in a long fascicle than in a short one.
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Alexander (1991a) challenged one of the assumptions of Kram and Tay-
lor’s theory, that vmax should be inversely proportional to the time for
which each foot remains on the ground. I argued instead that vmax should
be proportional to the maximum rate at which the muscle has to shorten
in the course of a step, so that the muscles of animals of different sizes
would work over the same range of values of v/vmax. The rate at which a
muscle has to shorten is (Length change) / (Time available for shorten-
ing). Kram and Taylor took account of the time, but not of the length
change. If this criticism is valid, their theory fails to explain why metabolic
costs of transport are higher for small runners than for large ones.

The measurements of cost of transport reported so far were made while
the animals were in a steady state, during a prolonged, aerobically powered
run. Edwards and Gleeson (2001) measured the oxygen consumption of
mice on a treadmill that was run intermittently, so that they were given
periods of rest between short bursts of sprinting. The sprints were made
as fast as the mice could manage, and during them the mice accumulated
lactic acid by anaerobic metabolism. In a series of experiments, the mice
made 1–13 bouts of sprinting, each 15 s long, evenly spaced over a period
of 375 s. Edwards and Gleeson recorded their oxygen consumption
throughout the period of intermittent activity, and continued to record it
during the recovery period afterward, until the animals’ oxygen consump-
tion had returned to the resting level. They calculated the quantity of
oxygen that was used in excess of the quantity that would have been used
if the animals had been resting throughout. They found that the mice
used more oxygen than they would have done while covering the same
distance during a prolonged, uninterrupted run. However, the additional
cost was incurred only once in a series of bouts of sprinting. The energy
cost of a single 15-s sprint is many times higher than the cost of running
the same distance in a steady state, but the cost of a long series of short
sprints is little higher than that of continuous running. Mice and other
small mammals habitually run in short bursts.

7.7. PREDICTION OF OPTIMAL GAITS

We have already seen that people walking or running at different speeds
use different combinations of stride length, duty factor, and shape factor.
Stride length increases as speed increases. Duty factor is high while walk-
ing, and low in running (Fig. 1.5A). Shape factor increases as walking
speed increases, then drops sharply at the onset of running (Fig. 1.5B).

Alexander (1992a) sought to explain this. I presented a theory designed
to predict mechanical costs of transport for the simple biped shown in Fig.
6.5G. This model has legs of appreciable mass, with telescopic actuators
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that do positive and negative work as required, and with springs in the
feet. The masses of the legs were the same fraction of body mass as in
humans, and the stiffness of the springs was chosen to imitate the elastic
properties conferred on human legs by their tendons and ligaments. The
forces that the model exerts on the ground always act along the length of
the legs, but there are additional actuators at the hip joints to supply the
torques needed to swing the legs forward and back. In computer simula-
tions, I made this model walk and run at several different speeds. At each
speed, I varied duty factor, shape factor, and stride length, and calculated
the positive work that the actuators would have to do. I sought the combi-
nation of parameters that minimized the mechanical cost of transport for
each speed. The optima that I found agreed reasonably well with the com-
binations of stride length, duty factor, and shape factor that people actually
use, with one important exception: the predicted speed of the walk–run
transition was much too high.

That model calculated the work required for locomotion, but this work
is less directly important to us than the metabolic energy cost of locomo-
tion. Minetti and Alexander (1997) developed the model to calculate the
metabolic energy cost of locomotion, using the method explained in Sec-
tion 2.5. Figure 7.13 shows results for four different speeds. At each speed,
stride length was kept constant while duty factor and shape factor were
varied. At a very low walking speed (A) the contours representing cost of
transport show two minima. There is a local minimum (hollow star) at a
duty factor of 0.2 and a shape factor of 0.1, representing a very slow jog.
There is also a deeper global minimum (filled star) at a duty factor of 0.55
and a shape factor of 0.4, representing a walk. This is the gait that the
model predicts to be most economical at very low speeds. At a moderate
walking speed (B) there are still two minima, but the global minimum
has moved to the highest possible shape factor. (Shape factors greater than
1.0 would imply negative vertical forces at midstep.) At 2.0 m/s (C) run-
ning has become the more economical gait, by a small margin; the global
minimum is at a duty factor of 0.25 and a shape factor 0.1. This is approxi-
mately the speed at which subjects on treadmills change from walking to
running. The position of the minimum changes only slightly with further
increase of speed (D).

The model predicts that to minimize cost of transport, shape factor
should be increased with increasing speed until, at about 2.0 m/s, it
should be abruptly reduced. Also, duty factor should be reduced from high
values below 2.0 m/s to low values at higher speeds. These predictions
are in good qualitative agreement with the observed changes (Fig. 1.5).
However, at each speed, the predicted duty factor is too low and the pre-
dicted shape factor too high.
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Fig. 7.13. Calculated metabolic energy costs for different gaits for a model of
human walking and running. Each graph refers to a different speed: (A) 0.4 m/s;
(B) 1.2 m/s; (C) 2.0 m/s and (D) 3.2 m/s. At each speed, duty factor (horizontal
axis) and shape factor (vertical axis) were varied, and stride length was given a
constant value, realistic for the speed. Metabolic cost of transport was calculated,
and is represented by contours. It is expressed as joules per meter traveled, per
newton of body weight. From Minetti and Alexander (1997).

In Fig. 7.13, stride length was given a constant value at each speed,
approximately equal to the stride lengths that people are observed to use.
In further calculations, we varied stride length and found that these stride
lengths were very close to the optima predicted by the model. The opti-
mum values of duty factor and shape factor predicted by the graphs are
only slightly different from those found when stride length was also varied.

This model helps us to understand why people modify their gait as they
do as they change speed. However, it is in some respects unsatisfactory. I
am not troubled by the imperfect quantitative agreement of its predictions
with observed gaits; it would not be reasonable to expect so simple a
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model to give perfect agreement. I am more concerned by the problem
referred to in Section 3.6, that the physiological data on which Fig. 3.5 is
based came from experiments in which muscles made single contractions
at constant speed, and may not predict energy costs well for the repetitive
movements of walking and running. Also, the model’s leg ends at a point
instead of a foot with a long sole like human feet. The human heel makes
the initial impact with the ground in walking and (for most people) in
running (Cavanagh and Lafortune 1980). The center of pressure travels
forward along the sole of the foot, reaching the metatarsophalangeal joints
(at the bases of the toes) by the time the foot leaves the ground. Through-
out the step, the ground force remains in line with the hip joint in the
model and (more or less) in real people. However, because the center of
pressure moves along the sole of the foot, the range of angles traversed by
the force in the course of a human step is much smaller than the range of
angles traversed by the leg. The leg had to be made unrealistically long in
the model to get the range of angles of the force right. This awkwardness
could have been avoided by making the model more complex, but there
are great advantages in keeping models simple, as explained at the end of
Chapter 6.

7.8. SOFT GROUND, HILLS, AND LOADS

All our discussion of energy costs so far have assumed firm, smooth, level
ground, but much of the ground on which animals travel is soft, uneven,
and hilly.

The metabolic cost of transport is higher on soft than on firm ground.
For example, Zamparo et al. (1992) found that the cost of human walking
on soft sand was up to 2.5 times as high as on concrete, and Pandolf et al.
(1976) found that walking in deep snow was up to five times as costly as
on a treadmill. Different species may be affected to different extents by
soft or uneven ground. For example, moving off a road onto tundra had
less effect on the cost of transport for reindeer than for humans (White
and Yousef 1978). The increased cost of transport on soft ground is pre-
sumably largely due to work done against the viscosity of the ground when
the foot sinks in.

The shortest route between two points is a straight line, but it may be
possible to save energy and/or time by making diversions round patches
of soft or uneven ground. Alexander (2000a) illustrated this by consider-
ing the simple case of a route interrupted by a triangle of soft ground.
Figure 7.14 shows the routes for which the energy cost is least from A1

to F1, from A2 to F2, and so on. In this example, the cost of transport is



W A L K I N G , R U N N I N G , A N D H O P P I N G 137

Fig. 7.14. Examples of optimal routes past a triangular patch of soft ground, on
which the cost of transport is 1.5 times as high as elsewhere. From Alexander
(2000a).

1.5 times as high in the triangle of soft ground as elsewhere. I showed
that to minimize energy costs, a walker should be prepared to diverge
from the direct route by up to 18°. However, there would be no point in
diverging so much in a journey from A4 to F4, because a smaller angular
diversion is enough to avoid the soft ground altogether. If the angle at the
apex of the triangle were larger, or if the soft ground were more costly to
walk on, the maximum worthwhile angle of divergence would be greater
than 18°.

An animal walking or running uphill does work against gravity. Accord-
ingly, the metabolic cost of transport is higher than on level ground. This
has been shown by measurements of oxygen consumption on sloping
treadmills, both for vertebrates and for insects (Taylor et al., 1972; Full
and Tullis 1990; Eaton et al., 1995b). The net efficiency of climbing is
the work done against gravity divided by the additional metabolic energy
consumption, over and above what would have been used at the same
speed on level ground. The efficiency is high on shallow gradients, presum-
ably because some of the work required for climbing is made available by
reducing the negative work done in the first half of the step (Pugh 1971).
We saw in Section 7.6 that the metabolic cost of level walking by humans
is consistent with positive work being done with an efficiency of 0.25. The
efficiency of walking up steep slopes is about the same (Margaria 1976).
Smaller animals seem to do the work of climbing more efficiently than
they do the work of level walking (Taylor et al., 1972). For example, cock-
roaches (Periplaneta) do the work of level walking with an efficiency of
0.012 (Full and Tu 1991), but climb vertical walls with an efficiency of
0.034 (Full and Tullis 1990). Consequently, the additional cost of run-
ning uphill is a smaller percentage of the cost on level ground for smaller
animals on the same gradient.

Wickler et al. (2000) found that horses preferred to trot more slowly
on an uphill gradient than on level ground. They measured the oxygen
consumption of horses trotting on a treadmill, both with it level and with
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it sloping at a 10% uphill gradient. They found that the preferred speed
was the speed at which the metabolic cost of transport was least, on the
slope as well as on the level.

Because the net efficiency of climbing is higher on shallow gradients, it
is more economical of energy to take a zigzag path up a steep hill than to
walk straight up the slope. Minetti (1995) calculated that for humans, the
direct route is the more economical on gradients up to 0.25. On steeper
slopes the optimum path is a zigzag, with each straight section rising with
a gradient of 0.25. Minetti examined contour maps showing footpaths in
the Alps and Himalayas, and concluded that the paths conformed reason-
ably well to these predictions.

The metabolic energy cost of walking and running is less on downhill
slopes than on level ground (Margaria 1976). However, it is greater on
very steep downhill slopes than on shallower ones. On a shallow slope,
the gravitational potential energy that is lost by descending can be used
to do some of the positive work that would otherwise have to be done by
muscles; but on a steep slope the muscles have to do additional negative
work (Pugh 1971).

The energy cost of walking equal distances up a slope and then down a
slope of the same gradient is always greater than the cost of walking the
same total distance on level ground. For example, for humans on a gradi-
ent of 0.2, it is 2.5 times the cost of walking on the flat. Consequently,
energy can be saved by taking a longer path round the shoulder of a hill,
in preference to a shorter path that involves climbing to a greater height.
Alexander (2000a) presented a simple model that predicted optimal paths
around the shoulders of pyramidal hills. Old footpaths through mountain
country seem generally neither to take the shortest route nor to follow
the contours, but to compromise between them, as the model predicts.

Carrying a load generally increases the metabolic energy cost of locomo-
tion. The simple models presented in Chapter 6 suggest that a load of x%
of body mass should increase it by x%. This is approximately the case for
soldiers carrying loads in backpacks but not for African women carrying
loads on their heads (Maloiy et al., 1986). Thin African women carry loads
up to 20% of body mass without energy cost, but fat women are less eco-
nomical; the mass of body fat seems to count as part of the free 20% (Jones
et al., 1987). Heglund et al. (1995) found that the work required for
walking with modest head loads was no more than for unloaded walking,
because changes of gravitational potential energy were more precisely
matched to kinetic energy changes. The question of why they are more
precisely matched remains unanswered. Measurements on mammals and
ants carrying loads have generally shown that a load of x% of body mass
increases the metabolic cost of walking by about x%. However, in experi-
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ments by Kram (1996), rhinoceros beetles (Xylorctes) with attached loads
of up to 30 times body mass increased their metabolic rates by much
smaller factors.

7.9. STABILITY

In this section, we shift our focus from energy costs to stability. A body is
in equilibrium if the forces on it are balanced, in which case it is either
stationary or moving with constant velocity and angular velocity. The
equilibrium is stable if the body returns automatically to its initial condi-
tion after any small displacement. For example, a cone resting on its base
is stable, but a cone balanced on its point is not.

For a standing animal to be stable, a vertical line through its center of
mass must pass through the polygon of which the corners are its feet. For
example, if three feet are on the ground, the center of mass must be over
the triangle of support that they define. If the feet are small, stability re-
quires at least three to be on the ground, but bipeds such as ourselves can
be stable standing on two feet or even on one because each foot contacts
the ground over a substantial area.

A small displacement will not topple a stable standing animal, but if the
displacement is large enough to move the vertical through the center of
mass out of the polygon of support, the animal will fall over. The larger
the polygon of support, the larger the displacements that can be tolerated.
The sprawling stances of reptiles, insects, spiders, and crustaceans, with
the feet far out on either side of the body, give them high margins of
stability. Alexander (1971) pointed out that wind or water currents tend
to overturn animals standing on dry ground or in water. For geometrically
similar animals of different sizes, these overturning forces are proportional
to the surface area of the body, and so to length squared. However, body
weight, which tends to prevent overturning, is proportional to length
cubed. Thus, small animals are in more danger of being blown over than
large ones. The sprawling stance of insects and spiders, with the legs well
spread and the center of mass low, helps to stabilize them against wind
loads. A water current exerts much larger forces on an animal than a wind
of the same speed, which may explain why underwater walkers such as
crabs spread their legs much more widely than terrestrial walkers of similar
mass, such as mice. Martinez (2001) showed that crabs (Grapsus) walk
under water with their legs more widely spread than on dry land, and that
this reduces the danger of being overturned by water currents.

A statically stable gait is one in which the body is in stable equilibrium
at all stages of the stride. A six-legged animal that moves its legs three at
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a time, as cockroaches do (Section 7.2), can maintain static stability. Ting
et al. (1994) found that cockroach gaits are statically stable, except at
the highest speeds. By moving legs 1 and 3 of one side with leg 2 of the
other, cockroaches ensure that the center of mass is always over a triangle
of support.

Statically stable gaits are possible also for four-legged animals, but in
this case the legs must be moved one at a time, so that there are always
three feet on the ground. In addition, the feet must be moved in an order
that keeps the center of mass over the triangle of support. To have three
feet on the ground at all times, a quadruped must walk with duty factors
of at least 0.75. McGhee and Frank (1968) showed that for duty factors
in the range 0.75 to 0.83, only one sequence of leg movements allows
static stability. It is left fore, right hind, right fore, left hind, the sequence
that mammals use when they walk (Section 7.2). However, quadrupeds
seldom or never walk in statically stable fashion. Duty factors of 0.75 or
more are used by turtles (Jayes and Alexander 1980), but very seldom by
mammals (Hildebrand 1976). Even turtle walking is not statically stable
because turtles have more than one foot off the ground at some stages of
the stride.

For an animal walking or running at a steady speed, the forces on its
body, averaged over a stride, must be balanced. However, there is no need
for the animal to be in equilibrium throughout the stride. A galloping
dog is obviously not in equilibrium at the stage of the stride at which all
four feet are off the ground. The extent to which departures from equilib-
rium can be tolerated depends on the stride frequency and on the length
of the legs (Alexander 1981). Consider an animal walking with stride fre-
quency f, so that the duration of each stride is 1/f. If the animal fell freely
for this time with the gravitational acceleration g, it would fall a distance
g/2f 2. If the length of its legs is h, the distance it can fall without hitting
the ground is a little less than h. Thus, the dimensionless parameter
g/2f 2h can be used as a measure of the need for an animal to preserve
equilibrium as it walks. It is 1 or less for a dog galloping, 5 for a dog
walking very slowly, and about 200 for turtles such as Geoemyda walking
at their normal, very slow speeds. Therefore, to walk effectively, turtles
must keep themselves much closer to equilibrium than dogs.

Jayes and Alexander (1980) asked why, in that case, turtles do not use
statically stable gaits? We pointed out that a quadruped performing a stati-
cally stable walk with a duty factor of 0.75 would have to exert forces on
the ground as shown in Fig.7.15A. Notice that large, instantaneous
changes of force are required whenever a foot is lifted or set down. The
very slow muscles of turtles are incapable of abrupt changes of force, but
their slowness enables them to maintain tension at low metabolic cost
(Equations 2.10). If equilibrium is not maintained throughout the stride,
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Fig. 7.15. Graphs of vertical force on the feet, against time, for three quadrupedal
gaits. The duty factors of the feet are all 0.75. (A) The pattern required to maintain
equilibrium throughout the stride; (B) The pattern that minimizes unwanted dis-
placements if the force on each foot rises and falls like a half-cycle of a cosine
curve (q ′ = 0 in Equation 7.3); and (C) The pattern that minimizes unwanted
displacements if the forces rise and fall as described by Equation 7.3. From Alexan-
der (1982).

unwanted displacements will occur: the animal will rise and fall, pitch and
roll, as it walks.

Very slow muscles might be capable only of exerting forces that rose
and fell like a half-cycle of a cosine curve, as in Fig. 7.9(iii). We showed by
mathematical modeling that if this were the case, the gait that minimized
unwanted displacements would be the one shown in Fig.7.15B, in which
diagonally opposite feet move simultaneously. We went on to consider the
possibility that if the muscles were a little faster, a foot that was on the
ground from time −τ/2 to time +τ/2 might be able to exert vertical forces
Fy according to

Fy = A [cos 1 πt
τ 2 + q′ sin 1 2πt

τ 2 ] (7.3)

where A is a constant and t is time. In this equation q ′ is a shape factor,
like q in Equation 7.1; but whereas the effect of q was to make a graph of
force against time bell-shaped or two-humped, the effect of q ′ is to make
it asymmetrical. We showed that if all values of q ′ were possible, the gait
that minimized unwanted displacements was the one shown in Fig. 7.15C.
The forces rise and fall slightly asymmetrically, and there are times
when only two feet are on the ground. The gaits and force patterns that
turtles actually use are closely similar to Fig. 7.15C. It seems that turtle
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gaits are adapted to minimize unwanted displacements for an animal with
very slow muscles.

We have been discussing static stability, and turn now to dynamic stabil-
ity. In statically stable gaits, the animal is in equilibrium at all times. A
gait that is not statically stable may nevertheless be dynamically stable in
the sense that after a small disturbance the animal returns automatically
to its original pattern of movement. Dynamic stability can be conferred
by reflexes that stimulate the muscles to take appropriate correcting action
after a disturbance, and until recently it was assumed that stability in
walking depended entirely on reflex control. However, dynamic stability
can also arise passively, due to the inherent mechanical properties of
the system.

McGeer (1990a, 1993) investigated the stability of the walking biped
shown in Fig. 6.5C. This is a mathematical model based on a traditional
wooden toy that will walk down a downhill slope. The toy rocks from
side to side as it walks, but the motion of this model is confined to two
dimensions. McGeer studied its behavior as it walked downhill by mathe-
matical analysis and by computer simulation. He also performed experi-
ments with a physical model, a nonrocking version of the toy. He showed
that once it had been set moving, its motion was dynamically stable. This
suggests that the control of bipedal walking may be a much simpler prob-
lem than physiologists had previously thought. Kuo (1999) extended the
analysis to a three-dimensional model that could rock from side to side.
He showed that it was unstable in roll, implying that a walker would need
reflex control to prevent it from falling over sideways.

Kubow and Full (1999) investigated the dynamic stability of a walking
insect. They used a two-dimensional computer model, but whereas
McGeer’s (1990a) model of bipedal walking considered only the two di-
mensions of a vertical plane, they considered only movements in a hori-
zontal plane. They set the model walking, using a realistic duty factor (0.6)
and stride frequency (10 Hz). They made it move its legs in two groups
of three, each group consisting of the fore and hind legs of one side and
the middle leg of the other. They specified the position, relative to the
body, at which each leg would be set down, and the magnitude and direc-
tion (relative to the body) of the forces it would exert while on the ground.
They set the computer running and saw what happened, sometimes delib-
erately disturbing the gait. They found that if they altered the model’s
forward speed, it gradually returned, over many strides, to the speed at
which it had previously been running steadily. It also recovered (in fewer
strides) if it was given a transverse component of velocity, or an angular
velocity. In these respects, the model was dynamically stable.

Figure 7.16 explains, as an example, the mechanism of stability against
perturbations of angular velocity. In (A), a foot is exerting a force (indi-
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Fig. 7.16. A diagram illustrating the mechanism by which a running cockroach
recovers from a perturbation that affects its angular velocity. The animal’s body,
seen in plan view, is shown as a rectangle. Further explanation is given in the text.
From Kubow and Full (1999).

cated by the arrow) that is in line with the animal’s center of mass, and
so has no tendency to cause any rotation. In (B), after a sudden anti-
clockwise rotation, the foot is still at the same position on the ground,
and the direction of the force relative to the body is unchanged, but the
force now exerts a moment about the center of mass, tending to reverse
the rotation.

7.10. MANEUVERABILITY

In this final section of this chapter we consider acceleration and the ability
to turn at speed. The ability to decelerate rapidly in an emergency may be
important to running animals, as well as the ability to accelerate, but I
know no investigations of it.

Human sprinters leave the starting blocks with an acceleration of about
10 m/s2 (Ballreich and Kuhlow 1986). Elliott et al. (1977) analyzed films
of lions hunting prey (Fig. 1.1) and found that the mean initial accelera-
tion was 9.5 m/s2 for the lions and only 4.5–5.6 m/s2 for the prey. The
difference does not necessarily reflect a difference in athleticism; the prey
may not have been fully prepared to run when the lions started.

The gravitational acceleration is about 10 m/s2. That means that a for-
ward acceleration of 10 m/s2 requires a horizontal component of force
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equal to body weight, which is possible only if the coefficient of friction
of the foot with the ground is at least 1.0. Nigg (1986) reports coefficients
of friction of sport shoes with various surfaces, ranging from about 0.3
for a surface covered with loose granules to about 1.5 for artificial grass. I
know no measurements of coefficients of friction of animal feet on natural
ground surfaces. Acceleration on slippery surfaces seems to be limited by
the coefficient of friction, but on others it may be limited by the ability of
animals to develop the required force.

An animal running at speed v along a circular arc of radius r has a trans-
verse acceleration v 2/r (Section 1.3). This requires a transverse force on
the ground. Photographs of horses cornering sharply at speed in barrel
races show them leaning over at angles of about 45° to the vertical. This
indicates that the transverse component of force is about equal to the
animal’s weight, and that the coefficient of friction with the ground is 1.0
or more.

Greene (1985) measured the maximum speeds at which human athletes
could run in circles of different radii. As expected, he found that maximum
speeds were lower when the radius was smaller. Greene suggested that
cornering speed on any radius might be limited by the ability of the body
to generate the required forces. He presented a mathematical theory based
on the plausible but uncertain assumptions that step length and stride
duration were independent of the radius of the curve. He compared the
observed relationship between speed and radius, with the relationship pre-
dicted by the theory, and found good agreement for large radii, but not
for smaller ones. It seems possible that cornering speed on curves of
smaller radius may be limited by the coefficient of friction of the feet with
the ground (Alexander 1982).

When running around obstacles, the shortest and most direct route is
not necessarily the fastest. It may be faster to take a slightly longer route
with larger radii of curvature. Alexander (in press) used a very simple
mathematical model to illustrate this point.

This long chapter has reviewed walking and running by tetrapods and
arthropods. I have shown how they use different gaits at different speeds,
and have argued that gaits are generally adapted to minimize energy costs.
I have discussed both the mechanical work required for running and the
metabolic energy cost, and have shown how tendon springs save energy.
We have considered the stability and maneuverability of legged animals. I
would like to finish by pointing to several topics that seem to me to be
priorities for research. First, for reasons that I explained in Section 7.6, I
am not satisfied with the attempts that have been made to explain why
the muscles of small runners seem to work less efficiently than those of
large ones. Secondly, Minetti and Alexander’s (1997) theory of bipedal
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gaits needs refining; we need better means of predicting the metabolic
costs of muscle activity, and a more satisfactory way of taking account of
the movement of the center of pressure along the sole of the foot. Thirdly,
I would like to see an equivalent theory for the trot/gallop transition.
Finally, we still know very little about the maneuverability of running
animals and the factors on which it depends.



Chapter Eight...............................................................
Climbing and Jumping

I T SEEMS convenient to discuss jumping and climbing in the same
chapter, because some animals jump to travel in and between trees.
Lemurs and other prosimian primates leap between branches; mon-

keys and squirrels jump to cross gaps between trees; and gibbons swing
from branch to branch. Many other jumping animals do not climb. Frogs
jump to travel over the ground, locusts jump to get clear of the ground at
the start of a flight, fleas jump to get onto a host, and all these animals
jump to escape from danger. There are also many climbing animals that
do not jump, for example, geckos that run up and down the trunks of
trees and aphids that walk on the stems and leaves of plants, adhering (by
different mechanisms) even to smooth surfaces. All these styles of locomo-
tion are discussed in this chapter.

8.1. STANDING JUMPS

This section is about jumps in which the animal is initially stationary, not
running as in a human long jump. We have already calculated the mechani-
cal cost of transport for an animal that travels like a frog, by a series of
standing jumps (Section 6.4). In that discussion we used the symbol v for
the horizontal component of the velocity. Here we use the same symbol
for the resultant velocity.

Consider an animal of mass m that takes off for a jump with velocity v,
at an angle α to the horizontal, on level ground. At this stage we will
ignore both air resistance and the mass of the legs. The work W that the
animal’s muscles must do equals the kinetic energy given to the body:

W =
mv 2

2
(8.1)

The vertical component of the velocity is v sin α and the horizontal com-
ponent is v cos α. We can think of the kinetic energy as the sum of two
parts: one, m (v sin α)2/2, associated with the vertical component of ve-
locity, and the other, m (v cos α)2/2, associated with the horizontal com-
ponent. As the animal rises to the highest point in its jump, the vertical
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component of velocity falls to zero, and the associated kinetic energy is
converted to gravitational potential energy. The height h of the jump is
given by

m (v sin α)2

2
= mgh (8.2)

h =
(v sin α)2

2g

where g is the gravitational acceleration. For a given takeoff velocity, the
height will be greatest (equal to v2/2g) if the angle α is 90°. From this
and Equation 8.1, the greatest height that can be jumped by doing work
W is W/mg.

The time t that the animal takes to fall from the highest point of the
jump to the ground can be calculated from

h =
gt 2

2

From this and Equation 8.2

t =
v sin α

g
(8.3)

The animal is off the ground for time 2t (time to rise plus time to fall).
The length λ of the jump is the distance it travels in this time, moving
with its horizontal component of velocity v cos α:

λ = 2 1 v sin α
g 2 v cos α =

v 2 sin 2α
g

(8.4)

This distance is greatest (equal to v 2/g) if the angle α is 45°. From this
and Equation 8.1, the greatest distance that can be jumped by doing work
W is 2W/mg. Notice that both the height of a vertical jump and the length
of a jump at 45° are proportional to work per unit body mass.

The most remarkable standing jump ever recorded seems be the one
made by a bushbaby (Galago senegalensis) that jumped from the floor to
the top of a 2.26-m door (Hall-Craggs 1965). In the calculations above,
the height h is the height by which the animal’s center of mass rises in the
jump. This was probably less than 2.26 m for the bushbaby, because it
started with its center of mass a little above the ground, and may have
used its forepaws to pull itself up the last few centimeters. I will estimate
h = 2 m. Muscle makes up 36% of the body mass of a bushbaby (Grand
1977). If all of this muscle contributed to the work of the jump, its
work output would be 54 J/kg muscle. This is comfortably less than the
70 J/kg that vertebrate striated muscle can be expected to do in a single
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slow contraction (Section 2.1). However, the contraction has to be per-
formed fast, as we shall see.

Frogs are much less remarkable jumpers, but more research has been
done relating their jumping ability to the properties of their muscles. A
small tree frog (Osteopilus) studied by Peplowski and Marsh (1997) made
standing long jumps of up to 1.44 meters. The hind limb muscles that
power the jump amount to 14% of body mass. Hence, the work require-
ment can be estimated as 50 J/kg muscle. Lutz and Rome (1994) studied
one of the principal leg extensor muscles in a different species of frog.
They showed that it shortened during takeoff by 24% of its length, and
that the isometric stress that it could exert, averaged over the working
range of lengths, was about 210 kN/m2. Hence, the work it could do in
a slow contraction over this range was 0.24 × 210,000 J/m3, or about 50
J/kg. This is the same as the work requirement of the tree frog, but it
should be remembered that the tree frog was a different species, which
jumped further.

Bushbabies, frogs, and many other animals power their jumps by rapidly
extending their legs. We will work out how fast the extension has to be.
The distance over which the animal accelerates to its takeoff speed is lim-
ited by the length of the legs; let it be s. The animal accelerates from rest
to velocity v, so its mean speed over this distance (assuming constant accel-
eration) is v/2 and the time available for the legs to extend is 2s/v. The
height h attained in a vertical jump is v 2/2g, and the distance λ covered
in a jump at 45° is v 2/g. Hence, the time t acc in which the animal must
accelerate to takeoff speed is

tacc = s ! 2
gh

for a high jump (8.5)

tacc =
2s

! gλ
for a long jump (8.6)

The bushbaby that jumped to a height of 2 m accelerated over a distance
of 0.16 m (Hall-Craggs 1965), so the acceleration time calculated from
Equation 8.5 was 0.05 s. The actual acceleration time was probably a little
longer, because the acceleration was not constant. Aerts (1998) recorded
an acceleration time of 0.10 s for a bushbaby making a less high jump
from a force plate. The frog that jumped a distance of 1.4 m (Peplowski
and Marsh 1997) accelerated over a distance of 0.11 m, so Equation 8.6
gives an acceleration time of 0.06 s.

Smaller jumping animals have smaller acceleration distances, and so
have to extend their legs in even shorter times to reach the same takeoff
speed. The rabbit flea Spilopsyllus, which is about 1.5 mm long, accelerates
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to its takeoff velocity of about 1 m/s over a distance of 0.5 mm (Bennet-
Clark and Lucey 1967). This implies an acceleration time of about 1 ms.
Some small insects make wing beats in times as short as this, exploiting
the oscillatory properties of fibrillar flight muscle (Section 2.6), but no
known muscle can complete an isolated contraction in so short a time.

Bennet-Clark and Lucey (1967) argued that fleas and other jumping
insects must use catapult mechanisms. Their muscles contract slowly, stor-
ing up elastic strain energy in elastic structures while the legs remain
locked in a strongly flexed position. Then the leg is unlocked, allowing
rapid elastic recoil. Thus, the rate at which the leg extends is not limited
by the properties of its muscles. Bennet-Clark and Lucey (1967) showed
that the catapults in fleas were blocks of resilin, a rubberlike protein, at
the bases of the hind legs. They confirmed that these blocks were large
enough to store the energy of the jump, and described the locking and
unlocking mechanism. Bennet-Clark (1975) described the quite different
catapult mechanism used by locusts, in which the springs are the apo-
demes of the knee extensor muscles, and cuticular structures at the knee
joint. He measured the elastic properties of these structures and the force
that the knee extensor muscles can exert on them, and confirmed that they
are capable of storing the energy of the jump. Catapults have also been
described in flea beetles, which jump by extending their hind legs (Brack-
enbury and Wang 1995), and in click beetles, which jump by a jackknife
action of the back (Evans, 1972).

Aerts (1998) argued that the jumping ability of bushbabies must de-
pend on catapultlike mechanisms, and Peplowski and Marsh (1997) ar-
gued the same for frogs. I will focus on the frogs because the argument
for them is based on measurements of the physiological properties of their
leg muscles. In the 1.44-m jump described above, the muscles apparently
contacted in 0.06 s, doing work amounting to 50 J/kg. This implies a
power output of 50/0.06 ≈ 800 W/kg muscle. Physiological measure-
ments were made on the sartorius muscle, which was assumed to be typical
of the leg muscles. Like other muscles (Fig. 2.3C) it gave maximum power
output at a moderate rate of shortening. This maximum power output,
measured at the temperature at which the animal jumped, was only 240
W/kg, less than one-third of the power required for the jump. It seems
clear that an elastic mechanism must be involved. There is no apparent
mechanism for locking the joints of the leg while the muscles build up
tension and store elastic strain energy in the springs, as in fleas and locusts.
However, it will become apparent in the next section that the enhance-
ment of jumping ability that can be obtained by elastic recoil does not
depend on the existence of a lockable catapult. The elastic structures that
seem most likely to be important are the tendons of the leg muscles.
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Fig. 8.1. Models used in computer simulations of standing jumps. These models
jump vertically, by extending their legs. (A) the original model with two segments
in each leg, and (B) a version with three segments. From Alexander (1995b).

8.2. LEG DESIGN AND JUMPING TECHNIQUE

Alexander (1995b) tried to establish design principles for jumping animals
by analyzing the behavior of the simple mathematical model shown in Fig.
8.1A. This model is designed to be so general as to be applicable to jumpers
as different in size and structure as fleas and humans. It consists of five
rigid segments: a trunk, two thighs, and two lower legs, all of which have
appropriate masses. It jumps vertically, powered by extensor muscles of
the knee joints. The forces that these muscles can exert depend on the rate
at which they are contracting, as illustrated in Fig. 2.3A. Their tendons
have linear elastic properties.

Figure 8.2 shows simulations of three styles of jump. Part A represents
a squat jump, which is a jump that starts with the knees maximally bent
and the muscles inactive. At zero time the muscles are activated and start
to build up force. Initially the force is low because the muscles are shorten-
ing quite rapidly, stretching their tendons. Soon it is large enough to over-
come the weight of the body and start extending the knees. Thereafter,
the knee angle rises at a progressively increasing rate. The force in the
muscles increases but never reaches the isometric force (1.0 on the muscle
force scale) because they continue to shorten. As knee extension contin-
ues, the rate at which the muscles have to shorten to keep the feet on the



Fig. 8.2. Examples of simulated jumps by the model shown in Fig. 8.1A: (A) squat
jump; (B) catapult jump; and (C) countermovement jump. The force exerted on
the ground (expressed as a multiple of body weight), the force exerted by the knee
extensor muscles (as a fraction of the isometric force) and the angle of the knee
(2θ, Fig. 8.1A) are plotted against a dimensionless time parameter t! g/s , where
t is time since the muscles were activated, s is leg segment length (Fig. 8.1A), and
g is the gravitational acceleration. From Alexander (1995b).
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ground increases, the force exerted by the muscles falls again, and the
stretched tendons start to recoil elastically. Their recoil enables the muscles
to extend the knees faster than they could do if the tendons were inextensi-
ble. Eventually, the muscles are no longer able to exert enough force to
maintain the angular acceleration of the leg segments, which is needed to
maintain contact with the ground. The feet leave the ground, and the
animal continues to rise. The height of the jump is calculated.

Figure 8.2B represents a catapult jump, such as the jumps of fleas and
locusts. The knees are locked at the same initial angle as in A. While they
are locked, the muscles contract, stretching their tendons and storing elas-
tic strain energy in them. Because this contraction can be completed
slowly, the muscles develop their isometric force. At this stage the knees
are unlocked and start extending. The muscles shorten at an increasing
rate, so muscle force falls and the tendons recoil elastically. The jump is
higher than a squat jump by the same animal, because the muscles exert
larger peak forces and so store more energy in the stretched tendons.

Figure 8.2C represents a third style of jump. The jumper starts with the
knees straight and makes a countermovement, bending them immediately
before extending them. Human athletes start standing jumps with a
countermovement, and tests with male volleyball players showed that this
enabled them to jump 60 mm higher than in squat jumps (Komi and
Bosco 1978). The simulation starts with the knees almost straight and the
muscles inactive. The body falls, and the muscles are not activated until
the appropriate moment to ensure that the fall is halted and the body
starts to rise when the knee angle is 60° (which was the initial angle in the
other simulations). During the fall, the force in the muscles may rise above
their isometric force (active muscles exert greater than isometric forces
when being stretched [Fig. 2.3A]). Muscle force may still be greater than
isometric for a short while after the knees start to extend, because although
the total length of muscle plus tendon is by then falling, the muscle may
still be being stretched while the tendon starts its elastic recoil. Thus, knee
extension starts with large muscle forces and a large store of elastic strain
energy.

This may not be the full explanation of the advantage of countermove-
ment jumping. Bobbert et al. (1996) pointed out that the countermove-
ment allows time for the muscle to become fully activated before knee
extension starts. The model did not show this advantage, because the mus-
cle was assumed to be activated instantaneously. Another effect that may
contribute to the advantage of countermovement jumping, which was ig-
nored in the model, is stretch activation; the force that a muscle can exert
remains elevated for a short time after a stretch (Edman et al., 1978).

The cross-sectional areas of muscles of geometrically similar animals
would be proportional to (body mass)2/3. Consequently, small animals can
exert forces that are larger multiples of body weight than similar large
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animals can. For example, peak ground forces in standing jumps are gener-
ally 2–3 times body weight for jumping humans, up to 15 times body
weight for bushbabies (Aerts 1998) and up to 135 times body weight for
fleas (Bennet-Clark and Lucey 1967). Alexander (1995b) ran simulations
for animals of three sizes, roughly corresponding to a human, a bushbaby,
and a jumping insect. I found that for the human-sized model, catapult
jumps and countermovement jumps were about equally high, and both
were higher than squat jumps. For the bushbaby-sized model, catapult
jumping was best, followed by countermovement jumping and then squat
jumping. For the insect-sized model, countermovement jumping was little
better than squat jumping, and catapult jumping was very much better.
Humans and bushbabies lack the knee-lock mechanism that would be
needed for catapult jumping, and use countermovements. Jumping insects
do have catapult mechanisms, as we have seen.

In further calculations with the model, I varied the unloaded shorten-
ing speeds (vmax) of the muscles and the elastic compliance of the tendons.
When the compliance was zero, the three jumping techniques gave jumps
of equal height. Jump height increased with increasing muscle speed and
tendon compliance for all three techniques. In further simulations, I kept
the mass and properties of the muscles constant, while varying other quan-
tities. I showed that increasing leg mass reduces the height of the jump,
especially if the additional mass is located in the distal segment. We saw
in Section 6.4 that heavy feet increase the work required for a jump of
given length. Increasing leg length without changing leg mass increased
the height of the jump, but the effect was small for catapult jumps if tendon
compliance was high. Increasing the number of joints in the legs without
altering their mass or overall length (Fig. 8.1B), and without changing
the total mass of muscle increased the height of the jump.

The legs of many jumping animals are adapted in the ways that these
simulations suggest. Jumping vertebrates such as bushbabies and frogs
generally have longer legs than related animals of similar mass (Emerson
1985). Locusts have notably long hind legs but flea beetles (Phyllotreta),
which also jump well by a catapult mechanism, do not. The elongated
tarsal bones of bushbabies and frogs effectively add an additional segment
to the legs. The movable iliosacral joints of frogs add both to the effective
length of the legs and to the number of joints.

8.3. SIZE AND JUMPING

If jumping animals of different sizes were geometrically similar to each
other, they would have muscle masses proportional to (body mass)1.00 and
leg lengths proportional to (body mass)0.33. Frogs of a wide range of sizes
deviate only a little from these proportionalities. Muscle mass has been
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found to be proportional (in different investigations) to (body mass)1.03,
(body mass)1.08, and (body mass)1.12; thigh length to (body mass)0.29; and
lower leg length to (body mass)0.31 (Marsh 1994). Juvenile locusts are less
close to geometric similarity, with leg lengths proportional to (body
mass)0.38 (Katz and Gosline 1993). Because the work that muscles can do
in a single contraction is proportional to their mass, animals with equal
proportions of jumping muscle in their bodies can be expected to take off
at equal speeds and jump equal heights or distances (Hill 1950). Katz and
Gosline (1993) found that takeoff speeds of locusts of different sizes were
proportional to (body mass)0.05, close to Hill’s prediction. Similarly, Wil-
son et al. (2000) found that takeoff speeds and jump distances of marsh
frogs (Limnodynastes) were independent of body mass. However, Marsh
(1994) reported that jump lengths for frogs of different species were pro-
portional to (body mass)0.20.

The larger the leg muscles, the higher and further an animal can jump.
On the other hand, muscles use metabolic energy even when inactive. The
optimum size for leg muscles may depend on the balance between the
benefit of stronger jumping and the metabolic cost of larger muscles. Alex-
ander (2000b) presented a mathematical argument along these lines that
predicted that locusts of different sizes should be geometrically similar,
with equal proportions of leg muscle, and should be able to jump equal
distances. The discussion of locusts was simple, because the jump seems
to be powered entirely by elastic recoil of the catapult mechanism, but a
discussion of frogs had to take account of the shortening speed (vmax) of
the muscles, and so was more complex. It predicted that bigger frogs
should have relatively larger leg muscles and jump further, which is consis-
tent with Marsh’s (1994) data but not with the results of Wilson et al.
(2000).

Bennet-Clark (1977) and Bennet-Clark and Alder (1979) pointed out
that air resistance would have a large effect on the jumping performance
of small animals that took off at high speeds. Consider an animal of mass
m and frontal area A (Fig. 3.2C) rising through the air in a vertical jump
at velocity v. It is decelerated by drag as well as by gravity. The drag is
#ρairAv 2CD, where ρair is the density of the air and CD is the drag coeffi-
cient based on frontal area (Equation 3.8):

dv
dt

= −g − ρairAv2CD

2m
(8.7)

where g is the gravitational acceleration. The height of a vertical jump with
takeoff velocity vtakeoff can be calculated by solving Equation 8.7:

h = Q loge 1vtake off
2

2gQ
+ 1 2 , where Q =

m
ρairACD

(8.8)
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Table 8.1.
Jump heights for different takeoff speeds calculated for a spherical animal in a
vacuum and (for two different sizes of sphere) in air at 1 atm. pressure

Takeoff speed, Height of jump in Height of jump in air, m
m/s a vacuum, m Radius 100 mm Radius 1 mm

1 0.051 0.050 0.048
3 0.45 0.45 0.33
6 1.84 1.77 0.80

For simplicity, imagine the animal as a sphere of diameter d and density
ρbody. Its mass is πρbodyd 3/6 and its frontal area is πd 2/4. Table 8.1 shows
jump heights calculated for an animal of 100-mm diameter (mass 0.5 kg,
a little heavier than a bushbaby) and for one of 1-mm diameter (mass 0.5
mg, in the size range of fleas). In a vacuum, with the same takeoff speed
they would jump to the same height. In air they would both jump less
high, but the flea-sized animal would be affected much more than the
bushbaby-sized one, especially at high takeoff speeds.

It can be estimated from data in Bennet-Clark and Lucey (1967) that
the combined mass of the muscles that power the flea’s jump is about 3%
of body mass, much less than the 36% in bushbabies. A flea with as large
a proportion of muscle in its body as a bushbaby might be able to take off
with as high a velocity as the bushbaby. However, it would jump much
less high than a bushbaby. If jumping muscle mass is a compromise be-
tween the benefits of a high jump and the metabolic costs of big muscles,
the benefit of the bigger muscles might not be matched by the cost. It may
not be worthwhile for small insects to evolve large jumping muscles.

8.4. JUMPING FROM BRANCHES

Bushbabies and lemurs travel through forests by leaping from branch to
branch, a style of locomotion that Napier and Walker (1967) described as
vertical clinging and leaping. It is a very effective means of travel in forests
in which a large proportion of branches are vertical or steeply sloping, as
in the forest in Madagascar where Warren and Crompton (1997) studied
the lemurs Lepilemur and Avahi. In forests with more horizontal branches
it may be better to travel as squirrels and many monkeys do, running along
branches and jumping only to cross gaps between one branch or tree and
another (see, for example, Cannon and Leighton [1994] on Macaca).

There is an optimum angle of takeoff that minimizes the energy cost of
jumping across a given gap. If the two branches are at the same height
from the ground, this angle is 45° to the horizontal, as explained in Sec-
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tion 8.1. However, the animal will travel faster if it takes off at higher
velocity, at a shallower angle. Crompton et al. (1993) filmed six prosimian
species jumping between two perches at the same height, at different dis-
tances apart. They observed that Galago moholi always took off at about
45°, but that the other species used smaller takeoff angles except when the
distance was near the limit of their jumping ability. If the jump is from a
lower to a higher branch, the optimum angle is steeper than 45°, and if it is
to a lower branch, the optimum angle is less steep. Warren and Crompton
(1998) show that if the horizontal distance to be jumped is s and the
increase of height is h, the angle of takeoff that enables the jump to be
made at least energy cost is arctan {[h + (h 2 + s 2) 0.5]/s}.

The force exerted by an animal jumping from a branch deflects the
branch, tending to set it vibrating (Alexander 1991b). The energy given
to the branch would be returned to the animal by the branch’s elastic
recoil, if the time taken to extend the legs were half the period of vibration
of the branch. However, the periods of vibration of branches are generally
too long for this to be the case. For example, McMahon and Kronauer
(1976) found periods of free vibration of 1–2 s for branches 10 m long (a
length likely to be used by monkeys and squirrels). Demes et al. (1995)
observed lemurs jumping from branches in their forest habitat in Madagas-
car. They found that the animal had generally lost contact with the branch
before it recoiled. The branch was left vibrating, and the energy of the
vibration was lost to the animal.

If the period of vibration is much longer than the duration of take-
off, the energy loss can be estimated by the principle of conservation of
momentum, ignoring the elastic properties of the branch. If an animal
of mass m projects itself with velocity v from a branch of effective mass
m branch , the branch is given velocity − mv/m branch , and kinetic energy
m 2v 2/2m branch . The lighter the branch, the more energy will be lost.

Gibbons (Hylobates) and spider monkeys (Ateles) travel through trees
by brachiation, swinging by their arms from one handhold to the next. If
branches are close together, they may grasp each branch before letting go
of the previous one. If the branches are far apart, gibbons must release one
before the next is within reach, and fly briefly through the air. Gibbons
can cross wider gaps in the canopy than macaques of similar mass (Cannon
and Leighton 1994).

While holding a branch, a gibbon swings more or less like a simple
pendulum of length L equal to the distance from the supporting branch
to the animal’s center of mass. Thus, brachiation can be represented as in
Fig. 8.3, which shows brachiation (A) without and (B) with a flight phase.
Bertram et al. (1999) used Fig. 8.3B as a model of gibbon locomotion. At
the bottom of its swing the animal’s velocity is v b. As the swing continues
the animal rises and slows down, until the flight phase is initiated when
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Fig. 8.3. Diagrams of brachiation by a gibbon. The animal is represented as a point
mass with massless arms of length L. In (A) one hand does not let go until the
other has grasped the next handhold. In (B) there is a flight phase in which neither
hand contacts a branch. From Bertram et al. (1999).

the animal is traveling at velocity vi at an angle φi to the horizontal. The
sum E of the animal’s kinetic energy and gravitational potential energy is
constant, so

E =
mv b

2

2
=

mv i
2

2
+ mgL (1 − cos φi) (8.9)

where g is the gravitational acceleration. Hence,

v i
2 = vb

2 − 2gL (1 − cos φi)

and the distance traveled in the flight phase (using Equation 8.4) is

D flight =
v i

2 sin 2 φ i

g
= 3 v b

2

g
− 2L (1 − cos φ i)4 sin 2 φ i (8.10)

The distance D from one handhold to the next (Fig.8.3) is this distance
plus twice the distance traveled while swinging through angle φ i

D = 3 v b
2

g
− 2L (1 − cos φ i)4 sin 2φ i + 2L sin φ i (8.11)
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Fig. 8.4. Results from the simple model of brachiation (Fig. 8.3). The animal’s
total mechanical energy (expressed as E/mgL , Equation 8.9) is plotted against the
launch angle φ i for various support spacings D. Below the dotted line, the animal
has too little energy to swing to the launch angle. From Bertram et al. (1999).

Figure 8.4 shows the energy E and the launch angle φi for various support
spacings D. Below the dotted line, the animal has too little energy to
swing to the launch angle. If the energy E is high, the animal has the
option of using a low launch angle or a high one. It will travel faster if it
uses the low angle.

Bertram et al. (1999) observed captive gibbons brachiating between
equally spaced handholds. One of the handholds incorporated a force
transducer (Chang et al., 1997) that revealed a discrepancy between the
behavior of the model and of the real animal: the force on the handhold
rose less abruptly at initial hand contact, and rose to higher peak values,
than the model predicted. The animal behaved less like a simple pendulum
than like one with a spring incorporated. The speeds at which the animals
traveled for each handhold spacing were close to the minimum needed
(according to the theory) to cross the gaps.

An ape may be able to make enough energy available to start brachiating
by an initial downward swing. It can increase its energy while brachiating
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by bending and then extending the knees during the contact phase; the
principle is the same as when children “pump” a swing. Fleagle (1974)
showed that gibbons do this.

The theory outlined above assumes equally spaced supports, all at the
same height above the ground. If its energy is high enough, the ape can
travel between supports of variable height and spacing by choosing an
appropriate launch angle for each gap (Preuschoft and Demes 1984). Also,
the theory assumes rigid supports, but the branches from which wild gib-
bons swing are not rigid. Branches are left vibrating after a gibbon has
passed. The energy of these vibrations is lost to the gibbon. The work that
the ape must do to replace this energy probably makes the metabolic cost
of transport much higher than for brachiation on rigid supports.

The model requires no work from the animal once the body has been
given the kinetic energy needed to start brachiating. It might, therefore,
be expected that the metabolic cost of transport on rigid supports would
be low. Parsons and Taylor (1977) trained spider monkeys to brachiate
from a continuous moving rope, designed on the same principle as a tread-
mill. They measured the monkeys’ oxygen consumption and found, unex-
pectedly, that the metabolic energy cost of brachiating was 20–30% higher
than the cost of running at the same speed.

8.5. CLIMBING VERTICAL SURFACES AND WALKING
ON THE CEILING

Squirrels, woodpeckers, and many other mammals and birds climb vertical
tree trunks. Geckos and many insects climb vertical structures, such as
tree trunks and other plant stems and walls, and can even run on inverted
surfaces such as ceilings.

Figure 8.5A is a free-body diagram of a squirrel of mass m climbing a
tree trunk. The following forces are acting on its body:

1. Its weight mg, where g is the gravitational acceleration.
2. An upward component of force mg, which may be divided in any conve-

nient way between the fore and hind feet. Note that the line of action of this
force is separated by a distance x from the line of action of force 1, so the two
forces together exert a clockwise couple mgx on the animal.

3. A horizontal component of force mgx/y (where y is the distance defined
by the diagram) acting toward the left of the diagram, on the fore feet. This
force and force 4 (below) together exert an anticlockwise moment on the body,
balancing the clockwise moment exerted by forces 1 and 2.

4. A horizontal component of force mgx/y acting toward the right of the
diagram, on the hind feet.
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Fig. 8.5. (A) A free-body diagram of a squirrel climbing a tree trunk. (B) A diagram
of an insect foot pad attached to a surface by capillary adhesion.

Notice that the animal cannot be in equilibrium unless its fore feet are
pulling it toward the tree. The hind feet press on the tree, and friction
between them and the bark may be enough to provide the upward force
that must act on the paws. If the animal were descending the tree with its
head pointing down, its hind feet instead of its fore feet would have to
pull it toward the tree.

In the next few paragraphs, I will outline some principles that animals
might exploit to attach themselves to vertical or inverted surfaces. After
that I will examine the evidence that indicates which principle is used by
a variety of climbing animals. We will find that different groups of animals
adhere to vertical and inverted surfaces by different means.

If the animal’s fore legs are long enough, it may reach round to the far
side of a tree trunk and press on it. Alternatively, if it can reach only to the
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sides of the trunk, the resultant of the normal and frictional forces on its
hand may be sufficient to hold it in place (Cartmill 1985).

If the animal has claws and the surface is soft enough to be penetrated
by them, the animal may get the required grip by digging its claws in.
Animals that can climb smooth, hard surfaces such as glass are unlikely to
be dependent on claws.

The animal may attach itself to the surface it is climbing by suction. The
force obtainable in this way is limited by atmospheric pressure (0.1 MPa at
sea level). The obvious test to find out whether an animal is using suction is
to reduce the air pressure; a sucker cannot work in a vacuum.

An animal might use electrostatic forces to attach itself to a surface. If
it did, it would not be expected to be able to maintain its grip if its feet
were wetted with an electrically conducting solution or if the air were
ionized by means of an antistatic gun. This possibility has been considered
for various insects, but no evidence has been found that any of them use
it, and it seems unlikely that the feet would be well enough insulated from
the substrate for sufficiently large potential differences to be maintained
(Dixon et al., 1990).

An animal that could make sufficiently close contact with the surface it
was climbing might be held in place by van der Waals forces (intermolecu-
lar attraction). The van der Waals force between a sphere of radius r and
a flat surface separated by a distance d is

Fvan der Waals =
Hr
6d 2

(8.12)

(Tabor 1991). H is the Hamaker constant, which depends on the materials
involved but is of the order of 10−19J.

If there were a thin film of liquid between a foot and the surface it was
clinging to, it might be held in place by Stefan adhesion. This is the effect
that makes it very difficult to separate two sheets of wet glass. When two
surfaces separated by a film of fluid are pulled apart, fluid has to flow
through the gap between them. The viscosity of the fluid resists this flow.
Large forces are required if the gap is initially very narrow and separation
is fast. The force of Stefan adhesion between two disks of radius r, with a
film of thickness d of a fluid of viscosity µ between them, is

FStefan = 1 1.5πµr 4

d 3 2 dd
dt

(8.13)

where dd/dt is the rate of separation (Denny 1993). The viscosity of water
is 0.001 N s/m2. Note that this mechanism cannot hold indefinitely; a
small force that is maintained for long enough will eventually cause de-
tachment.
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Surfaces separated by a drop of liquid are also held together by capillary
adhesion, if the liquid does not extend beyond their edges. This is due to
surface tension in the meniscus at the edge of the drop (Fig. 8.4B), which
because of its curvature reduces the pressure in the drop. If the thickness
d of the liquid film is much less than the radius of the drop, the force of
capillary adhesion is

Fcapillary =
(cos θ 1 + cos θ 2) Aγ

d
(8.14)

where θ1 and θ2 are the contact angles of the liquid with the two surfaces,
γ is its surface tension (0.073 N/m, in the case of pure water), and A is
the area of the drop (Denny 1993). Obviously, this mechanism of adhe-
sion cannot operate if all traces of liquid are removed from the surfaces.

Finally, surfaces may be held together by an adhesive.
Now we will consider some climbing animals, looking for evidence of

how they attach themselves to the surfaces that they are climbing. Apes
and monkeys (other than marmosets) have no claws, and depend on their
long arms to grip tree trunks. Other mammals, and birds, depend on
claws. When a mammal is descending a tree, the hind feet must be reversed
to obtain the necessary grip. The ability to do this has been evolved by
tree squirrels such as Sciurus, kinkajous (Potos), lemurs such as Varecia,
and some other mammals (Jenkins and McClearn 1984; Meldrum et al.,
1997). Domestic cats cannot reverse the hind feet and often have difficulty
descending trees.

Geckos (Gekkonidae) have the soles of their feet covered by a carpetlike
pile of fine setae (Russell 1975; Röll 1995). Gekko gecko has almost half a
million setae 30–130 µm long, on each foot. Each seta, has between 100
and 1000 branches at its end, each ending in a tiny pad of 200–500 nm
diameter, called a spatula. Irschick et al. (1996) showed that each foot of
a Gekko of mass 43 g (weight 0.43 N) can exert an adhesive force of 20 N.
That implies that each seta can exert 10 µN. Autumn et al. (2000) dis-
sected off individual setae and glued their bases to entomological pins.
They pressed the spatulae against a surface connected to an exceedingly
sensitive force transducer, then measured the force needed to pull them
free. The mean force required was 14 µN when the pull was perpendicular
to the surface, and 190 µN (far more than the experiments with intact
geckoes suggested) when the pull was parallel to the surface.

The forces are too large to be due to suction. Geckos adhere to dry
surfaces and there is no evidence of any secretion that might provide capil-
lary adhesion. It seems likely that they depend on van der Waals forces for
adhesion. Autumn et al. (2000) used Equation 8.12 to make a very rough
estimate of the van der Waals force on an attached seta. They supposed
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that each spatula might at some point be only 0.3 nm from the surface
(the diameters of atoms are of the order of 0.3 nm [Tabor 1991]). They
assumed that the surfaces of the spatulae could be regarded as segments
of the surfaces of spheres of radius 2 µm. This gave them an estimated
force of 0.4 µN per spatula, enough for a seta with 500 spatulae to exert
the observed force of 190 µN. It must be emphasized that this is an exceed-
ingly rough calculation, but it seems to show that van der Waals forces are
of the right order of magnitude to explain gecko adhesion. Though the
setae adhere strongly, they can be detached easily by peeling them like an
adhesive plaster (Autumn et al., 2000).

Beetles have claws and also pads covered by a pile of setae, rather like the
setae of geckos. Stork (1980) studied adhesion by the feet of Chrysolina, a
beetle about 8 mm long. He used fine wires glued to the elytra to attach
the beetles to a force transducer, and measured the forces they could exert
parallel to the surface on various surfaces. They could exert forces of al-
most 40 times body weight on glass or an acrylic plastic, and rather more
on cloth. Cutting off the claws with micro-scissors had no appreciable
effect on the beetles’ ability to cling to glass or acrylic plastic, but greatly
reduced their ability to adhere to cloth. This indicated that attachment to
cloth depended on the claws, but that the beetles adhered to glass and
acrylic plastic by some other mechanism. Experiments in which the ambi-
ent air pressure was reduced had no appreciable effect on the beetles’ adhe-
sion to glass, showing that it did not depend on suction. An antistatic
gun had no appreciable effect, indicating that electrostatic forces were not
responsible. Beetles whose feet had been dried by walking over filter paper,
and which were then tested in a very dry atmosphere, showed apparently
undiminished adhesion to glass, suggesting (but not proving) that neither
Stefan adhesion nor capillary adhesion was involved. Van der Waals forces
seem the most likely means of adhesion to glass. The maximum forces that
the beetles could exert on glass amounted to about 1 µN per seta. As there
was only one spatula per seta, this is a little more than the force per spatula
that geckos exert, but it is still low enough for it to be plausible to suggest
that it is a van der Waals force.

The soles of the feet of blowflies (Calliphora) are also covered by a pile
of setae. Walker et al. (1985) found that the forces needed to pull blowflies
off glass average three times body weight for a pull perpendicular to the
surface and nearly 30 times body weight for pulls parallel to the surface.
There are about 3500 setae on a fore foot, each with a spatula of about 2
µm diameter at its end. If there are similar numbers of setae on the other
feet, the detachment force for parallel pulls is about 1 µN per seta. This is
low enough for van der Waals forces to offer a plausible explanation, but
Walker and his colleagues found that flies leave oily footprints. They re-
moved the oily secretion from the feet of flies by making them walk across
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filter paper moistened with hexane (which dissolves lipids), and found that
this greatly reduced their ability to adhere to glass. They suggested that
attachment was largely due to capillary adhesion. A calculation using
Equation 8.14 shows that even with a liquid film 1 µm thick, capillary
adhesion would be ample to explain the perpendicular force needed to pull
blowflies off glass. However, it left the insects’ resistance to pulls parallel to
the glass unexplained. The most likely explanation for this resistance seems
to be friction between the surfaces that are held firmly together by capil-
lary adhesion (Gorb et al., 2001).

Aphids lack the setae found in beetles and flies, but can nevertheless
walk upside down on clean glass surfaces. Dixon et al. (1990) studied
Aphis fabae, which has a pair of claws on each foot and also a soft pad of
about 17 µm radius. Aphis adhered to clean glass, with maximum forces
of about 20 times body weight. Neither reduction of the ambient pressure
nor use of an antistatic gun had a significant effect. Dixon and his col-
leagues considered the possibility that aphids might adhere by van der
Waals forces. Instead of Equation 8.12, which predicts the force between
a sphere and a flat surface, they used an equation that predicts the force
between two parallel planes (Tabor 1991). They calculated that for van
der Waals forces to provide such strong adhesion, the surfaces of the pul-
villi would have to be within 8 nm (the diameter of a large protein mole-
cule) of the glass surface. They thought it unlikely that such close contact
could be achieved over so large an area. However, they found that aphids
that had walked for 15 minutes on silica gel (a drying agent) were unable
to adhere to glass for the next 30 min. The ability to adhere to glass could
be restored very rapidly, by allowing an aphid that had walked on silica
gel to walk on moist filter paper. This suggested that capillary adhesion
was responsible for attachment to glass. Water could apparently serve as
the liquid, but there was evidence that the feet could themselves secrete a
liquid. Equation 8.14 showed that with a liquid film a few micrometers
thick, capillary adhesion could explain the observed forces. A further cal-
culation using Equation 8.13 shows that with the same film thickness,
Stefan adhesion would be too weak to have any importance.

Though aphids with dry feet could not walk upside down on glass, they
could walk on inverted plates of silica gel, presumably by means of their
claws. They lost this ability if the claws were removed.

The toe pads of tree frogs adhere relatively weakly, apparently by capil-
lary adhesion. Only a few species can support themselves from an inverted
surface (Emerson and Diehl 1980).

The tube feet of starfishes attach to the substrate by means of an adhe-
sive formed from the combined secretions of two types of glands (Flam-
mang et al., 1998). This adhesive consists mainly of protein. A secretion
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from a third type of gland seems to release the adhesive, which is left
behind as a “footprint” on the substrate when the starfish moves on.

This chapter has discussed jumping by animals ranging from fleas to
humans, showing how different styles of jumping are best for animals of
different sizes. It has described how gibbons swing through trees. It has
also shown how some animals can climb vertical surfaces or even run across
the ceiling, adhering by means that include claws, capillary adhesion, van
der Waals forces, and adhesives.

As in previous chapters, many of the stories told in this one are incom-
plete. The dynamics of jumping is well understood, but we need experi-
ments on jumping vertebrates to record the length changes of the tendons
and muscle fascicles and to check our understanding of the muscle physiol-
ogy involved. Research is needed on the mechanics and energetics of loco-
motion through trees, taking account of the flexibility and uneven spacing
of branches. And I suspect that there is more to be learned about the roles
of different physical mechanisms in the adhesion of insect and gecko feet.



Chapter Nine...............................................................
Crawling and Burrowing

F OR THE PURPOSES of this chapter, I define crawling as locomo-
tion on land that depends principally on movements of the body
rather than of limbs. Many crawling animals, such as earthworms

and snakes, have no limbs. Others, such as caterpillars, have legs, but prog-
ress by bending and extending the body; the legs serve merely to anchor
the anterior end of the body while posterior parts are drawn forward. An
anomaly of this definition of crawling is that it excludes the crawling of
human babies.

In many cases, animals crawl and burrow using similar movements. For
example, earthworms crawl and burrow by peristalsis, and limbless lizards
crawl and burrow by lateral undulation. It seems convenient to discuss
crawling and burrowing in the same chapter.

9.1. WORMS

The animals discussed in this section are more or less cylindrical. The
volume V of a circular cylinder of length l and radius r is

V = πr 2l (9.1)

A closed cylinder filled with liquid must maintain constant volume even
if its shape changes, so if its length increases, its radius and circumference
must decrease, and vice versa. By rearranging Equation 9.1 and differenti-
ating it, we get

dr
dl

=
−r
2l

(9.2)

This tells us that for small strains (fractional changes of length), the strain
in the circular muscles is minus one-half of the strain in the longitudinal
muscles; 1% shortening of the circular muscles causes 2% lengthening of
the longitudinal muscles. The incompressibility of the tissues and of the
liquid in the body cavity makes the circular muscles antagonistic to the
circular ones, just as the stiffness of a bony skeleton makes the flexor mus-
cles in a vertebrate limb antagonistic to the extensor muscles. For this
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reason, the tissues and liquid are often said to function as a hydrostatic
skeleton (Chapman 1958; Alexander 1995c).

A worm with circular and longitudinal muscles can bend its body by
shortening the longitudinal muscles of one side while allowing those of
the other side to be stretched. Earthworms have only longitudinal and
circular muscles to change the shapes of their bodies, but leeches have, in
addition, dorsoventral muscles that flatten the body, changing its cross
section from a circle to an ellipse.

Leeches practice two-anchor crawling, using the principle explained in
Section 6.1 (Gray 1968). Suckers at the two ends of the body attach alter-
nately to the substrate. With the posterior sucker attached, the leech ex-
tends its body to push the anterior end forward. Then it attaches the ante-
rior sucker and shortens the body to pull the posterior parts forward.

In contrast, earthworms crawl by peristalsis, sending waves of lengthen-
ing and shortening traveling backward along the body (Gray and Liss-
mann 1938). The principle was explained in Section 6.2. The anchorage
required to prevent backward sliding is provided by chaetae, short bristles
that protrude from every segment. Not only do the chaetae slope back-
ward, making the coefficient of friction for backward sliding greater than
for forward sliding, but they are protruded whenever the longitudinal
muscles contract, which is when anchorage is required (Clark 1964). It is
because of the chaetae that a worm feels rough when you run a finger
anteriorly along its ventral surface, but smooth when you run the finger
posteriorly.

Quillin (1999) filmed Lumbricus terrestris of a wide range of sizes crawl-
ing on moist fabric. Mean crawling speed was about 0.04 body lengths
per second, and stride length was about 0.15 body lengths, for worms
ranging from about 20 mg to 9 g body mass. Each segment was stationary
for, on average, 38% of the time, and moving forward for 62% of the time.
Thus, q (Equation 6.3) was 0.62, implying that the coefficient of friction
for backward sliding was at least 1.6 times the coefficient for forward slid-
ing. If a higher value of q were possible, the worm could crawl faster, as
the following argument shows. As in Fig. 6.2A, consider a worm that
lengthens and shortens each segment by ∆l in the course of a cycle of its
crawling movements. The duration of a cycle is τ, and one wavelength of
the motion extends over n segments. The interval of time between the
two positions shown in the Figure is τ/n. In this time, the anterior end
of the worm advances a distance ∆l at speed n ∆l/τ. It is advancing at this
speed for a fraction q of the time and stationary for the rest, so the worm’s
mean speed v is

v = qn
∆l
τ

(9.3)
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and, other things being equal, an increase in q will result in an increase
of speed.

We saw in Chapter 6 that the work that legless animals have to do when
they crawl has two components. One of these is the work that has to be
done to overcome friction with the ground. The other is the inertial work
required to give parts of the body kinetic energy whenever they move
forward. If these animals crawled fast, the inertial cost of transport would
become very large. In Section 6.2, a simple model of earthwormlike crawl-
ing led to the conclusion that the inertial work would exceed the frictional
work if the Froude number v 2/λg was greater than 2µ forwardq 2. Here v is
speed, λ is stride length, g is the gravitational acceleration (9.8 m/s2),
µ forward is the coefficient of friction for forward sliding of the body, and q
has the same meaning as before. Consider a typical 1-g worm crawling at
0.004 m/s with a stride length of 0.015 m (Quillin 1999). Its Froude
number is 1.1 × 10 − 4. The coefficient of friction seems likely to be of the
order of 0.1, and q is 0.62 (see above). Thus, the speed is much too low
for the inertial cost of transport to be significant.

Septa cross the body cavity of earthworms, preventing the fluid in the
body cavity from flowing between segments. Seymour (1969) recorded
pressures in the body cavity by means of hollow needles connected by
flexible tubing to pressure transducers. He showed substantial pressure
differences between segments, confirming that the septa divided the body
cavity effectively. Thus, shortening of the longitudinal muscles in each
segment forces extension of the circular muscles of the same segment, and
vice versa, independent of what is happening elsewhere in the worm. The
pressure in each segment fluctuates as the worm crawls, with peak pres-
sures of around 600 N/m2 (Quillin 1998) occurring when the segment
is long and thin. Seymour (1969) recorded pressures up to 7500 N/m2

in a worm that was squirming violently.
Equation 9.2 implies that a small strain σ in the longitudinal muscle of

a segment is accompanied by a strain −σ/2 in the circular muscle. Imagine
a segment that changes slightly in length while the pressure inside it re-
mains constant. The (positive) work done by the longitudinal muscle must
be matched by the (negative) work done by the circular muscle. The work
done by each is Force × Length change, which equals Stress × Cross-sec-
tional area × Strain × Length, which equals the volume of the muscle
multiplied by the stress multiplied by the strain. This implies that for the
longitudinal and circular muscles to exert equal stresses, the volume of
circular muscle should be twice the volume of longitudinal muscle. Chap-
man (1950) pointed this out, using a less concise argument. He went on
to show that the volume of circular muscle is actually only 0.4 times the
volume of the longitudinal muscle. Therefore, if the circular and longitu-
dinal muscles can exert the same maximum stress (which is not necessarily
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the case), the longitudinal muscle is capable of withstanding five times as
much pressure in the body cavity, as the circular muscle.

This would be puzzling if crawling was the worm’s only mode of loco-
motion. However, worms also burrow, using movements like those of
crawling. The swelling of shortened segments helps to anchor the worm
and is probably also used to widen the burrow. The longitudinal muscles
are needed to generate pressure in the body cavity, but while the body
wall of a segment is pressed firmly against the walls of the burrow there is
no need for stress in the circular muscles. The septa make it possible for
high pressures to be confined to segments whose walls are pressed against
the burrow wall, so there is no need for the circular muscles to be able to
withstand high pressures. Seymour (1969) measured pressures up to 2500
N/m2 in the body cavity of earthworms in the early stages of burrowing
into loose earth, and it seems likely that much larger pressures are devel-
oped while burrowing in firm earth.

Nemertean worms are not segmented and have no partitions in the
body. Lineus nevertheless crawls like an earthworm, by passing peristaltic
waves posteriorly along its body (Gray 1968). The lugworm Arenicola has
septa only near the anterior and posterior ends of the body, so fluid can
be moved around within the body. Seymour (1971) has described how
it burrows.

Polyphysia is a polychaete worm that crawls by passing peristaltic waves
forward along the body, as shown in Fig. 6.2B (Elder 1973). This gait
requires the segments to be long while they are stationary and short while
they are moving. Burrowing requires the segments to be thick while they
are stationary, to anchor them, and thin while they are advancing. There-
fore, the segments must be fat while they are long and thin while they are
short. Fluid must be free to move between the segments, so this style of
locomotion is possible only for worms that, like Polyphysia, have no septa.
Hunter and Elder (1989) recorded pressures in the body cavity of bur-
rowing Polyphysia. They also measured the forces that the animal could
exert when pushing with its anterior end or pulling with its tail. From
these measurements they attempted to calculate the work of locomotion,
but their calculation depended on the doubtful assumption that the forces
measured when the animal was pushing or pulling on their instruments
were the same as in unrestrained burrowing.

Nematode worms crawl like snakes (Section 9.4), by passing waves of
bending backward along the body (Alexander 2001). The bends, however,
are dorsoventral, not transverse as in snakes. Soil nematodes of the order
of 1 mm long travel in this way in the spaces between soil particles (Wallace
1958). Other plant parasitic nematodes, such as the Chrysanthemum eel-
worm (Aphelenchoides), crawl by similar movements in the film of water
covering wet leaves. The effectiveness of this technique of locomotion
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Fig. 9.1. Drawings from video films of Pleurotya caterpillars about 25 mm long
(A) crawling forward at 10 mm/s, (B) crawling backward, and (C) rolling back-
ward. Stippling indicates segments bearing appendages that are off the ground.
From Brackenbury (1997).

depends on surface tension. When a worm is stationary in a water film,
surface tension acts symmetrically on the two sides of its body. However,
when it passes waves of bending down its body, its movements make sur-
face tension act asymmetrically (Wallace 1959). Where a part of the body
is moving transversely, a well-known property of liquid surfaces makes the
surface of the film meet one side of the body at a steeper angle than the
other. The equal surface tension forces on the two sides of the body act at
different angles to the horizontal, so the horizontal components of the
forces are different and the transverse movement is resisted. This effect
gives the worm the purchase it needs to propel itself forward.

9.2. INSECT LARVAE

Figure 9.1 shows a caterpillar performing three different gaits. In (A) it is
moving forward, using a gait that depends on the same principle as two-
anchor crawling (Section 6.1), but involves three anchors: the true legs
on body segments 1–3, the prolegs on segments 6–9, and the clasper on
segment 13. In (B) it is retreating, using a similar gait in reverse. Finally,
in (C) it is performing a remarkable backward roll that this species uses as
an escape strategy. The momentum developed in the initial bending of



C R A W L I N G A N D B U R R O W I N G 171

the body is retained, and the animal rolls for up to five revolutions at a
speed of around 0.4 m/s, many times faster than the forward walking
speed of about 10 mm/s (Brackenbury 1997). Ceratitis is another dip-
teran whose larvae are capable of rapid escape movements, in this case by
jumping (Maitland 1992). They jump distances up to 160 mm, and by
making a series of jumps in rapid succession they can travel at 19 mm/s,
whereas their normal crawling speed is only 2 mm/s.

Gypsy moth caterpillars (Lymantria) crawl much more slowly than
adult insects of similar mass run, and take much shorter strides. Casey
(1991) filmed them crawling on a treadmill and measured their rates of
oxygen consumption. He recorded speeds up to 0.03 m/s and stride
lengths up to 0.008 m, giving a maximum Froude number of 0.01. This
is higher than for the earthworm (Section 9.1) but still too low to make
the inertial cost of transport substantial. The metabolic cost of transport
is nevertheless high, 4.5 times the value predicted for running arthropods
of the same mass (Fig. 7.12).

Berrigan and Pepin (1995) studied crawling by the limbless larvae of
four species of dipteran fly. Their gaits involved lengthening and shorten-
ing of the body in the manner of two-anchor crawling. Larvae of masses
0.5–220 mg crawled at speeds of 0.7–10 mm/s, with stride frequencies
of 0.6–2.8 Hz. In contrast, adult insects of similar mass typically run at
70–100 mm/s, with stride frequencies near 10 Hz. Berrigan and Lighton
(1993) measured the oxygen consumption of crawling dipteran larvae and
calculated that the net metabolic cost of transport was ten times as high
as predicted for running adult insects of the same mass.

9.3. MOLLUSCS

Gastropod molluscs crawl on a large, muscular foot at very low speeds;
snails (Helix) crawl at about 2.5 mm/s and limpets (Patella) at about 1
mm/s. A specimen of Haliotis with a shell 99 mm long was induced to
crawl at the exceptionally fast speed, for a gastropod, of 19 mm/s (Dono-
van and Carefoot 1997).

If a gastropod is viewed from below while crawling on glass, it can be
seen that waves of muscular contraction travel along the foot (Lissmann
1945a). These waves may travel forward as in the garden snail Helix, or
backward as in chitons. Muscular activity may be in phase across the whole
width of the foot as in these examples. Alternatively, waves traveling along
the left side of the foot may be half a cycle out of phase with waves on
the right, as in Haliotis (forward waves) and Patella (backward waves
[Trueman and Jones 1977]). If marks have previously been made on the
sole of the foot, it can be seen through the glass that the waves involve
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local lengthening and shortening of the foot. The marks move forward
relative to the glass at one stage of the crawling cycle, and remain station-
ary relative to the glass at another (Lissmann 1945a). It is clear that
crawling depends on the same principle of peristalsis as earthworms and
Polyphysia use (Section 9.1). If the waves travel forward, the shortened
parts of the foot move forward while the extended parts remain stationary,
as Fig. 6.2B suggests. If they travel backward, the reverse is the case, as in
Fig. 6.2A.

Lissmann (1945b) believed that the parts of the foot that were to be
moved were lifted clear of the substrate. Jones and Trueman (1970)
showed that the muscle fibers in the foot of Patella (which uses backward-
moving waves) seemed adapted for lifting the extended parts of the foot.
Jones (1973) demonstrated a different arrangement of fibers in the foot
of the slug Agriolimax (forward-moving waves) that seemed adapted for
lifting contracted parts of the foot. However, Denny (1980a) pointed out
that the thin layer of viscous mucus between the foot and the substrate
would make it very difficult to lift the foot off the substrate (see the expla-
nation of Stefan adhesion in Section 8.5).

The mucus of Ariolimax consists of 3–4% high molecular weight glyco-
protein, together with water and salts (Denny 1980a). Whenever a part
of the foot moves forward, the mucus under it is sheared as in Fig. 3.2B.
When that part of the foot is halted, the shearing temporarily ceases.
Denny (1980a) simulated this in an experiment with slug mucus in a cone
and plate viscometer. This is a standard instrument for measuring viscosity
(Fig. 9.2A). The material to be tested is sandwiched between a rotating
cone and a stationary plate. The torque required to hold the plate station-
ary is measured, enabling the viscosity to be calculated. Denny put a sam-
ple of slug mucus into a viscometer. For one second he rotated the cone
at constant speed, shearing the mucus; then he held the cone stationary
for one second; then he rotated it again for a second, and so on (Fig. 9.2B).

To understand the result of Denny’s experiment, we need to be clear
about the difference between elasticity and viscosity. When an elastic solid
is sheared, the stress in it rises, ideally in proportion to the strain. That
implies that if strain continues at a constant rate (as in Denny’s experi-
ment), stress rises progressively. However, stress in a viscous liquid is pro-
portional not to strain, but to strain rate. If the strain rate is constant, the
stress in the liquid is also constant. In the experiment, each time the plate
started rotating, the stress rose, initially at a more or less constant rate.
The mucus was behaving like an elastic solid. However, there was a sudden
change when the strain reached a value of about 5 (e.g., when the plate
under a layer of mucus 1 mm thick had moved 5 mm). The stress fell to a
lower level and remained constant at that level so long as shearing contin-
ued. The mucus was now behaving like a viscous liquid. When shearing



Fig. 9.2. (A) A cone and plate viscometer. (B) Results of Denny’s (1980a) experi-
ment with slug mucus in a viscometer. The upper graph shows the stress in the
mucus resulting from the strain rates shown in the lower graph.
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ceased, the stress fell to zero. Within one second the mucus had regained
its solid properties, and the cycle could be repeated.

Let us consider how these properties limit the mollusc’s speed. As in
our discussion of earthworms (Section 9.1), let it crawl at speed v; let any
point on the foot move for a fraction q of the time and be stationary for
the rest; let the duration of a cycle of movement be τ; and let the strain
involved in lengthening be ε. Let the wavelength of the pattern of length-
ening and shortening on the foot be L. To get the speed, we need to
modify Equation 9.3, the equation that we derived for worms. For the
worm, L is equal to nl (the number of segments in a wavelength multiplied
by the length of a segment), and ε is equal to ∆l/l (the fractional change
of length of a segment). Thus, we can rewrite Equation 9.3 in a form
applicable to unsegmented animals:

v =
qL ε

τ
(9.4)

An increase in q, L, or ε, or a decrease in τ, will enable the mollusc to
move faster. Donovan and Carefoot (1997) found that as Haliotis in-
creased speed, cycle duration τ fell and the distance traveled per cycle (qLε)
rose. The wavelength L in Haliotis is approximately equal to the length of
the foot, so there is no scope for increasing it. The increase in qLε seems
to have been at least largely due to an increase in q.

The forces on the stationary parts of the foot (area Astat) must balance
the forces on the moving parts (area Amove). Let the maximum stress that
mucus can withstand in its “solid” state be σsolid, max and let the stress in the
“liquid” mucus under the moving parts of the foot be σliquid. For the forces
to balance,

Astatσsolid, max ≥ Amoveσliquid (9.5)

If the lengthening and shortening of parts of the foot does not change
their areas too much, Amove/Astat is approximately equal to q/(1 − q). Thus,
Equation 9.5 tells us that q cannot be greater than approximately σsolid, max/
(σliquid + σsolid, max). This conclusion is less informative than we might wish,
because both σsolid, max and σliquid depend on the strain rate (Denny 1980a).
However, it does tell us that q is limited by the properties of the mucus.
Also, the time for which a point on the foot is stationary, (1 − q)τ, must
be large compared to the time required for the mucus to regain its “solid”
properties. Thus, the properties of the mucus affect the range of feasible
values of τ as well as of q. Denny (1984) made a much more rigorous
analysis of the crawling of slugs and reached the same conclusion.

Denny (1980b) measured the oxygen consumption of crawling Agrioli-
max and calculated that the net metabolic cost of transport was 12 times
as high as expected (Fig. 7.12) for a running mammal or arthropod of the
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Fig. 9.3. Diagrams representing successive positions of a bivalve mollusc, during
burrowing. Thick lines represent active muscles. From Alexander (1982).

same mass. Other gastropods that have been investigated have relatively
lower costs of transport; the most economical is Haliotis, with a cost ap-
proximately equal to the predicted value for a mammal or arthropod
(Donovan and Carefoot 1997).

In ideal Newtonian fluids subjected to shear, stress is proportional to
strain rate. In mucus, stress is less dependent on strain rate; it is approxi-
mately proportional to (strain rate)0.44 (Denny 1984). This still gives the
animal scope for reducing the work required for crawling (and so presum-
ably the cost of transport) by reducing the strain rate, which could be
done by using a thicker layer of mucus. However, the thicker the mucus
layer, the more glycoprotein will be left behind in the slime trail and lost
to the animal. Denny (1980b) estimated that the energy cost to a slug of
replacing the glycoprotein lost in the slime trail accounted for 35% of the
net metabolic cost of transport.

Thus, gastropod crawling is slow and expensive of energy and materials.
It has, however, the advantage that the animal adheres to the substrate.
This advantage is exploited by shore-living gastropods, which are not eas-
ily dislodged from rocks by waves, and by slugs and land snails, which can
climb the stems of plants to reach their food.

Many bivalve molluscs burrow in sand or mud, using a two-anchor
mechanism (Fig. 9.3. [Trueman 1967]). Their two-valved shells can be
closed by contraction of the adductor muscles, but spring open by elastic
recoil of the hinge ligament when the adductors relax. Their muscular
feet can be shortened by contraction of retractor muscles or extended by
contraction of transverse muscles. There are blood-filled cavities around
the viscera (the visceral hemocoel) and in the foot (the pedal hemocoel),
connected through Keber’s valve. With the valve closed, no blood can
enter or leave the pedal hemocoel, so the volume of the foot remains con-
stant; shortening of the retractor muscles inevitably stretches the trans-
verse muscles, and vice versa. With the valve open, contraction of the ad-
ductor muscles can drive blood into the foot, and contraction of the
muscles of the foot can drive blood back into the visceral hemocoel.
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These movements are used in burrowing. With the adductor muscles
relaxed, the elasticity of the hinge ligament presses the two shell valves
firmly against the surrounding mud or sand. This anchors the shell while
the foot is extended, pushing its tip into the sand (Fig. 9.3A). Then
with Keber’s valve open the adductor muscles contract, relaxing the pres-
sure of the shell against the sand and forcing blood into the foot, whose
tip swells (B). The swollen foot serves as an anchor while the retractor
muscles contract, pulling the shell deeper into the mud or sand (C). Then
the cycle is repeated. The mollusc moves down through the mud or sand
with the foot leading, and with the shell and the foot serving as anchors
alternately.

For most bivalves, burrowing is merely a means of burying themselves,
not of traveling. However, surf clams ( Donax) make use of burrowing in
a remarkable mode of locomotion that enables them to travel rapidly up
and down beaches (Ellers 1995). They emerge from the sand at the appro-
priate time for a wave to wash them up or down the beach, and burrow
while the water is flowing in the opposite direction.

9.4. REPTILES

Snakes and limbless lizards most commonly travel by serpentine crawling.
Waves that move backward along the snake’s body remain stationary
relative to the ground, making the snake move forward. We saw in Section
6.3 that friction makes serpentine crawling possible even on a smooth
surface. However, when snakes crawl on smooth surfaces some backward
slippage of the waves may occur (Gans 1984). On natural substrates, irreg-
ularities in the ground such as stones or tussocks of grass tend to prevent
slippage of the waves. Walton et al. (1990) measured the oxygen consump-
tion of black racer snakes (Coluber constrictor, mean mass 103 g) moving
by serpentine crawling on a treadmill provided with projections designed
to give the snake a purchase. The net metabolic cost of transport was 23
J/kg m, almost exactly the value predicted for running by mammals or
birds of the same mass (Fig. 7.12).

Equation 6.6 gives the frictional part of the mechanical cost of transport
for a very simple model of serpentine locomotion, in which the body
moves along a zigzag path instead of a realistic smoothly curved one
(Fig. 6.3B). The work done against friction with the ground contributes
µaxial g/cos φ to the cost of transport, where µaxial is the coefficient of friction
for sliding along the body axis, g is the gravitational acceleration, and φ is
the angle shown in Fig. 6.3. The coefficient of friction µaxial presumably
varies between species and between substrates. Gans and Gasc (1990)
obtained values of 0.29–0.39 for a limbless lizard (Ophisaurus) sliding
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Time (s)

0.00

0.43

1.27

Fig. 9.4. Successive positions, drawn from video images, of a black racer snake
(Coluber) concertina crawling in a narrow channel. From Jayne and Davis (1991).

forward on various substrates, and we will assume that 0.35 is typical also
for snakes. In that case, with reasonably small angles φ we can expect the
frictional part of the mechanical cost of transport to be around 4 J/kg m.

The inertial part of the mechanical cost of transport (Equation 6.7) is
proportional to speed squared. It would be equal to the frictional part if
the Froude number v 2/λg (where λ is the stride length) were equal to
µaxial/(sin φ tan φ). The stride length for the Coluber studied by Walton et
al. (1990) was about 0.28 m at all speeds. Its maximum crawling speed,
attained only in short bursts, was 1.5 m/s, giving a Froude number of
0.8. It is not clear what value we should give the angle φ, but if it were
36° (which does not seem unreasonable) and if µaxial were 0.35, µaxial/
(sin φ tan φ) would be 0.8, equal to the Froude number. This crude esti-
mate, based on the zigzag model of serpentine crawling, suggests that the
inertial part of the cost of transport may be important for snakes traveling
fast. However, the highest speed at which Coluber could sustain crawling
by aerobic metabolism was only 0.14 m/s, so the measurements of its
metabolic cost of transport were all made at 0.14 m/s or slower. At these
speeds the Froude number would be very low, and the inertial part of the
cost of transport would be negligible.

Thus, we may take our estimate of the frictional part, 4 J/kg m, as an
estimate for the whole of the mechanical cost of transport, in the range of
speeds for which the metabolic cost of 23 J/kg m was measured. This
would imply an efficiency of 0.17, which lies within the range of efficien-
cies at which muscles commonly work (Section 2.5).

Snakes use a different gait, concertina locomotion, to crawl along nar-
row channels. This is a form of two-anchor crawling, in which the anterior
and posterior parts of the body are anchored in turn. With the anterior
parts bent to jam them against the sides of the channel (Fig. 9.4, 0.00 s)
the posterior parts are drawn forward. Then with the posterior parts
jammed against the sides of the channel, the anterior parts straighten and
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Fig. 9.5. Outlines traced from video images of Crotalus cerastes sidewinding. The
snake is about 0.5 m long, and is traveling at 0.17 m/s toward the right of the
page. Only stippled parts of the body are resting on the ground. The cross is a
paint mark. From Secor et al. (1992).

reach forward (Fig. 9.4, 0.43 s). Jayne and Davis (1991) filmed Coluber
of mean mass 118 g (length 0.94 m) crawling in a treadmill formed as a
circular channel, narrow enough to induce the snakes to use concertina
crawling. The maximum burst speed that they observed was 0.21 m/s, in
a channel 7 cm wide. Walton et al. (1990) measured the oxygen consump-
tion of Coluber concertina crawling. They found a maximum aerobic speed
of 0.06 m/s, and a net metabolic cost of transport of 170 J/kg m. Thus,
concertina crawling is slower and much more expensive of energy than
serpentine crawling. Its advantage is that it enables snakes to go where
serpentine crawling would not be feasible. It even enables snakes to climb
vertical tree trunks, using ridges on the bark to gain a purchase (photo-
graph in Alexander [1992c]).

Sidewinding is another crawling technique used by snakes (Fig. 9.5).
Waves of bending are passed posteriorly along the body as in serpentine
crawling, but the body does not slide over the ground. Instead, each sec-
tion of the body is lifted from one resting place to the next. In Fig. 9.5,
stippled parts of the body are stationary, resting on the ground, and parts
that are left white are moving and off the ground. This technique is effec-
tive on loose sand and on smooth surfaces, on which serpentine locomo-
tion is difficult because they do not provide the snake with anything to
push against. Many snakes sidewind on surfaces of this kind, but for a few,
such as Crotalus, it is the normal mode of locomotion.

Sidewinding is not fast. The maximum speed attained in short bursts
by Crotalus of mean mass 110 g was only 1.0 m/s (Secor et al., 1992),
whereas the Coluber of similar mass discussed above attained 1.5 m/s in
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serpentine crawling. It is, however, remarkably economical. The net meta-
bolic cost of transport for the Crotalus sidewinding was only 8 J/kg m,
compared to 23 J/kg m for the Coluber’s serpentine crawling. The reason
for its being so economical may be that because there is no sliding over
the ground, no work has to be done against friction.

Rectilinear locomotion is yet another crawling technique, used in some
circumstances by Boa and some other snakes (Lissmann 1950). No bend-
ing of the body is involved. Instead, rib movements are used to lift and
move forward successive sections of the ventral body surface; the ribs are
used almost like legs. Waves of rib movement travel posteriorly along
the body.

Even fast snakes are relatively slow compared to legged lizards. Coluber
constrictor has sufficient reputation for speed to be known as the black
racer, but its maximum burst speed of 1.5 m/s (see above) is only one-
quarter of the running speed of 6 m/s attained by the lizard Cnemidopho-
rus (Bonine and Garland 1999).

Limbless lizards such as Ophisaurus crawl like snakes, using serpentine,
concertina, or slide-pushing locomotion as appropriate (Gans and Gasc
1990). Amphisbaenians are reptiles related to lizards and snakes that have
lost their limbs (apart from the forelimbs retained by one genus). They
crawl by a technique that looks much like the crawling of earthworms but
involves sliding the skin backward and forward over the underlying tissues
(Gans 1968). They make systems of burrows in moist soil and apparently
patrol them, searching for prey such as earthworms and termites. They
dig with their heads, pressing the displaced soil into the roof of the tunnel.

Many lizards that live on sand dunes bury themselves in the loose sand,
apparently to hide from predators. Arnold (1995) has described how they
use leg movements or trunk and tail movements or both to do this. All
of the lizards he describes retain legs of normal length, but other lizards
that burrow in loose sand have rudimentary limbs or none. Once a lizard
is buried, its limbs presumably only get in the way.

9.5. MAMMALS

Various small mammals make systems of burrows in soil. Moles (Talpa)
use their shovel-like fore limbs to extend their burrows (Quilliam 1966),
and mole rats such as Cryptomys dig with their teeth (Bennett 1991). Mea-
surements of the oxygen consumption of various rodents have shown that
the metabolic rate while burrowing is commonly around five times the
resting rate (Ebensperger and Bozinovic 2000).
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This chapter has discussed how worms, insect larvae, and snakes crawl,
referring back to the simple models in Chapter 6. It has explained the role
of mucus in snail crawling. And it has shown briefly how bivalve molluscs
and mammals burrow. One of the topics on which I would particularly
like to see further research is the energetics of burrowing in undisturbed
natural substrates.



Chapter Ten...............................................................
Gliding and Soaring

AT THIS STAGE we turn from terrestrial locomotion to flight. Pow-
ered flight has been evolved only by insects, birds, bats, and (appar-
ently) the extinct pterosaurs, and is the subject of later chapters. This

chapter is about gliding and soaring. Insects, birds, and bats glide, and so
also do various other animals, including flying fish and flying squirrels.

This chapter starts with explanations of some of the basic principles of
aerodynamics that are needed to understand flight. More detailed and
authoritative accounts can be found in Prandtl and Tietjens (1957) and
other textbooks of aerodynamics. Later sections of this chapter examine
the gliding performance of animals and show how some of them soar,
using natural air movements to keep them airborne.

10.1. DRAG

We have already encountered aerodynamic drag, which limits the jumping
performance of insects (Section 8.3). Drag is a force that resists the move-
ment of bodies through fluids. It is due partly to the work that has to be
done against the viscosity of the fluid, as the body moves through it; and
partly to the work that is done giving kinetic energy to the fluid that is
left moving in the body’s wake (Section 3.4). The relative importance of
viscous forces and inertial forces depends on the Reynolds number, which
takes account of the size of the body, the speed of movement, and the
properties of the fluid (Section 4.2). The wings and bodies of flying ani-
mals move through the air with Reynolds numbers high enough for iner-
tial forces to be dominant. In this range of Reynolds numbers, the drag
Fdrag on a body moving with velocity v through a fluid of density ρ can be
calculated using an equation that we have already met (as Equation 3.8):

Fdrag = #ρAv 2Cdrag (10.1)

where A is an area that can be defined in various ways, as explained in
Section 3.4, and Cdrag is the corresponding drag coefficient. Both for air-
craft and for flying animals, the largest aerodynamic forces act on the
wings, and the area generally used as A is the plan area of the wings,
stippled in Figure 10.1A. Notice that this area includes the strip of body
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Fig. 10.1. Outlines of (A) an albatross and (B) a condor, showing the meanings of
some terms. The stippled area in (A) is the plan area of the wings. From Alexander
(1989b).

between the wing bases. The drag coefficients for wings depend on the
Reynolds number and on how much lift they are providing, as we will see
in Section 10.3.

For calculations of the drag on the fuselage of an aircraft or the body
of an animal, the area A is sometimes taken to be the total surface area
(the “wetted area”) of the fuselage or body, and sometimes the frontal
area (its area as seen in front view). Which is more convenient depends on
how well streamlined the body is. The reason for this is that there are two
kinds of drag. Pressure drag is due to aerodynamic forces acting at right
angles to the surface of the body. For example, if a thin plate is moved
through air with its plane at right angles to the direction of movement, it
pushes on the air in front of it. The drag is all pressure drag, due to the
pressure difference between the front and the back of the plate. However,
if the plate is moved in its own plane, all the drag is friction drag due to
the forces that act parallel to its surface as it drags the air along with it.
The drag on bluff bodies (unstreamlined bodies such as spheres) is mainly
pressure drag, but the drag on streamlined bodies is nearly all friction
drag. Pressure drag depends on the shape of the body, but is affected more
by frontal area than by total surface area, so it is generally convenient
to use frontal area to calculate the drag on bluff bodies. Friction drag is
proportional to total surface area, so it is often convenient to use total
surface area to calculate drag on streamlined bodies.
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The friction drag on a body of total surface area Atotal moving with veloc-
ity v and Reynolds number 5 through a fluid of density ρ is

Friction drag = #ρA total v 2 (1.33 5 −0.5) (10.2)

at fairly low Reynolds numbers and

Friction drag = #ρA total v 2 (0.074 5 −0.2) (10.3)

at higher Reynolds numbers (Prandtl and Tietjens 1957). The change oc-
curs because, at lower Reynolds numbers, flow in the boundary layer close
to the surface of the body is laminar; that means that the flow is smooth,
always parallel to the body’s surface. At higher Reynolds numbers, flow in
the boundary layer is turbulent. The change from laminar to turbulent
flow generally occurs at a Reynolds number between about 2 × 105 for
bluff bodies and 2 × 106 for well-streamlined bodies. The length used to
calculate the Reynolds number is the overall length of the body, in the
direction of movement.

The body of a fruit fly 3 mm long flying at 1 m/s has a Reynolds number
of 200, and the reasonably well-streamlined body of an albatross 1 m long
flying at 15 m/s has a Reynolds number of 106 (see Section 4.2). Thus,
we can generally assume that the boundary layers on the bodies of flying
animals are laminar.

Drag on wingless bird bodies, frozen to make them rigid, has been
measured in wind tunnels. Other measurements have been made on casts
of bird bodies. These experiments have been reviewed by Hedenström
and Leichti (2001), who also calculated body drag from radar observations
of the speeds of birds in steep dives. These methods have given very vari-
able drag coefficients, many of them in the range 0.2–0.4 (based on frontal
area). These values are high compared to smooth, well-streamlined solids.
Measurements by Maybury and Rayner (2001) show that they would be
even higher if birds did not have tails. They found (unexpectedly) that
drag on frozen wingless starling (Sturnus) carcasses was increased by re-
moving the tail. Measurements of drag on insect bodies with the wings
removed have also given rather high drag coefficients (for example, Wake-
ling and Ellington 1997).

10.2. LIFT

Drag acts directly backward along the direction of motion through the
air. The aerodynamic force on a symmetrical body moving along its axis
of symmetry is entirely drag. However, if the body is asymmetrical, or
moves at an angle to its axis of symmetry, a component of aerodynamic
force may act at right angles to the direction of motion. This force, called
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lift, can be very much larger than the drag. It keeps aircraft and flying
animals airborne. Aerofoils are structures designed to give high lift and
low drag, such as the wings of aircraft and birds. The lift on an aerofoil of
plan area Aplan moving at speed v through air of density ρ is

F lift = #ρAplanv 2C lift (10.4)

where C lift is the lift coefficient. Notice that this equation has the same
form as the equation for drag (Equation 10.1).

Lift can be explained in two ways, which are really just two different
ways of expressing the same thing. Here is the first. Figure 10.2A repre-
sents an aerofoil seen in section. It will be convenient to write as if the
aerofoil is stationary and the air moving, but the effect would be no differ-
ent if the reverse were the case; what matters is the velocity of the air,
relative to the aerofoil. The aerofoil is shown tilted at an angle of attack
α to the direction at which the air is approaching. This tilting and its
asymmetrical shape (with the upper surface more curved than the lower),
have the effect of deflecting the air downward (Fig. 10.2C). The air is
being given downward momentum, so the aerofoil must be exerting a
downward force on the air, and the air must be exerting an upward force
on the aerofoil.

The span of an aerofoil is the distance from wing tip to wing tip (Fig.
10.1B). We can make reasonably accurate calculations about lift if we as-
sume that the aerofoil deflects only the air that passes through the circle,
of which the wingspan s is the diameter (Fig. 10.2B). The area of this
circle is πs 2/4, so if air of density ρ passes through it with velocity v the
mass of air deflected in unit time is πρvs 2/4. Let this air be deflected
through an angle ψ, so that it is given downward velocity v tan ψ. Momen-
tum is mass multiplied by velocity, so rate of change of momentum is
mass multiplied by acceleration, which by Newton’s second law of motion
equals force. The rate at which the air is being given downward momen-
tum (the mass deflected in unit time multiplied by the downward velocity)
is (πρv 2s 2/4)tan ψ. This is equal to the lift

Flift =
πρv 2s 2

4
tan ψ (10.5)

We will need this equation when we calculate the extra drag that is an
inevitable consequence of lift generation.

The second way of explaining lift depends on Bernoulli’s principle, one
of the fundamental principles of aerodynamics. Bernoulli’s principle ap-
plies to steady flow along a streamline. Flow round a body is described as
steady if the velocity at any particular point (relative to the body) is always
the same, even though particles of fluid may speed up and slow down as
they travel. A streamline is a curve whose direction is everywhere the same



Fig. 10.2. Diagrams illustrating the discussion of lift. (A) An aerofoil in section,
indicating the angle of attack α. (B) An aerofoil with the circle through which the
air deflected by it is assumed to pass, in the derivation of Equation 10.5. (C) Air
approaching an aerofoil with velocity v travels faster over the upper surface and
less fast over the lower one, and is deflected through an angle ψ. (D) The circula-
tion around a gliding bird’s wings and the vortices in its wake. (E) The vertical
component of the velocity of the air in a transverse section through its wake. d is
the diameter of the core of one of the trailing vortices.
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as the direction of flow of the fluid. In steady flow, the particles of fluid
travel along the streamlines. The broken lines with arrows on them in Fig.
10.2C are streamlines.

Bernoulli’s principle applies only if viscous forces are small enough for
work done against viscosity to be negligible. A moving particle of fluid
has kinetic energy, gravitational potential energy, and energy due to its
pressure. These energies may change as it flows along a streamline, but if
the flow is steady and there are no viscous losses the sum of these energies
remains constant. A particle of fluid of volume δV and mass ρ δV traveling
with velocity v has kinetic energy #ρv 2δV. If it is at height h and the
gravitational acceleration is g, its gravitational potential energy is ρgh δV.
If its pressure is p, its pressure energy is p δV. Thus, Bernoulli’s principle
tells us that as it travels along a streamline, its energy per unit volume is

#ρv 2 + ρgh + p = constant (10.6)

Any changes of gravitational potential energy that occur as air flows past
an aerofoil are generally negligible. Thus, Equation 10.6 tells us that along
the length of a streamline, the pressure will be less where flow is faster and
more where it is slower. Lift acts when air is flowing faster over one surface
of an aerofoil than over the other, giving rise to a pressure difference.

Figure 10.2C shows two streamlines, one passing over the aerofoil and
one under it. Before they reach the aerofoil, the velocity in both is v and
the pressure is the same in both. As they pass the aerofoil, particles on the
upper streamline accelerate a little, to v + ∆v, and particles on the lower
streamline slow down to v − ∆v. Thus, the pressure is a little less above the
aerofoil than below it. Equation 10.6 tells us that the difference of pressure
is #ρ[(v + ∆v)2 − (v − ∆v)2], which equals 2ρv ∆v. If the plan area of the
wings is Aplan, the lift is

Flift = 2ρAplanv∆v = 2ρscv∆v (10.7)

where s is the span of the aerofoil and c is its mean chord (Fig. 10.1B).
The changes of velocity ±∆v are due to the shape of the wing section and
to its angle of attack.

There is yet another way of thinking about lift that is sometimes useful.
Figure 10.2C shows air velocities relative to the aerofoil, but Fig. 10.2D
shows velocities relative to the air that has not yet reached the aerofoil. In
this frame of reference, air is flowing backward over the upper surface of
the aerofoil and forward over the lower surface; in effect, it is circulating
around the aerofoil. Aerodynamicists define a quantity that they call circu-
lation, which is represented by the symbol Γ. Circulation is very simple to
calculate if it is possible to draw a closed loop in such a way that the velocity
along the circumference of the loop is everywhere the same; in this case,
the circulation is the circumference multiplied by the velocity. If we draw
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a loop that encloses the aerofoil tightly, its circumference is 2c (twice the
chord, Fig. 10.1B), the velocity is ∆v, and the circulation is 2c ∆v. Thus,
Equation 10.7 can be written

Flift = ρsvΓ (10.8)

Figure 10.2D shows airflow in the wake behind a gliding animal or air-
craft, as well as round the wing. There is a cylinder of rotating air forming
a trailing vortex behind each wing tip. In some circumstances, water vapor
condenses out in the trailing vortices behind aircraft, making them visible
as vapor trails. If the air had no viscosity, the trailing vortices would persist
all along the animal’s path, connecting with the starting vortex that is
formed when the aerofoil starts producing lift. Thus, the bound vortex
(the circulation round the wing), the trailing vortices, and the starting
vortex would form a rectangle enclosing the downward-moving air be-
hind the wing. What actually happens, however, is that viscosity damps
out the vortices some distance behind the wings. Spedding (1987a) made
the trailing vortices behind a kestrel (Falco tinnunculus) visible by having
it glide through a cloud of soap bubbles filled with a helium/air mixture
(Section 5.4).

Aerodynamic theory predicts that the distance between the center lines
of the left and right trailing vortices will be 0.79 of the wingspan. It also
predicts that the diameters of the cores of the trailing vortices will be 0.17
of the distance between the vortices, or 0.13 of the span (Fig. 10.2E shows
how this diameter is defined). These predictions depend on the plausible
assumption that the induced drag factor, which will be explained in Sec-
tion 10.3, is 1.00. Spedding (1987a) measured the vortex spacing and
core diameter in the wake of the gliding kestrel and found good agreement
with theory.

The trailing vortices are formed because the pressure under the aerofoil
is greater than the pressure above. Consequently, air flows round the wing
tips, from below to above. This in turn results in sideways airflow all along
the wing; the air under the wing is given a component of velocity out
toward the wing tip, and the air over the wing is given an inward compo-
nent of velocity. The layers of air emerging behind the wing, flowing in
slightly different directions, roll up to form the trailing vortices.

10.3. DRAG ON AEROFOILS

In Fig. 10.2C, lift is obtained by deflecting the air through an angle ψ,
giving it downward velocity v tan ψ. We have seen that the mass of air
given this velocity in unit time is πρvs 2/4, so the rate at which kinetic
energy is given to the air is #(πρvs 2/4)(v tan ψ)2 = (πρv 3s 2/8)tan2ψ. The
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lift is (πρv 2s 2/4)tan ψ (Equation 10.5), so the rate at which kinetic energy
is given to the air is 2Flift

2/πρvs 2. To get the lift, work must be done at
this rate. This work is done against a component of drag, called induced
drag, which acts only when lift is being generated. Work is force times
distance, so rate of working is force times velocity, and the induced drag
can be calculated by dividing the rate of working by the velocity:

Induced drag ≈ 2Flift
2

πρv 2s 2

That relationship is only approximate because we assumed unrealistically
that all the air passing through the circle shown in Fig. 10.2B suffers the
same change of velocity. The induced drag will never be lower than the
equation shows, but is likely to be a little higher. To allow for this, we will
insert an induced drag factor kinduced, which is expected to be a little greater
than 1:

Induced drag =
2kinducedFlift

2

πρv 2s 2
(10.9)

The aspect ratio ! of a wing is the span divided by the mean chord (a
high aspect ratio indicates long, narrow wings). The area of the wings is
the span multiplied by the mean chord, so s 2 = !Aplan. Hence,

Induced drag =
2kinduced Flift

2

πρv 2!Aplan
(10.10)

Equation 10.2 told us that if flow is laminar, the friction drag coefficient
based on total area is 1.335−0.5. The total area includes the under surface
of the wing as well as the upper surface, so is twice the plan area. Thus, the
friction drag coefficient based on plan area is about 2.75−0.5. The Reynolds
number 5 should in this case be calculated using the mean wing chord as
the length. We calculated in Section 10.1 that the Reynolds number for
the body of an albatross 1 m long flying at 15 m/s is 106. The same alba-
tross would have a wing chord of about 0.3 m, and the Reynolds number
for the wing would be 3 × 105.

The total drag on a wing minus the induced drag is called the profile
drag. It is a little more than the friction drag, because a little pressure drag
acts on a wing, even when it is generating no lift. We will allow for this
by writing the profile drag coefficient as 2.7kprofile5−0.5, where kprofile is a
profile drag factor. Thus, the total drag on a wing is

Fdrag = #ρAplanv 2 (2.7kprofile5−0.5) +
2kinducedFlift

2

πρv 2!Aplan
(10.11)

We can substitute for Flift using Equation 10.4:
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Fdrag = #ρAplanv 2 12.7kprofile5−0.5 +
kinducedClift

2

π! 2 (10.12)

and the overall drag coefficient is

Cdrag = 2.7kprofile5−0.5 +
kinducedClift

2

π!
(10.13)

Figure 10.3A shows how lift and drag coefficients should be related, ac-
cording to Equation 10.11, for the same aerofoil at three different Reyn-
olds numbers. The induced drag factor and the profile drag factor have
both been assumed equal to 1, so this graph represents the performance
of an ideal aerofoil. The graph illustrates what is obvious from the equa-
tion, that the drag coefficient corresponding to any given lift coefficient
is expected to decrease as Reynolds number increases. Figure 10.3B
shows the results of similar calculations for aerofoils of different aspect
ratios, all at the same Reynolds number. Induced drag is less for higher
aspect ratio wings.

Figure 10.3C shows measurements of lift and drag for a dragonfly wing,
mounted at various angles of attack in a wind tunnel. For angles of attack
up to about 30°, an increase in the angle of attack results in increased lift,
and drag increases with increasing lift more or less as Fig. 10.3B would
lead us to expect. (The measurements were made on a single wing, so the
length of the wing, rather than the wingspan of the intact insect, should
be used to calculate aspect ratio. Calculated in this way, the aspect ratio
was 2.3.) If the angle of attack of this particular wing is increased beyond
30°, the lift coefficient falls due to the phenomenon known as stalling. At
low angles of attack the air flows parallel to the surfaces of the wing, but
at high angles of attack the main flow separates from the upper surface
of the wing, and large eddies form. The flow is deflected downward less
effectively, so lift is reduced; and the kinetic energy given to the air in the
eddies results in increased drag. All aerofoils stall at high angles of attack,
commonly at angles of about 20°.

The wings of aircraft have streamlined sections, as shown in Fig. 10.4A.
The inner parts of bird wings, which contain bones and muscles, have
sections more or less like this (Fig. 10.4E), but the outer parts consist
solely of feathers (Fig. 10.4F) and are in effect cambered plates (Fig.
10.4B). The wing membranes of bats also form cambered plates when
stretched in flight. Insect wings are thin membranes stretched between
thicker veins. Pleating enables these very light wings to be made stiff
enough for flight (Fig. 10.4G). The wings of locusts and some other in-
sects fold like fans when not in use. Wootton (1995) and Herbert et al.
(2000) have explained how, when they are expanded, tension in the mem-



Fig. 10.3. Graphs of lift coefficient against drag coefficient (A) predicted by Equa-
tion 10.11 for an aspect ratio of 10 and Reynolds numbers of 103, 104, and 105;
(B) predicted by the same equation for a Reynolds number of 103 and aspect ratios
of 5, 10, and 20; and (C) measured for a fore wing of a dragonfly (Calopteryx) at
a Reynolds number of 1480. The angle of attack is shown for some of the points
on the graph. It is assumed in (A) and (B) that kprofile and kinduced are both equal to
1. The data for (C) are from Wakeling and Ellington (1997).
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Fig. 10.4. Sections of wings: (A) a typical streamlined section, as used on aircraft;
(B) a thin, cambered plate; (C) a slotted wing; (D) a multislotted wing; (E) and
(F) inner and outer parts, respectively, of a wing of a pigeon (Columba, Nachtigall
and Wieser [1966]); and (G) a dragonfly wing (Kesel 2000).

brane makes the veins bend, cambering the wing. Similarly, tension in the
fabric of an umbrella bends the ribs when the umbrella is opened.

Good wings will give an aircraft or an animal the lift that is needed for
flight with as little drag as possible. For some situations, for example for
very slow flight, it is important to have the highest possible maximum
lift coefficient. For others, for example, as we will see, for gliding at the
shallowest possible angle, the priority is to have the highest possible ratio
of lift to drag. Schmitz (1960) investigated the relative merits of stream-
lined wings and thin plates for model aircraft. He found that suitably cam-
bered plates always perform better than similar, flat plates. At a Reynolds
number of 168,000, a streamlined aerofoil performed a little better than
a cambered plate; it gave both a higher maximum lift coefficient and a
higher maximum ratio of lift to drag. At a Reynolds number of 42,000,
however, the cambered plate performed much better in most respects than
the streamlined aerofoil. This range of Reynolds numbers, at which the
advantage shifts from cambered plates to streamlined aerofoils, is approxi-
mately the range in which the wings of medium-sized birds work. The
wings of pigeons (Columba livia, mass about 0.4 kg) work at Reynolds
numbers of around 40,000 when the bird is hovering, and 120,000 when
it is gliding (Pennycuick 1967, 1968a). Insects and small birds work in
the range in which cambered plates are better.

It might be thought that the pleating of insect wings might interfere
with airflow over them. However, Fig. 10.3 shows that a dragonfly wing
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performs quite creditably, in comparison with an ideal aerofoil at the same
Reynolds number. Kesel (2000) has shown how vortices that develop in
the pleats give the wing an effectively streamlined profile, and excellent
aerodynamic properties.

The maximum lift coefficient, obtained as the wing approaches the stall-
ing angle, is generally no more than 1.5 at high Reynolds numbers and
less at low ones. Pennycuick (1971c) calculated a maximum lift coefficient
of 1.5 from his observations of a fruit bat (Rousettus) gliding in a wind
tunnel at a Reynolds number of 30,000. Figure 10.3C shows a maximum
lift coefficient of 0.9 for a dragonfly wing at a Reynolds number of 1480,
and Vogel (1967) measured a maximum of 0.85 for a model Drosophila
wing at a Reynolds number of 200. However, a small aerofoil set in front
of the main one to form a leading-edge slot (Fig. 10.4C) makes lift coeffi-
cients up to 2 possible, and multislotted wings (Fig. 10.4D) can give even
higher lift coefficients. The alula is a tuft of feathers on the second digit
of bird hands (the first digit is missing). It normally lies flat on the wing
surface, but can be raised to form a leading-edge slot. Nachtigall and
Kempf (1971) experimented with bird wings in a wind tunnel, measuring
lift with the alula raised or sewn down. They found that a raised alula
increased the maximum obtainable lift, usually by about 10%. It is not
surprising that the effect is small, as the alula is much shorter than the
wing. Many photographs of birds landing show raised alulae, but they
often also show small feathers on the upper surface of the wing fluttering,
showing that the wing has stalled (see, for example, McGahan [1973]);
the eddies that form when the wing stalls disturb the feathers).

Also in slow flight, the primary feathers may separate at the wing tips,
as in Fig. 10.1B. This has the effect of making the outer part of the wing
multislotted and might be expected to make high lift coefficients possible.
Tucker and Heine (1990) calculated the lift coefficients of Harris’ hawk
(Parabuteo unicinctus) gliding at various speeds in a wind tunnel. At the
lowest speed at which the bird would glide, the primaries were well sepa-
rated and the lift coefficient was 1.6, which is only a little higher than
would be expected of unslotted wings. Another property of wings with
slots at the wing tip is that they suffer less induced drag than unslotted
wings of the same aspect ratio. Tucker (1995) demonstrated this effect in
experiments with Harris’ hawk.

10.4. GLIDING PERFORMANCE

When an aircraft or animal is gliding at constant velocity, the forces on it
must be in equilibrium. Figure 10.5 illustrates this. The forces in question
are the lift Flift , the drag Fdrag , and the bird’s weight mg. The bird is gliding
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Fig. 10.5. A free-body diagram of a bird gliding.

at an angle θ to the horizontal. Forces along the direction of motion must
balance, so

Fdrag = mg sin θ (10.14)

Also, forces at right angles to the direction of motion must balance,

Flift = mg cos θ ≈ mg (10.15)

(If the gliding angle θ is small, as it will generally be, cos θ ≈ 1.) These
equations imply

tan θ =
Fdrag

Flift
(10.16)

showing that, as already stated, a small gliding angle requires a large ratio
of lift to drag. Finally, for equilibrium the resultant of lift and drag must
be in line with the bird’s weight, which implies that the center of pressure,
where the lift and drag can be considered to act, must be vertically over
the center of mass. The bird can adjust its gliding angle by moving its
wings forward or back; the further back the wings are held, the steeper
the glide.

The drag on an aerofoil, at the angle of attack at which it generates no
lift is the profile drag, which is represented by the first term on the right-
hand side of Equation 10.11. For a complete bird, the drag at zero lift
includes also the drag on the body and can be expressed as #ρAplanv 2

Czero lift , where Czero lift is the drag coefficient when the wing has the angle
of attack at which it generates no lift. Using this and Equations 10.10 and
10.15, Equation 10.14 can be written

mg sin θ = #ρAplanv 2Czero lift +
2kinducedm2g2

πρv 2!Aplan
(10.17)
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sin θ =
ρv 2Czero lift

2N
+

2kinducedN
πρv 2!

(10.18)

In this equation, N is the weight divided by the wing area, mg/Aplan. It is
known as the wing loading.

The rate at which a gliding aircraft or animal loses height is v sin θ:

v sin θ =
ρv 3Czero lift

2N
+

2kinducedN
πρv!

(10.19)

As speed v increases, the first term on the right-hand side of this equation
increases and the second term decreases. Height is lost rapidly at low speeds
and at high ones, and there is an intermediate speed at which the rate of
loss of height is least. This speed is known rather confusingly as the mini-
mum sink speed; the minimum sink speed is the (forward) speed at which
the (downward) sinking speed is least. It can be found by differentiating
Equation 10.19 and finding the speed at which d (v sin θ)/dv is zero:

Minimum sink speed = 1 4kinducedN 2

3πρ2!Czero lift
2

1/4

(10.20)

The minimum sink speed is the speed at which an animal should glide if
its aim is to remain airborne for as long as possible.

Alternatively, an animal might seek to glide as far as possible for given
height loss, maximizing its range. To do that, it must minimize the gliding
angle θ, which is, of course, the same thing as minimizing sin θ. By differ-
entiating Equation 10.18 and finding the speed at which d (sin θ)/dv is
zero, we can find the speed at which the gliding angle is least.

Maximum range speed = 1 4kinducedN 2

πρ2!Czero lift
2

1/4

(10.21)

Notice that this speed is 31/4 = 1.3 times the minimum sink speed. The
minimum gliding angle can be obtained by inserting this speed in Equa-
tion 10.18.

Minimum gliding angle = 1 2kinducedCzero lift

π! 2
1/2

(10.22)

The speed given by Equation 10.21 is the maximum range speed only in
still air. The speed v that has appeared in our equations is the speed relative
to the air. If the air is moving relative to the ground, the animal’s speed
relative to the ground is the vector sum of its speed relative to the air (the
air speed) and the wind speed. In a wind, the animal will maximize the
distance traveled for given loss of height, not by minimizing sin θ (= Sink
speed/Air speed), but by minimizing Sink speed /Ground speed. The air
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speed that gives maximum range is higher than the speed given by Equa-
tion 10.21 when the animal is gliding against the wind, and lower when
there is a following wind (Pennycuick 1978). Liechti et al. (1994) have
discussed the effect of sidewinds on optimal speed.

Equation 10.19 has been used to calculate the rates of loss of height
shown in Fig. 10.6. When sinking speed (v sin θ) is plotted against air
speed (v) in this way, the maximum range speed is the speed at which a
tangent from the origin touches the curve. Figure 10.6B shows that in-
creasing the wing loading increases both the minimum sink speed and the
maximum range speed. However, the minimum gliding angle is un-
changed. Increasing the aspect ratio decreases the minimum sink and max-
imum range speeds, and also reduces the minimum gliding angle.

Pennycuick (1968a) and later researchers have investigated the gliding
performance of various animals by training them to glide in sloping wind
tunnels. An animal gliding so as to remain stationary in a well-designed
wind tunnel, in which air is blown at speed v at an upward angle θ to the
horizontal, is acted on by the same forces as if it were gliding in still air at
the same speed and at a downward angle θ. The width of the tunnel must
be much greater than the animal’s wing span (Section 5.2), so this experi-
ment is practicable only for fairly small animals. The gliding performance
of some larger birds has been investigated by direct observation from the
ground, making allowance for the wind (Pennycuick 1982) or by gliding
with them in their natural habitats, observing their movements relative to
the observer’s glider (Pennycuick 1971a). Wakeling and Ellington (1997)
observed the gliding performance of dragonflies in a large greenhouse
with the doors and vents closed to reduce drafts.

Figure 10.7 shows some results of observations of gliding performance.
The sinking speeds shown are the minimum observed sinking speed for
each airspeed. Animals can make themselves lose height more rapidly by
changes of posture that increase drag. For example, birds increase drag by
lowering their feet (Pennycuick 1971b; McGahan 1973). The graphs in
Fig. 10.7 have the same general shape as the theoretical graphs in Fig.
10.6. However, we should not expect them to match the theoretical curves
exactly, because we ignored some important points in deriving Equation
10.19.

First, we ignored the fact that an animal will stall, if it attempts to glide
too slowly. For this reason, the experimental graphs do not extend to very
low speeds. Secondly, we assumed that the gliding angle was small. When
an animal is gliding at a shallow angle, as illustrated in Fig. 10.5A, its
weight is balanced almost entirely by lift, with a very small contribution
from drag. At steeper angles, drag is more important, and it dominates in
very steep descents, which may be better described as parachuting than as
gliding. Thirdly, we assumed that the zero-lift drag coefficient was con-



Fig. 10.6. Graphs of sinking speed against airspeed, calculated from Equation
10.19. (A) The minimum sink speed and the maximum range speed. (B) The ef-
fects of changing wing loading N and aspect ratio A, as follows:

i ii iii

Wing loading, N/m2 30 100 100
Aspect ratio 7 7 14
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Fig. 10.7. Measured gliding performance of the animals marked by asterisks in
Table 10.1. Sinking speed is plotted against airspeed, as in Fig. 10.6. Data are
from Pennycuick (1960, 1968a, 1971c), Parrott (1970), and Scholey (1986).

stant, although we know from Equations 10.2 and 10.3 that the friction
drag coefficient (a major component of the zero-lift drag coefficient) falls
as Reynolds number increases. Finally, we assumed that an animal’s wing
area was the same at all speeds. However, birds reduce their wing areas
and so increase wing loading when gliding fast. For example, the wing
area of a pigeon was about 600 cm2 when it was gliding at its minimum
speed of 9 m/s, but when gliding at 20 m/s the bird partly folded its
wings, reducing their area to 400 m/s (Pennycuick 1968a). At low speeds
birds may spread their tails (Tucker 1992), and it has generally been as-
sumed that the spread tail contributes to lift and so reduces the effective
wing loading. However, Maybury et al. (2001) measured lift on a wingless
starling (Sturnus) body in a wind tunnel, and found that very little addi-
tional lift could be obtained by spreading the tail. Bats alter their wing
area less than birds, presumably because folding a bat’s wing slackens the
wing membrane and may allow it to bulge upward in an aerodynamically
unsatisfactory way (Pennycuick 1971c).

There is an optimum wing loading Nmax range that minimizes the gliding
angle θ, for any given air speed v. This wing loading can be found by
differentiating Equation 10.18 with respect to N, and finding the value
of N that makes d sin θ/dN equal zero:

Nmax range = ρv 2 ! πCzero drag!

4kinduced
(10.23)
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This equation is less useful than one might hope, for predicting how wing
area should be adjusted to suit changes of speed, because folding the wing
alters the aspect ratio and probably also the drag coefficient. Rosén and
Hedenström (2001) formulated a similar theory, but assumed that mean
chord (rather than aspect ratio) was constant. Their theory predicted cor-
rectly that span and wing area should be reduced at high speeds, but failed
to explain why a jackdaw (Corvus monedula) gliding in a wind tunnel
partially folded its wings even at the lowest speeds at which it would glide.
Both their theory and Equation 10.23 predict “optimum” wing areas that
cannot be attained (because they exceed the area of the fully spread wings)
at very low speeds. One would therefore expect that there would be a
range of low speeds at which the wings would be kept fully extended.

Large birds generally glide fast because heavier birds do not have pro-
portionately larger wing areas. Figure 4.2 shows that the wing areas of
birds other than hummingbirds tend to be proportional to (body mass)0.72,
so bigger birds have larger wing loadings and (from Equations 10.20 and
10.21) higher optimum speeds. Because large gliding birds are both larger
and faster than small ones, they glide at higher Reynolds numbers and so
tend to have lower zero-lift drag coefficients. Equation 10.21 shows that
a smaller zero-lift drag coefficient makes shallower gliding angles possible.
Consequently, larger animals tend to have higher optimum gliding speeds
than smaller ones, and shallower minimum gliding angles.

Table 10.1 shows wing loading and aspect ratio for the gliding animals
included in Fig. 10.7, and a few others. The differences that it shows,
between different species, help us to account for the observed differences
in performance. The low wing loading of the dog-faced bat explains why
its minimum sink speed is much lower than that of the black vulture. The
“wings” of the flying squirrel are merely flaps of skin stretched between
the fore and hind legs. This animal’s low aspect ratio explains why its
gliding performance is so poor compared to that of birds. The poor perfor-
mance of the pigeon, however, may be an artifact of the experimental
method. Pennycuick (1968a) induced it to glide in the wind tunnel by
dispensing food from a device that the bird could reach only by flying in
the required position. It is possible that the posture required for feeding
was not the best possible for gliding.

So far, we have been considering animals gliding at constant speed and
inevitably losing height. Now we will consider what may happen, if a glid-
ing animal allows its speed to change. Let its speed at the present time be
v and its acceleration dv/dt. Let it glide at an angle θ to the horizontal (a
negative angle θ indicates an upward glide). Its mass is m, the gravitational
acceleration is g, and the drag at airspeed v is Fdrag (v). The rate at which
work is being done against drag is vFdrag (v). The rate at which the animal
is losing gravitational potential energy is mgv sin θ. The rate at which it is
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Table 10.1.
Wing loading and aspect ratio of some gliding animals

Mass, kg Wing loading, Aspect ratio
N/m2

Wandering albatross, 8.7 140 15.0
Diomedea exulans

White-chinned petrel, 1.4 80 11.6
Procellaria aequinoctealis

*Fulmar, Fulmarus glacialis 0.82 65 10.3
Wilson’s storm petrel, 0.038 19 8.0

Oceanites oceanicus
Magnificent frigate bird, 1.5 37 12.8

Fregata magnificens
Rüppell’s griffon vulture, 7.6 90 7.0

Gyps rueppellii
*Black vulture, Coragyps 1.8 55 5.8

atratus
Kestrel, Falco tinnunculus 0.2 31 7.9
Marabou stork, Leptoptilos 7.1 74 7.4

crumeniferus
White pelican, Pelecanus 8.5 84 8.5

onocrotalus
*Feral pigeon, Columba livia 0.35 55 7.2
*Giant red flying squirrel, 1.3 118 1.5

Petaurista petaurista
*Dog-faced bat, Rousettus 0.12 21 5.4

aegyptiacus

Note. Asterisks mark the species included in Fig. 10.7. Data are from Pennycuick (1960,
1968a, 1971a, 1972, 1982, and 1983), Videler and Groenewold (1991), and Scholey
(1986).

gaining kinetic energy is d (#mv 2)/dt = mv dv/dt. By the principle of
conservation of energy

Fdrag(v) − mg sin θ + m
dv
dt

= 0 (10.24)

When dv/dt = 0, this equation reduces to Equation 10.14. However, if v
is allowed to change, the equation shows that θ can be negative if dv/dt
is negative (the gliding animal may rise while slowing down). Alterna-
tively, dv/dt can be positive if θ is sufficiently positive (the animal can
accelerate by gliding steeply downward). Both these strategies are used,
for example, by the giant red flying squirrel, Petaurista petaurista (Scholey
1986). This rodent travels through forests in Borneo by climbing the
trunk of a tree, gliding to a lower point on the trunk of a nearby tree,
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climbing up that trunk, and so on. At the start of a glide it dives steeply,
gaining speed and kinetic energy. It continues less steeply, at a gliding
angle of about 12° and at a speed of about 15 m/s. Then, as it approaches
the tree on which it will land, it veers upward and loses speed, so that it
is traveling quite slowly when it lands. If all the gravitational potential
energy lost in the initial dive were converted to kinetic energy, a fall of 11
m would be needed to accelerate the squirrel to 15 m/s. In fact, some of
the energy must be lost as work done against drag. Also, the height lost in
the initial, steep part of the glide averaged only 7.5 m. To reach the speed
recorded by Scholey (1986), the squirrels must have continued to acceler-
ate in the shallower part of the glide.

Flying animals can dive at high speeds by folding their wings. Tucker
et al. (1998) recorded speeds up to 58 m/s, in field observations of a
trained gyrfalcon (Falco rusticolus). Tucker (2000) has pointed out that,
due to the structure of their eyes, falcons and other raptors must turn
their heads about 40° to one side to see prey directly ahead of them with
maximum acuity. Wind tunnel measurements on models indicated that
turning the head in this way would increase drag on the bird by about
50%, and reduce the speed of its dive. This may explain why dives generally
follow a spiral course, enabling the falcon to see the prey with maximum
acuity without turning its head.

10.5. STABILITY

Stability is an important design criterion for aircraft, but the stability of
flying animals has been studied regrettably little. For that reason, this sec-
tion must be brief. In it, I refer to some mechanisms that may be important
for the stability of gliding animals, but do not explain them. Explanations
will be found in textbooks on the aerodynamics of man-made aircraft.

Equation 10.14 shows that the sine of the gliding angle of an animal
gliding at constant velocity is proportional to the drag. Consequently, the
drag is least at the airspeed that gives the lowest gliding angle, the maxi-
mum range speed. If an animal is gliding more slowly than this, and some
disturbance increases its speed slightly, the drag on the animal will fall and
it will glide faster still. Similarly, if a disturbance reduces its speed, the drag
will increase and it will glide yet more slowly. Thus, gliding is unstable at
speeds below the maximum range speed.

The stability of a gliding animal is not merely a matter of maintaining
constant speed. Disturbances may make the animal pitch (tilt nose up or
nose down), yaw (turn to left or right), or roll about its long axis. Conven-
tional aircraft are stabilized in pitch by their tail planes, and Thomas
(1996) has argued that the tails of birds may serve the same function.



G L I D I N G A N D S O A R I N G 201

However, if the tail can generate little lift (Maybury et al, 2001) its stabi-
lizing effect will be weak. Bats have no tail plane, and Pennycuick (1971c)
has suggested that they may be stabilized in pitch by having their wings
swept back and slightly twisted. Conventional aircraft are stabilized in yaw
by a vertical tail fin, but no flying animal has any equivalent structure.
Aircraft can be stabilized in roll by dihedral, that is by having wings that
slope slightly upward from base to tip, so that the two wings form a shal-
low V. Birds, however, generally glide with little or no dihedral.

Polypedates is a tree frog that lives in South East Asian rain forests. It
has large, webbed hands and feet that it uses as aerofoils, to glide down
from trees. McCay (2001) observed it gliding in a tilted wind tunnel. He
also investigated the stability of gliding by measuring the torque on casts
of the frog held in various attitudes in a wind tunnel. He found that if
the model was tilted nose up or nose down, an aerodynamic torque acted
on it, tending to restore it to a normal gliding position. Thus, the model
was stable in pitch. It was also stable in roll. However, if it was turned to
left or right, the torque tended to deflect it more; it was unstable in yaw.

10.6. SOARING

An animal gliding in still air can keep itself airborne only for a limited
time, but if the air is moving the animal may be able to keep itself airborne
indefinitely, without beating its wings. The use of air movements to sus-
tain gliding flight is called soaring. This section explains several soaring
techniques and describes how animals use them.

Very few measurements have been made of the metabolic rates of gliding
animals, but they are enough to show that soaring can be a very economi-
cal means of traveling. Baudinette and Schmidt-Nielsen (1974) measured
the oxygen consumption of two herring gulls (Larus argentatus) gliding
in a wind tunnel and found that it was only about twice the resting meta-
bolic rate. In contrast, Tucker (1972) found that in flapping flight laugh-
ing gulls (Larus atricilla) metabolize at 7 times the resting rate. Bevan et
al. (1995) used data loggers to record the heartbeat frequencies of free-
ranging albatrosses (Diomedea) in the Antarctic (see Section 5.7). From
their records they calculated metabolic rates (Section 5.3), and were able
to show that the metabolic rate while soaring was little more than twice
what it was when the bird was sitting on its nest. Adams et al. (1986)
obtained a similar result by the doubly labeled water method (Section
5.3). By recording heartbeat frequencies, Weimerskirch et al. (2000)
showed that albatrosses have higher metabolic rates when soaring into the
wind than when the wind is behind them. One possible explanation is
that they may have made more wing movements when flying into the
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wind. Weimerskirch et al. (2000) found that albatrosses flying long dis-
tances adapt their paths to the prevailing winds, so as to avoid flying
against head winds.

Animals use at least four techniques of soaring: slope soaring, thermal
soaring, wind-gradient soaring, and sea-anchor soaring. The first two of
these are the most widely used and have been most studied, so the follow-
ing account is principally about them.

Slope soaring is possible wherever the wind is deflected upward, for
example, by a hillside, a building, or a wave. If the animal can glide in
such a way that its rate of sink, relative to the air, is no greater than the
rate at which the air is rising, relative to the ground, it can remain airborne
indefinitely without having to flap its wings. For example, Videler and
Groenewold (1991) observed kestrels (Falco tinnunculus) slope soaring
over sea dikes in the Netherlands. Sea winds blowing at speeds around 9
m/s were deflected upward by the dikes, at angles of about 7° to the
horizontal. Thus, the air was rising at about 9 sin 7° = 1.1 m/s. By gliding
directly into the wind, matching their airspeed and angle of descent to
the wind, the kestrels remained stationary over the dike. In experiments
in a wind tunnel, Tucker and Parrott (1970) found that a different species
of Falco had a minimum sinking speed when gliding of 0.9 m/s, attained
at an airspeed of 9 m/s. The kestrels observed by Videler and Groenewold
(1991) were hunting, scanning the ground below for voles or other prey.
In other locations, where there is nothing to deflect the wind upward,
hunting kestrels remain stationary by wind hovering, that is, by flapping
flight into the wind, again matching their speed to the wind.

It is possible to travel by slope soaring, as well as to remain stationary.
Figure 10.8 shows a seabird slope soaring along a wave. The plan view
shows that to travel parallel to the crest of the wave, and so remain in the
rising air, the bird must glide obliquely into the wind, at an airspeed
greater than the wind speed. Its speed relative to the ground is the vector
sum of its airspeed and the wind speed. To remain airborne, it must be
capable of gliding at the required airspeed, with a sinking speed no greater
than the upward component of the velocity of the wind. Albatrosses (Dio-
medea, etc.) commonly travel by slope soaring along waves (Pennycuick
1982). To travel in directions that are not parallel to the waves, they take
a zigzag path, alternately soaring along a wave and gliding at an angle to
the waves. If they can gain height or speed while soaring along a wave,
they may be able to reach the next wave without flapping their wings.
Pennycuick (1982) found that the lengths of the paths traveled by slope-
soaring albatrosses, measured along the zigzags, averaged 1.5 times the
straight-line distance between the end points.

Thermal soaring does not depend on wind, but on convection currents.
Solar radiation may heat the ground to well above air temperature. Air
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Fig. 10.8. Diagrams of a bird slope soaring along a wave. From Alexander (1989b).

close to the surface is heated by the ground, and so becomes less dense
than the cooler air higher up. Consequently, the heated air rises in col-
umns, like the convection currents in the liquid in a heated saucepan (Pen-
nycuick 1972). These rising columns of air are called thermals. They are
particularly likely to form over patches of ground that get hotter than the
rest, for example, dark-colored rocks or slopes that face the sun. Where
the ground is uniform, an array of more or less evenly spaced thermals will
develop. The air cools as it rises, so water vapor may condense out, forming
cumulus clouds. Glider pilots and presumably also birds find these clouds
useful for locating thermals.

Birds can gain height by gliding in thermals, if the rate at which the air
is rising is greater than the rate at which they are sinking relative to the
air. In sunny regions, such as the East African plains, thermals commonly
rise at speeds of 2–5 m/s (Pennycuick 1972). The minimum sinking
speeds of many gliding birds are much less than this, around 1 m/s (Fig.
10.7). However, thermals are seldom if ever closely enough spaced for a
bird to keep itself airborne by gliding straight through them, rising in
each thermal and losing height between thermals. It is generally necessary
to circle in the thermal to gain enough height to glide to the next thermal.
Figure 10.9 represents a typical flight path. A bird gliding at speed v in
circles of radius r has an acceleration v 2/r toward the center of the circles.
If its mass is m, it needs a centripetal force mv 2/r to give it this accelera-
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Fig. 10.9. Diagrams of a bird soaring in thermals. The downward slope of the glide
is exaggerated. From Alexander (1989b).

tion. The bird develops this force by banking, as shown in Fig. 10.9B,
so that the lift has a horizontal component mv 2/r as well as the vertical
component mg (where g is the gravitational acceleration) needed to sup-
port the bird’s weight. Thus, the lift required is m! g 2 + (v 2/r)2 . Addi-
tional lift implies additional induced drag, so the bird sinks faster relative
to the air than it would if it were gliding along a straight path. To calculate
the sinking speed (v sin θ), we must modify Equation 10.17, obtaining

mg sin θ = #ρAplanv 2Czero lift +
2kinducedm2 [g 2 + (v 2/r)2]

πρv 2!Aplan
(10.25)

v sin θ =
#ρv 3Czero lift

N
+

2kinducedN [1 + (v 2/rg)2]
πρv!

This shows that the smaller the radius of circling, the greater the sinking
speed must be for any given airspeed. Pennycuick (1971a) used this equa-
tion to calculate sinking speeds of a white-backed vulture (Gyps africanus)
circling with different radii. His assumptions implied that, in a straight
glide, the bird had a minimum sinking speed of 0.76 m/s. He calculated
that when circling with radii of 30, 20, and 10 m, its minimum sinking
speeds would be 0.8, 0.9, and 1.6 m/s, respectively.

Air rises faster in the core of a thermal than near the edge. A bird can
benefit from faster rising air if it soars in smaller circles, but by reducing
the radius of circling it increases the rate at which it sinks relative to the
air. Its rate of gain of height is the rate at which the air is rising, minus
the rate at which the bird is sinking relative to the air, and has a maximum
value at an intermediate radius. Pennycuick (1971a) observed that Gyps
africanus usually circles with radii between 15 and 25 m.
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There is a minimum possible circling radius, which depends on the
bird’s lift coefficient. We have already seen that the horizontal component
of lift, needed for circling, is mv 2/r. The resultant lift, taking account
also of the vertical component, must be greater than that. Hence, using
Equation 10.4,

mv 2

r
< #ρAplanv 2Clift (10.26)

r > 2m
ρAplanClift

=
2N

ρgClift

The vulture in Pennycuick’s (1971a) calculations had a wing loading N
of 77 N/m2. The density ρ of air is about 1.2 kg/m3 and the gravitational
acceleration g is about 10 m/s2. The maximum lift coefficient of which
the bird was capable was probably about 1.6. By putting these data into
Equation 10.26 we find that the bird could not have circled, at any speed,
with a radius less than 8 m. If its wing loading were lower or if it could
develop higher lift coefficients, it could glide in smaller circles and use
smaller thermals.

Conditions for thermal soaring are particularly good over the Serengeti
plain in East Africa. The thermals there are not strong enough for soaring
until about two hours after sunrise, but vultures spend much of the rest
of the day soaring, looking out for dead mammals. They also travel long
distances by soaring. Rüppell’s griffon vulture (Gyps rüppellii) commutes
daily between the cliffs where it nests and the herds of mammals, up to
140 km away, where it finds its food. Pennycuick (1972) used a motor
glider to fly with them. On one occasion, he stayed with a Gyps rüppellii
for 96 min, while it traveled 75 km on its way back to its nest. It traveled
this distance entirely by soaring, circling in 5 thermals and passing
through others without circling. Pennycuick (1972) also described the
soaring behavior of storks, pelicans, and other birds. Some large fruit bats,
including Pteropus samoensis (about 0.4 kg), soar in thermals (Norberg et
al., 2000).

As a general rule, thermal soaring is confined to fairly large birds and
bats, but Gibo and Pallett (1979) observed monarch butterflies soaring
in thermals on their migrations between Canada and Mexico. Gliding tests
with dead specimens showed that their minimum sinking speed was only
0.6 m/s, so they could gain height in weak thermals. However, their mini-
mum gliding angle was 16°, so they could not glide far for a given loss of
height.

Thermals generally occur only over land, but in the trade wind zone
they occur also over the sea. The trade winds carry cool air from higher
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latitudes toward the equator. Cool air that is blown close over the sur-
face of the warm tropical water is warmed and tends to rise. Pennycuick
(1983) showed how frigate birds (Fregata magnificens) soar in the re-
sulting thermals.

Now that we have discussed slope soaring and thermal soaring, we will
consider briefly two other soaring techniques. Wind-gradient soaring
(also called dynamic soaring) is a technique sometimes used by albatrosses
(Wilson 1975). It depends on two principles. First, wind speed is generally
lower close to the ground or the sea surface than it is higher up. Secondly,
it is possible to gain height while gliding, at the expense of speed. Equa-
tion 10.24 shows that if drag is small compared to the other terms, then

dv
dt

≈ −g sin θ

The rate of gain of height, dh/dt is −v sin θ. Thus,

dv
dt

≈ − (g/v)dh
dt

(10.27)

dv
dh

≈ − g
v

This equation gives the rate of change of airspeed with height, if wind
speed is independent of height. However, if the bird is gliding into a wind
that is faster at higher levels, the increase in wind speed as the bird rises
may be sufficient to keep the bird’s airspeed v constant. The bird may be
blown backward, but its airspeed will remain high enough to keep it air-
borne as it continues to rise. In wind-gradient soaring, birds glide down-
wind, losing height and gaining speed, then turn into the wind and rise,
losing speed relative to the ground but maintaining their airspeed. Equa-
tion 10.27 indicates that for this soaring technique to be possible, the
vertical gradient of wind speed must be at least g/v; for an albatross flying
at 20 m/s, that would be 0.5 /s. The gradient of wind speed diminishes
with height, so wind-gradient soaring is possible only over a limited range
of heights. Pennycuick (1982) argued that it would seldom be as strong
as 0.5 /s at heights exceeding 3 m. Albatrosses often rise considerably
higher than this, to 15 or occasionally 20 m, before turning and gliding
downwind (Pennycuick 1982). It seems likely that most of the energy for
the climb comes from lost kinetic energy, rather than being extracted from
the wind by the technique of wind-gradient soaring.

Sea anchor soaring is a technique used by storm petrels (Oceanites) to
keep themselves airborne just above the surface of the sea, when they are
searching for the small fish and squids on which they feed (Withers 1979;
Sugimoto 1998). The birds look as if they are walking on the water with
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their wings spread. What they are actually doing is using their feet as pad-
dles to prevent themselves from being blown backward at the speed of the
wind. The bird’s weight is balanced by the lift due to the wind blowing
over the wings. The drag that the wind exerts on it is balanced by the drag
(in the opposite direction) that the water exerts on its feet. The wings are
close enough above the water for aerodynamic drag to be reduced by
ground effect, that is, by interaction of the airflow with the surface of the
water. They make small movements, quite unlike the movements of flap-
ping flight, which may perhaps enhance lift (Withers 1979).

The optimum dimensions for wings depend not only on the mass of the
animal, but also on its flying habits. Slope soarers that travel as albatrosses
do, at high angles to the wind (Fig. 10.8), need to be able to glide consid-
erably faster than the wind. To glide well at high speeds, they need high
wing loading; Equations 10.20 and 10.21 show that the minimum sink
speed and the maximum range speed are both proportional to the square
root of wing loading. High wing loading is also an advantage for wind
gradient soaring because higher speeds enable birds to soar in weaker ver-
tical wind gradients, as the discussion after Equation 10.27 shows. In con-
trast, low wing loading is generally advantageous for thermal soarers be-
cause it enables them to soar in smaller thermals, as the discussion
following Equation 10.26 shows. Some birds such as the Andean condor
(Vultur gryphus) practice both slope soaring and thermal soaring (Pen-
nycuick and Scholey 1984), but most soaring birds use one of these tech-
niques much more than the other. Table 10.1 confirms that habitual slope
soarers tend to have much larger wing loadings than thermal soarers of
similar mass. An 8.7-kg albatross had a wing loading of 140 N/m2,
whereas three thermal soarers of only slightly lower mass (a Rüppell’s grif-
fon vulture, a stork, and a pelican) had wing loadings between 74 and 90
N/m2. A 1.4-kg white-chinned petrel (a slope soarer) had a wing loading
of 80 N/m2, whereas a 1.8-kg black vulture (a thermal soarer over land)
had a wing loading of only 55 N/m2 and a 1.5-kg frigate bird (which
soars in thermals over the sea) had a wing loading of 37 N/m2. The table
also illustrates the tendency for large birds to have higher wing loadings
than smaller birds of similar habits. Figure 4.1B showed that the wing
areas of birds tend to be proportional to (body mass)0.72, which implies
that wing loading (Body mass/Wing area) tends to be proportional to
(body mass)0.28.

A high aspect ratio is aerodynamically advantageous. Equation 10.19
shows that at any airspeed, other things being equal, an increase in aspect
ratio reduces sinking speed. However, in Table 10.1, only the albatross,
the petrel, and the fulmar (marine slope soarers) and the frigate bird (a
marine thermal soarer) have aspect ratios greater than 10. Terrestrial ther-
mal soarers such as vultures might soar better if they had higher aspect
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ratios, but if they combined low wing loading with high aspect ratio (as
frigate birds do) their wings would be exceedingly long and possibly diffi-
cult to manage when taking off from the ground.

This chapter has introduced some of the basic principles of aerodynam-
ics and applied them to the gliding performance of birds, bats, and flying
squirrels. It has explained how albatrosses, vultures, and other birds can
keep themselves airborne at low energy cost by slope soaring, thermal
soaring, and other techniques, and it has shown that different wing de-
signs are suited to different soaring techniques. It seems to me that the
most promising topics for future research on gliding are stability and ma-
neuvering, which have not so far been given the attention they deserve.



Chapter Eleven...............................................................
Hovering

HOVERING MEANS flying so as to stay more or less stationary
relative to the surrounding air. Kestrels (Falco tinnunculus, see
Section 10.6) often keep themselves stationary relative to the

ground by flying into the wind, matching their speed to the wind, but this
is not hovering in the sense used in this chapter, because the bird is moving
rapidly relative to the air.

Many insects hover: for example, Ellington (1984) studied hovering by
flies, bees, moths, a beetle, and a lacewing. Hummingbirds (masses 2–20
g) hover in front of flowers, feeding on nectar, and can sustain hovering
for many minutes (for example, up to 50 min in Lasiewski’s [1963] experi-
ments). Many other small birds and bats can hover, but only briefly; Glosso-
phaga soricina, a 12-g nectar-feeding bat, hovered for no more than 4.5 s
in the experiments of Winter et al. (1997). Birds up to about the size of
pigeons (Columba livia, about 0.4 kg) can hover for even shorter times
(Pennycuick 1968b) and larger birds cannot hover.

11.1. AIRFLOW AROUND HOVERING ANIMALS

Animals hover by beating their wings to drive air downward. The principle
is the same as for hovering by helicopters, whose rotors similarly drive air
downward. To keep an animal airborne, downward momentum must be
given to the air at a rate equal to the animal’s weight, as explained for
gliding in Section 10.2.

Animals generally hover by beating their wings in a (more or less) hori-
zontal plane. Each wing has length r and beats through an angle φ, so the
air that the wings accelerate passes through the two sectors of circles
shown in Fig. 11.1B. We will ignore the movement of the wings and think
of the sectors as actuators that apply a sudden pressure change to the air
that passes through them.

Initially, this air is stationary. Its density is ρ, and the total area of the
two sectors is r 2φ. The air passes through the sectors at velocity vind, and
eventually reaches velocity vwake in the wake far below the animal. Thus,
the mass of air that is accelerated in unit time is ρr 2φvind , and the rate at
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Fig. 11.1. Diagrams of the air movements produced by a hovering animal: (A)
the air velocities and pressures referred to in the discussion of induced power; (B)
a plan of the plane in which the wings beat; and (C) the vortex rings in the wake.
Arrows represent air movement.

which momentum is given to this air is ρr 2φvindvwake. This must equal the
weight mg of the animal:

mg = ρr 2φvindvwake (11.1)

A large part of the power needed for hovering is induced power, that is,
power required to give kinetic energy to the accelerated air. The induced
power Pind equals the rate at which kinetic energy is given to the air.

Pind = #ρr 2φvindvwake
2 (11.2)

To calculate this power, we need values for the two velocities, vind and vwake.
We will obtain these by applying Bernouilli’s principle (Equation 10.6).
We can apply the principle to airflow above the wings and to flow in the
wake below, but we cannot apply it to flow past the wings because the
wings do work on the air; the principle assumes that the total energy of
the air remains constant. Far above the wings, the air is stationary and has



H O V E R I N G 211

pressure patm, the ambient atmospheric pressure. Just above the plane of
the wings it has velocity vind and pressure pabove. The change of height is too
small for its gravitational potential energy to have changed appreciably, so
Equation 10.6 tells us that

patm − pabove = #ρvind
2 (11.3)

The air immediately below the plane of the wings still has velocity vind, but
its pressure is now pbelow. Far below the wings, in the wake, the air has
velocity vwake and has returned to pressure patm. By applying Bernouilli’s
principle to this part of its path,

pbelow − patm = #ρ (vwake
2 − vind

2) (11.4)

By adding these two equations together we get

pbelow − pabove = #ρvwake
2 (11.5)

The animal’s weight is supported by this pressure difference acting across
the sectors, whose total area (as we have seen) is r 2φ:

mg = r 2φ (pbelow − pabove) = #ρr 2φvwake
2 (11.6)

Comparison of Equation 11.6 with Equation 11.1 shows that vwake = 2vind.
By substituting this in Equations 11.1 and 11.2 we get

vind = ! mg
2ρr 2φ

(11.7)

and

Pind = 2ρr 2φvind
3 = !m3g3

2ρr 2φ
(11.8)

This equation will help us to understand why large birds cannot hover.
Geometrically similar birds of different sizes would have wing length r
proportional to the cube root of body mass m. The equation shows that
this would make the induced power proportional to ! m3/m2/3 = m1.17;
the power requirement per unit body mass would be greater for large birds
than for small ones. However, large animals cannot produce as much
power, per unit body mass, as smaller ones. Animals of different sizes tend
to have similar proportions of muscle in their bodies (Section 4.3), and
to be capable of doing equal amounts of work, per unit muscle mass, in a
contraction (Section 2.1). However, larger animals move their limbs at
lower frequencies than small ones, typically at frequencies proportional to
(body mass)0.25 (Section 4.1). Therefore, power output (work per cycle
multiplied by frequency) is expected to be about proportional to (body
mass)0.75. Notice that the exponent (0.75) is much lower than the exponent
(1.17) for the power required.
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That argument tells us that if birds were geometrically similar to each
other, there would be a critical size above which they could not produce
enough power for hovering. Birds of different sizes are not, in fact, geo-
metrically similar to each other. Hummingbirds have wingspans about
proportional to (mass)0.53, which makes induced power proportional to
(mass)0.97, and other birds have wingspans about proportional to (mass)0.39,
which makes induced power proportional to (mass)1.11 (Rayner 1987).
However, these exponents for power requirement (0.97 and 1.11) are still
greater than the likely exponent for the available power (0.75). Thus, the
conclusion stands, that large birds cannot generate enough power for hov-
ering. This argument implies the assumption that induced power is a
major part of the power required for hovering. Section 11.3 will confirm
that this is the case.

The theory presented so far treats the plane of the wings simply as an
actuator that increases the pressure of the air that passes through it. This
implies that the wake will be a continuous column of downward-moving
air. In fact, the air is driven by beating wings, each beat generating a puff
of downward-moving air. This makes very little difference to the induced
power (Rayner 1979). Each wing beat produces a starting vortex, a trail-
ing vortex behind the wing tip, and a bound vortex round the wing, which
separates from the wing at the end of the stroke (Section 10.3). In the
wake below the animal, the vortices from the left and right wings combine
to form vortex rings (Fig. 11.1C). This diagram is idealized. The closely
packed vortex rings do not form a regular stack, but interfere with each
other and coalesce into larger rings (Rayner 1979). I do not know any
good illustrations of the wake of a hovering animal. However, Willmott
et al. (1997) reproduce photographs of a tethered hawkmoth, Manduca,
beating its wings in a wind tunnel in air that is flowing very slowly, at
0.4 m/s. Air movement in the wake is made visible by fine filaments of
“smoke” (actually a suspension of oil droplets) introduced into the flow
above the wings. These photographs show a vortex ring being formed by
each stroke, but each ring becomes indistinct before the next stroke is
complete.

The form of the wake, as a stack of vortex rings, suggests a hypothesis
about the design of hovering animals. If evolution has optimized the de-
signs of animals for hovering, we may expect similar hoverers of different
sizes to have dynamically similar wakes. This implies, for example, that the
distances between successive vortex rings will be proportional to wing
length. Hovering is a cyclic motion, so one of the conditions for dynamic
similarity is that hovering animals of different sizes will have equal Strou-
hal numbers (Section 4.2). Consider an animal of mass m and wing length
r that beats its wings with frequency f and generates an induced velocity
vind. The obvious relevant Strouhal number is rf/vind, so our hypothesis
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will be that this Strouhal number is the same for hoverers of different
sizes. The induced velocity is proportional to m0.5/r, so we expect r 2fm−0.5

to be constant. For hummingbirds, r is proportional to m0.53 and f to
m−0.60 (Rayner 1987), making r 2fm−0.5 proportional to m−0.04. For euglossine
bees, r is proportional to m0.42 and f to m−0.35 (Casey et al., 1985), making
r 2fm−0.5 proportional to m−0.01. In each case, r 2fm−0.5 is more or less indepen-
dent of body mass, as predicted.

11.2. LIFT GENERATION

Our discussion so far has shown that hovering animals must drive air
downward, to counteract their weight and keep them airborne. Now we
ask what are the aerodynamic effects that provide the required forces.

Our understanding of insect hovering depends largely on research by
Charles Ellington and his colleagues at Cambridge University, on the
hawkmoth Manduca sexta. This insect is convenient to work with because
it is large (mass 1–2 g, wing length about 50 mm), and beats its wings at
fairly low frequency (26 Hz). Also, it is not too difficult to keep and breed
in the laboratory. Willmott and Ellington (1997b) took high speed video
of Manduca hovering while taking sugar solution from an artificial flower.
Figure 11.2A shows that it hovered with its body sloping at about 40° to
the horizontal, with its wings beating in a plane that made an angle of
20° to the horizontal. Like most other insects, Manduca has fore and hind
wings that beat together as a unit. The two wings of one side of the body
are described as a wing couple.

The dorsal surface of the wing couple is uppermost in the forward
stroke, but for the backward stroke the wings are turned upside down so
that their ventral surfaces are uppermost. Willmott and Ellington (1997a)
devised a method that enabled them to calculate from their video images
the angles of attack of the wings. Figure 11.3 shows information obtained
in this way both for hovering (0 m/s) and for forward flight. It shows the
paths of a wing couple relative to the air, which is moving downward at
the induced velocity. Notice that because the wings turn upside down for
their forward stroke in hovering, their stiff anterior edges always lead
while their flexible posterior edges trail behind (Fig. 11.3B). Also, the
angles of attack ensure that both the forward and the backward stroke
produce upward forces to support the body’s weight. Obviously, the mean
vertical force equals the weight of the body; otherwise, the insect could
not hover. How large must the lift coefficients be?

This question can be answered by blade-element theory, as applied
to the aerodynamics of helicopter rotors. The frequency of the wing beat
cycle is f, so each forward or backward stroke of the wings is made in



Fig. 11.2. (A) The path of the wing tip of a hovering hawkmoth, Manduca sexta,
from Willmott and Ellington (1997b). (B) A wing couple of Manduca (i.e., the
fore and hind wings of one side) showing a wing strip as used in blade-element
theory.
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Fig. 11.3. Paths relative to the surrounding air of the wings of Manduca (seen in
side view) flying at various speeds. (A) The path of the wing tip. (B) The path of
a point halfway along the wing. Lines at the mid point of most strokes represent
the wing chord, drawn to scale, with a ventral projection added at the leading edge
to show which way up the wing is. Thin arrows show the estimated direction
and relative magnitude of the aerodynamic force (the resultant of lift and drag).
Arrowheads on the wing paths in (B) show the direction of movement of air rela-
tive to the wing. From Willmott and Ellington (1997c).

time 1/2f. In this time the wing moves through an angle φ, with mean
angular velocity 2f φ. The narrow strip of wing shown in Fig. 11.2B is at
a distance x from the wing base, so its velocity relative to the insect’s
thorax is 2f x φ. However, its velocity relative to the air is the vector sum
of this velocity and the induced velocity vind. The two components of
velocity are approximately perpendicular to each other, so their vector
sum is ! (2f x φ)2 + v ind

2 . The area of the strip is cδx and the density of air
is ρ, so if the lift coefficient is Clift , the lift on the strip of wing is
#ρcδxC lift [ (2 f x φ)2 + vind

2]. Now imagine the entire wing couple divided
into narrow strips. The total lift on all the strips of the wings of one side
of the body must equal half body weight. Hence,

mg = Σ{ρc δx C lift [ (2 f x φ)2 + vind
2]} (11.9)

where Σ indicates the sum of the values for all the strips from the wing
base to the wing tip. If we use Equation 11.7 to get the induced velocity,
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and assume (because we know no better) that the lift coefficient is constant
along the whole length of the wings, we can calculate the coefficient. Will-
mott and Ellington (1997c) performed a more sophisticated version of
this calculation and obtained lift coefficients (for three individual moths)
ranging from 1.3 to 1.8. They also measured lift coefficients for isolated
Manduca wing couples held at various angles of attack in a wind tunnel.
The highest lift coefficient that they could measure in the wind tunnel, in
the appropriate range of Reynolds numbers, was only 0.7. Thus, the wings
of hovering Manduca provide far more lift than conventional aerodynamic
theory allows. Lift coefficients that are improbably high, according to con-
ventional aerodynamics, have also been calculated for other insects, in-
cluding bees (Dudley and Ellington 1990b) and flies (Ennos 1989), and
for birds, including hummingbirds (Weis-Fogh 1973) and a flycatcher
(Ficedula [Norberg 1975]).

Conventional aerodynamics fails to explain how animals hover. This
seems to be because conventional aerodynamics deals with aerofoils such
as wings and propeller blades, which move through the air at more or less
steady speeds. In contrast, the wing movements of hovering animals are
markedly unsteady. The wings beat backward and forward, repeatedly re-
versing their direction of movement. As a rough general rule, calculations
using steady-state lift and drag coefficients work reasonably well only if
the distance traveled by the wing relative to the air in each cycle of move-
ment is at least 12 chord lengths. Figure 11.3B shows that Manduca wings
move much less far than this in a hovering wing beat cycle.

The phenomenon called delayed stall plays a large part in making high
lift coefficients possible for Manduca and other hovering animals. Figure
11.4A shows air flow over a streamlined aerofoil such as an aeroplane wing
at a moderate angle of attack. The flow clings closely to the surfaces of the
aerofoil. However, if the aerofoil is a thin plate with a sharp leading edge,
or if the angle of attack is high, or both, the flow pattern shown in Fig.
11.4B develops. The flow over the upper surface separates from the lead-
ing edge and reattaches further back, trapping a leading-edge vortex in
which air circulates as shown. Initially, after the aerofoil starts moving
from rest, the vortex is small and there is little lift. As movement contin-
ues, the leading-edge vortex grows, the bound circulation strengthens,
and lift increases. Eventually, if the angle of attack is high, the leading-
edge vortex detaches and is lost in the wake, the wing stalls, and lift is lost.
In the short time before this happens, however, the lift may be much
higher than can be maintained in a steady state.

Ellington et al. (1996) used an enlarged model to simulate airflow over
the wings of a hovering Manduca. Each wing couple was made of cloth
stretched over an appropriately shaped framework of brass tubes. A motor
with a complex gearbox made them beat in a cycle imitating the wing
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Fig. 11.4. (A) Flow around a streamlined aerofoil at a moderate angle of attack.
(B) Flow around an aerofoil with a sharp leading edge, at a high angle of attack.
(C) Flow around the wings of a hovering moth.

movements of the moth. Smoke released from holes in the tube that forms
the leading edge made the air movements around the wings visible. The
wings were ten times as long as in the moth but beat at one hundredth of
the moth’s frequency, so the speed of any point on a wing was one-tenth
of the speed of the corresponding point on the wing of the real moth.
With ten times the length of the real moth wing and one-tenth the speed,
the Reynolds number is the same as for the moth (see Section 4.2). Also,
with these ratios the Strouhal numbers are equal. Thus, flow around the
model’s wings was expected to be dynamically similar to flow around the
wings of the real moth.

The experiments with the model showed a leading-edge vortex that
developed during the forward stroke. At any stage of the stroke, the vortex
was larger over the faster-moving distal parts of the wings than over the
slower-moving proximal parts. Also, the air in the vortex had a component
of velocity out toward the wing tips, due to centrifugal effects and to the
lower pressure over the faster-moving wing tips. Thus, the air in the vortex
flowed in conical spirals (Fig. 11.4C). At the wing tips the leading-edge
vortex merged into the developing vortex ring.

Ellington et al. (1996) also used smoke to show airflow around the
wings of real, tethered Manduca, beating their wings as if flying. The
tether was attached to a balance that showed that the moth’s flying move-
ments were supporting at least 70% of its weight. For some of their obser-
vations, the airflow was so slow (0.4 m/s) that the moth was effectively
hovering. Less detail could be seen than in the experiments with the
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model, but the pattern of airflow seemed (as expected) to be the same.
Liu et al. (1998) obtained further confirmation of the pattern by computa-
tional fluid dynamics. Their computations showed that a leading-edge vor-
tex is formed in the backward as well as the forward stroke, and predicted
sufficient lift to support the insect’s weight.

A leading-edge vortex on a wing moving steadily at a high angle of
attack grows and eventually detaches, resulting in a stall. The flow toward
the wing tip of the moth removes air from the vortex, restricting its rate
of growth and so stabilizing it. This is probably more important in forward
flight (in which the wings travel further in each wing beat cycle) than in
hovering.

Hummingbirds hover like Manduca and some other insects, turning
the wings upside down for their backward stroke and getting upward lift
in both strokes. Other birds and bats generate upward lift only in the
forward stroke, partially folding the wings in the backward stroke and
holding them at angles that keep the aerodynamic forces small. Photo-
graphs of birds other than hummingbirds hovering show the primary
feathers bent upward by lift during the forward stroke, but not in the
return stroke (Norberg 1975). Dickinson and Götz (1996) found evi-
dence that the fruit fly Drosophila also obtains lift from the downstroke
only. They tethered Drosophila to a delicate force transducer with their
feet unable to touch the ground; this stimulated them to beat their wings
as if hovering. They used a smokelike suspension of Lycopodium (club
moss) spores to make air movements visible, and found that the down-
stroke, but not the upstroke, produced a vortex ring. The output of the
force transducer confirmed that only the downstroke produced lift.

Dickinson et al. (1999) used a model to learn more about the aerody-
namics of Drosophila flight. They made a pair of wings, each 25 cm long,
cut to the shape of Drosophila wings. Each wing was connected to three
motors, which could be used to make it rotate about any axis through its
base. The wings were made to beat in a bath of mineral oil, at speeds that
made the Reynolds number the same as for the wings of a real fly flying in
air. Force transducers at the bases of the wings measured the forces on the
wings. A pattern of beating designed to imitate the wing beat cycle of
Drosophila generated upward lift both in the downstroke and in the up-
stroke, in contrast to the observations described in the paragraph above.

The importance of these model experiments was that they demon-
strated two other aerodynamic effects, as well as delayed stall, that may be
important in insect flight. Figure 11.5A is a schematic graph of lift on the
model against time. Notice that there is a peak of lift just after the begin-
ning of each stroke and just after the end.

Figure 11.5B shows what seems to have happened at each stage of the
cycle. It will be convenient to start at stage 2, in mid downstroke. There
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Fig. 11.5. (A) A schematic graph of lift against time, based on records of forces
on a model simulating Drosophila flight (Dickinson et al., 1999). The numerals
indicate the stages of the wing beat cycle illustrated below. (B) Diagrams showing
a wing (seen in section) and the airflow near it, at successive stages of the cycle.

is a leading-edge vortex like the ones observed over Manduca wings, and
the lift is attributable to delayed stall. At stage 3, near the end of the
downstroke, the wing is turning over in preparation for the upstroke and
has a very high angle of attack. Rotation of the wing enhances the circula-
tion, increasing lift. At the same time, because the angle of attack is high,
the drag becomes very large, decelerating the wing. The airflow immedi-
ately behind the wing has a large component toward the right, corres-
ponding to the drag, as well as the downward component corresponding
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Fig. 11.6. Diagrams showing successive stages in the clap and fling of a hovering
Encarsia. The wasp has a wing span of 1.5 mm and beats its wings at a frequency
of 400 Hz. From Weis-Fogh (1973).

to the lift. (Remember that if the air is exerting a backward force on the
wing, the wing must be exerting a forward force on the air.) The enhance-
ment of circulation by rotation of the wing explains the peak in the lift.
By stage 4 the wing has turned over completely and is moving toward the
left of the diagram, at the beginning of the upstroke. It moves back into
its own wake and meets the air that it set moving to the right at the end
of its previous stroke. This generates another peak of lift. At stage 5, the
situation is the same as at stage 2, and the cycle continues. Delayed stall
is important throughout both strokes, but the lift it generates is supple-
mented by rotational circulation at stages 3 and 6, and by wake capture at
stages 1 and 4. In some insects, such as hoverflies (Syrphidae), which beat
their wings through smaller angles than most other insects, rotational
circulation and wake capture may be more important for flight than de-
layed stall.

Birch and Dickinson (2001) used the Drosophila model for further ex-
periments, focusing on the leading-edge vortex. Ellington et al. (1996)
had found strong flow outward toward the wing tip in the leading-edge
vortex of Manduca (Fig. 11.4c). In contrast, Birch and Dickinson (2001)
found only very slow outward flow in the vortex on their Drosophila
model. They used baffles to stop even this slow flow, and found that the
vortex persisted. It seems that the aerodynamic mechanism that keeps the
vortex in place in Drosophila is different from the one that operates in
Manduca. This is not too surprising, as the Reynolds numbers are 10–20
times lower in the case of Drosophila.

There is another unsteady mechanism that seems to be important for
hovering in some insects such as the tiny wasp Encarsia, for which a lift
coefficient of 2.3 has been calculated. This mechanism is the clap and fling
(Weis-Fogh 1973). Encarsia hovers with its body vertical and its wings
beating in a horizontal plane (Fig. 11.6). At the end of the backward
stroke, the wings clap together. Their leading edges separate before their
trailing edges, drawing air around the leading edges into the growing
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space between the wings and establishing a strong circulation rapidly.
Lighthill (1973) worked out the theory of the clap and fling, and Sped-
ding and Maxworthy (1986) showed how effective it can be. The clap and
fling, or the related clap and peel in which the wings peel apart instead of
opening like the leaves of a book, is also used by butterflies (Brackenbury
1991) and some other insects. It is also used at takeoff by many birds and
bats. In the case of pigeons (Columba livia) the wings can be heard clap-
ping together.

Most insects have two pairs of wings, but move the two wings of each
side of the body as a unit. However, dipteran flies have only one pair of
wings, as the hind pair have become halteres. In beetles, the fore wings
have become elytra, which are held spread but stationary while the insect
flies by beating its much longer hind wings. At rest, the hind wings are
folded under the protective elytra. Dragonflies and damselflies (Odonata)
have two pairs of wings that beat out of phase with each other. Ellington
(1984) filmed hovering by members of all the groups mentioned in this
paragraph. The wings of some insects bend markedly in flapping flight
(Wootton 1999).

11.3. POWER FOR HOVERING

In this section we will discuss estimates of the mechanical power required
for hovering, and compare them to measurements of the rates of oxygen
consumption of hovering animals.

We have already derived an equation for induced power (Equation
11.8). For a 1.7-g moth (Manduca) beating wings 50 mm long through
an angle of 115° (2.0 rad) in air of density 1.2 kg/m3, it gives a power of
11.5 W/kg body mass. A more sophisticated calculation by Willmott and
Ellington (1997b) gives 14–16 W/kg. The same authors also estimated
the power required to overcome profile drag, treating the wings as assem-
blies of strips moving at different speeds as in the blade element calcula-
tions of lift coefficients (Fig. 11.2B). These calculations are subject to con-
siderable uncertainty, because the profile drag coefficients in the unsteady
motion of hovering are not necessarily the steady-state values. Willmott
and Ellington’s (1997b) estimates for three individual moths, using three
different sets of assumptions, ranged from 3 to 10 W/kg. Their estimates
of the total mechanical power required for hovering ranged from 18 to
26 W/kg.

They also considered the energy needed to accelerate the wings for each
stroke. If the moment of inertia of a wing couple about its base is I and it
reaches a peak angular velocity ωmax in the course of a wing stroke, the
kinetic energy that it gains and loses in the course of the stroke is #Iωmax

2.
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The moment of inertia used in this calculation should include the added
mass of air that is accelerated and decelerated with the wings. Willmott
and Ellington (1997b) measured the moments of inertia of Manduca
wings, took account of added mass, and calculated that the inertial power
required for hovering was 23–38 W/kg. This is the total positive work
required per unit time to accelerate the wings.

The inertial power seems to be greater than the aerodynamic power, so
there is scope for saving energy by elastic storage (Section 3.6). Are such
savings made? In the discussion that follows I will use midrange estimates
of 22 W/kg for aerodynamic power and 30 W/kg for the inertial power.
If there is no elastic storage, the kinetic energy lost by the wings in the
second half of each stroke can be used to do the aerodynamic work for
that half of the stroke, so the total mechanical power requirement can be
estimated as the inertial power plus half the aerodynamic power, or 41
W/kg. If there is perfect elastic storage, so that no inertial work has to be
done by the muscles, the mechanical power requirement is 22 W/kg.
Casey (1976) measured the oxygen consumption of hovering Manduca
and calculated that the metabolic power consumption was 237 W/kg.
Thus, we can estimate the efficiency of the muscles as 41/237 = 0.17 if
there is no elastic storage, and 22/237 = 0.09 if there is perfect elastic
storage. In work loop experiments Josephson and Stephenson (1991)
measured efficiencies of 0.04 to 0.10 for locust flight muscle, which
suggests that Manduca probably benefits from elastic mechanisms. Similar
calculations can be done for the hummingbird Amazilia. Weis-Fogh
(1972) estimated that its power requirements for hovering were 26 W/
kg (aerodynamic) and 29 W/kg (inertial). Berger and Hart (1972) found
that the metabolic power was 239 W/kg. Thus, the efficiencies can be
estimated as 42/239 = 0.18 for no elastic storage and 26/239 = 0.11 for
perfect elastic storage. Neither estimate seems impossible for vertebrate
striated muscle (Section 2.5).

Dickinson and Lighton (1995) performed an ingenious experiment to
try to discover whether elastic storage is important for the fruit fly Drosoph-
ila. Aerodynamic and inertial power requirements for hovering by this
insect are estimated to be about 15 W/kg each. A fly glued to a support
beat its wings as if flying. It was stimulated to attempt to turn alternately
to left and right by a moving pattern of lights. In trying to turn, it varied
the frequency f of its wing beats and the angle φ through which its wings
moved. Its oxygen consumption was measured and found to fluctuate with
the fluctuations of frequency and angle.

The method depends on the different effects that fluctuations of fre-
quency and angle have, on the components of mechanical power. Induced
power is proportional to φ−0.5 (Equation 11.8). Profile drag is proportional
to the speed of the wings squared (ignoring the effect of Reynolds num-
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ber, Equation 10.11), and profile power is profile drag multiplied by
speed, and so is proportional to speed cubed or to f 3φ3. The inertial work
required for each wing beat is proportional to angular velocity squared or
to f 2φ2, and inertial power is inertial work times frequency so is propor-
tional to f 3φ2. Thus, each of these three components of power is propor-
tional to a different function of frequency and angle. Dickinson and
Lighton (1995) analyzed the fluctuations of metabolic rate of the flies as
wing beat frequency and angle varied. Their observations suggested that
the muscles worked with an efficiency of about 0.11, and that modest
energy savings were made by elastic storage.

The question remains, what potentially energy-saving springs have in-
sects got? Weis-Fogh (1960) discovered various structures in insect tho-
raxes, made of a rubberlike protein that he called resilin. They may save
energy by elastic storage, as also may the walls of the thorax. In advanced
insects, such as flies, beetles, bugs, and bees, that have fibrillar flight mus-
cles (Section 2.6), the muscles themselves may serve as springs (Josephson
1997a). A passive spring dissipates a little energy by hysteresis each time
it is stretched and recoils, whereas these muscles do net work in each cycle;
in effect, they are springs with negative hysteresis.

The possible energy-saving role of elastic mechanisms in bird flight will
be discussed in Section 12.2.

This chapter has shown that only small animals can hover. Humming-
birds and moths generate lift both in the upstroke and in the downstroke,
but other small birds and some flies seem to obtain lift only in the down-
stroke. Delayed stall and several unsteady aerodynamic mechanisms are
important for hovering animals. It is not clear to what extent hovering
animals save energy by elastic storage.

Insect flight has presented very difficult problems in previously unfamil-
iar branches of aerodynamics. The challenge has been met by research of
outstanding quality, involving imaginative and technically difficult experi-
ments. Great progress has been made in the past few years, but there is
scope for more work, especially on the possibility of important differences
between major groups of insects. Also, we still do not know how much
energy is saved by elastic mechanisms in animal flight, or which structures
are important as energy-saving springs.



Chapter Twelve...............................................................
Powered Forward Flight

Insects, birds, and bats are the only modern animals capable of powered
flight. All of them fly by flapping their wings.

12.1 AERODYNAMICS OF FLAPPING FLIGHT

Helicopters and animals hover by driving air vertically downward, as ex-
plained in Chapter 11. To fly forward, they must drive air downward and
backward. The horizontal component of the momentum given to the air
provides the thrust force that is needed to overcome drag.

To hover, animals beat their wings in a near-horizontal plane, with their
bodies tilted at a steep angle to the horizontal (see, for example, Fig. 11.2).
For forward flight, the wings beat in a more tilted plane. For example, the
angle of the wing stroke plane of the moth Manduca, which is about 20°
to the horizontal in hovering, increases to about 40° in forward flight at
2 m/s, and 50–60° at 5 m/s (Willmott and Ellington 1997b). Similarly
in birds, the angle of the stroke plane to the horizontal increases with
increasing speed (Tobalske and Dial 1996). Tilting of the wing stroke
plane ensures that the induced velocity imparted to the air has the hori-
zontal component needed to provide thrust. As the stroke plane becomes
more vertical with increasing speed, the long axis of the body generally
becomes more horizontal. This has two consequences. First, it keeps the
angle of the stroke plane relative to the body more nearly the same at
different speeds than if the body angle remained constant while the angle
of the stroke plane to the horizontal changed. Secondly, it tends to align
the body with the airflow, reducing drag.

Wing beat frequency remains more or less constant as speed increases
in insects (Dudley and Ellington 1990a; Willmott and Ellington 1997b).
In birds, it may be higher in hovering than in forward flight (Pennycuick
1968b), but is more or less independent of speed in forward flight (Tobal-
ske and Dial 1996).

Figure 11.3 shows the movements of the wings of Manduca relative to
the air flowing past them in forward flight, as well as in hovering. In hov-
ering, the wing travels forward during the downstroke (the ventralward
stroke), and backward during the upward (dorsalward) stroke. As speed
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increases, the wings still move forward and backward relative to the body
but the path of the upstroke relative to the air becomes vertical (at 2.9
m/s) or inclined forward (at higher speeds). The angular speeds of wing
movement relative to the body in the upstrokes and downstrokes are fairly
nearly equal. However, as forward speed increases, the speed of the wing
relative to the air becomes higher in the downstroke than in the upstroke,
enabling the downstroke to produce the higher aerodynamic forces.

Figure 11.3 also shows that the wings turn upside down for the up-
stroke both in hovering and at low forward speeds. At 5 m/s, however,
the path of the upstroke is forward and the dorsal surfaces of the wings
of Manduca remain uppermost throughout. In contrast, due to its faster
wing movements, the velocity of the upstroke of the bumblebee Bombus
has a backward component even at the highest speed (4.5 m/s) observed
by Dudley and Ellington (1990a).

In hovering, the angle of attack of the wing is positive (i.e., the air
strikes its ventral surface) in the downstoke, and negative (the air strikes
the dorsal surface) in the upstroke. Lift acts upward, supporting the
weight of the body, in both strokes. When the upstroke is vertical, the lift
is horizontal and can provide thrust but not weight support. At 5 m/s,
the path of the upstroke slopes forward, and if the angle of attack were
negative the lift would have a downward component. It appears from the
observations of Willmott and Ellington (1997c) that at this speed the
angle of attack remains positive throughout the wing beat cycle. This
implies that the aerodynamic force on the wings in the upstroke may
act upward and backward, contributing to weight support but giving
negative thrust.

The forces on the wing can be inferred more reliably from observations
of the airflow in the wake. Willmott et al. (1997) used smoke filaments to
show the flow around and behind the wings of Manduca in simulated
flight. The moths were tied to a thin rod, which held them in a wind
tunnel that blew air past them. They flapped their wings as if flying. The
rod was attached to a balance, which showed that aerodynamic forces were
supporting only 70–96% of the moths’ weight, so simulation of free flight
was not perfect. No measurements were made to discover whether thrust
was the same as in free flight.

Figure 12.1 shows the airflow that was observed when the wind speed
was 1.8 m/s. The downstroke (Fig. 12.1A, C) produces a near-horizontal
vortex ring, implying that air is driven downward, giving a near-vertical
aerodynamic force. The strong leading-edge vortex is stabilized, as in hov-
ering (Fig. 11.4C) by flow out toward the wing tips. The upstroke (Fig.
12.1B, D) produces a near-vertical vortex ring, implying that it provides
thrust but little or no weight support. Grodnitsky (1999) and Dudley
(2000) have reviewed observations of the wakes of other insects.
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Fig. 12.1. Diagrams of airflow in the wake of Manduca in tethered flight in a wind
tunnel, at an airspeed of 1.8 m/s: (A, C) the downstroke and (B, D) the upstroke.
DSV, downstroke stopping vortex; DTV, downstroke trailing vortex; LEV, leading
edge vortex; PV, SV, vorticity due to changes in angle of attack between strokes;
USV, upstroke starting vortex; UTV, upstroke trailing vortex. From Willmott et
al. (1997).

Spedding et al. (1984) used helium-filled soap bubbles to discover the
pattern of airflow in the wake of a flying pigeon (Columba livia; see Sec-
tion 5.4). The bird flew slowly in the conditions of the experiment, at
about 3 m/s. In each downstroke, the wings produced a downward puff
of air with a vortex ring around it, as shown in the diagram of a bat in
Fig. 12.2A. In the upstroke, the elbow and wrist were flexed and the wings
generated no strong air movements. It appears that the downstroke was
made with the wings at a positive angle of attack, producing lift; but that
in the upstroke the wings had a near-zero angle of attack and provided
little or no lift. The authors calculated from the observed air movements
that the rate at which downward momentum was being imparted to the
air was only 60% of what was needed to support the bird’s weight. It was
later shown that, with the laboratory arranged as it was, the bird was in-
deed not fully supporting its weight as it flew through the cloud of bub-
bles, but was accelerating downward (Rayner and Thomas 1991).



P O W E R E D F O R WA R D F L I G H T 227

Fig. 12.2. Diagrams of airflow in the wake of a noctule bat (Nyctalus noctula)
flying at (A) 3 m/s and (B) 7.5 m/s. Thick arrows represent airflow through the
vortex rings or between the trailing vortices. This diagram, based on the experi-
ments of Rayner et al. (1986) is reproduced from Alexander (1999).

Spedding (1987b) repeated the experiment with a kestrel (Falco tin-
nunculus), which flew much faster than the pigeon, at about 8 m/s. He
observed an entirely different wake pattern, shown in the diagram of a bat
in Fig. 12.2B. Instead of discrete vortex rings, continuous trailing vortices
were formed. These resembled the trailing vortices behind a gliding bird
(Fig. 10.2D), but undulated up and down following the paths of the beat-
ing wings. They also came closer together for the upstroke (when the
wings were partially folded), and moved further apart for the downstroke
(when the wings were extended). Air was driven downward, between the
two vortices, throughout the wing beat cycle. The wings must be held at
a positive angle of attack, so as to produce upward lift, throughout the
cycle. As well as supporting the bird’s weight, they must generate the
thrust needed to overcome drag on the body, but upward lift in the up-
stroke must be accompanied by negative thrust, as already noted for Man-
duca flying at 5 m/s (Fig. 11.3B).To ensure that the mean thrust over the
wing beat cycle is sufficient, the upstroke must generate less lift than the
downstroke. This could be done in either of two ways, as Equation 10.8
shows. Lift in the upstroke could be reduced by reducing the circulation Γ
(by reducing the angle of attack), or by reducing the wingspan s. Spedding
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(1987b) measured the velocities of soap bubbles in the trailing vortices
and calculated that the circulation was approximately the same in the up-
stroke as in the downstroke. If the circulation had fluctuated, the wake
would have had a ladderlike form, with starting and stopping vortices
running across it between the two trailing vortices. It seems that the re-
duction of wingspan as the wings partially fold for the upstroke is respon-
sible for the reduction of lift.

The difference between the vortex ring wake of the pigeon and the
continuous vortex wake of the kestrel is not due to their being different
species, but to their flying at different speeds in the conditions of the
experiment. Later work has shown that other species produce a vortex ring
wake at low speeds and a continuous vortex wake when they fly faster. The
change of wake pattern with speed was first shown by Rayner et al. (1986)
for the bat Nyctalus noctula (Fig. 12.2). The patterns of wing movement
that produce the two types of wake seem to be distinct gaits, like walking
and running (Section 7.2). So far as I know, no intermediate between
them has ever been observed.

Unfortunately, we have very little information so far about the speeds
at which flying animals change gaits. Nyctalus uses the vortex ring gait at
3 m/s and the continuous vortex gait at 7–9 m/s (Rayner et al., 1986).
The wakes of pigeons flying fast have not been studied, but a change in
the pattern of movement in the upstroke seems to show that pigeons
change gaits at 12–14 m/s (Tobalske and Dial 1996). The wakes of differ-
ent-sized animals could be dynamically similar only if they had equal
Strouhal numbers (Section 4.2), so one possible prediction is that animals
will change gaits at equal Strouhal numbers sf/v, where v is airspeed, s is
wing span, and f is wing beat frequency. However, the data given above
seem to show that pigeons change gait at a much higher Strouhal number
than Nyctalus. The span and frequency are 0.34 m and 9 Hz for Nyctalus
(Rayner 1986; Norberg and Rayner 1987), and 0.6 m and 6 Hz for pi-
geons (Tobalske and Dial 1996). Thus, sf is 3.1 m/s for Nyctalus and 3.6
m/s for pigeons, and at equal Strouhal numbers the birds would be flying
only slightly faster than the bats.

12.2. POWER REQUIREMENTS FOR FLIGHT

Equations that we derived for the gliding performance of animals can be
used also to predict power requirements for flapping flight. The energy
required for gliding is supplied by the gravitational potential energy
that the animal loses as it sinks through the air. The rate of loss of poten-
tial energy by an animal of mass m gliding with airspeed v at an angle θ
to the horizontal is mgv sin θ, where g is the gravitational acceleration.
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Hence, from Equation 10.19, the power P required for flight at speed v
is expected to be

P = mg 1ρv 3Czero lift

2N
+

2k inducedN
πρv! 2 (12.1)

where ρ is the density of the air, Czero lift is the zero-lift drag coefficient, N
is wing loading, kinduced is the induced drag factor, and ! is the aspect ratio.
Because this equation has been obtained by multiplying Equation 10.19
by mg, a graph of power against speed derived from it has the same shape
as a graph of sinking speed against airspeed derived from Equation 10.18,
but turned upside down (compare Fig. 12.3B with Fig. 10.6A). The power
requirement is high at low speeds and at high speeds, and lower at interme-
diate speeds. It is least at the minimum power speed, which is predicted
to be the same as the minimum sink speed for gliding. The work required
per unit distance is least at the maximum range speed, which is predicted
to be the same as the maximum range speed for gliding. As for gliding,
the maximum range speed can be found by drawing a tangent to the curve
through the origin (Fig. 12.3B).

Equation 12.1 predicts that infinite power will be required for flying at
zero speed, but small birds can nevertheless hover. The discrepancy is
due to the equation being based on the aerodynamics of fixed-wing air-
craft. To predict power requirements for hovering, helicopter theory
must be used (Section 11.1). For forward flapping flight, Equation 12.1
may be expected to underestimate power requirements, because the flap-
ping movement of the wings increases their speed relative to the air,
and so increases profile drag. However, this effect may not be very
large. The wing tip of a pigeon moves up and down relative to the body
at speeds of about 6 m/s as the wing flaps when the bird is flying at
10–20 m/s. Thus, the speed of this point relative to the air can be esti-
mated as ! 102 + 62 = 11.7 m/s when the bird is flying at 10 m/s and
! 202 + 62 = 20.9 m/s when it is flying at 20 m/s. The speed increment
due to flapping is less for more proximal parts of the wing and zero at the
wing base.

Birds and bats that glide well have a minimum sinking speed in still air
of around 1 m/s (Fig. 10.6B). At this sinking speed, they lose gravita-
tional potential energy at a rate of about 10 W/kg body mass. This sug-
gests that the mechanical power required for flapping flight should be
around 10 W/kg.

Figure 12.3A shows metabolic rates of flying birds and bats, obtained by
measuring rates of oxygen consumption of animals flying in wind tunnels
(Section 5.3). Most of the rates lie between 50 and 120 W/kg, and so are
consistent with our rough estimates based on the sinking speeds of gliding



Fig. 12.3. The energy cost of level flapping flight. (A) Metabolic rates per unit
body mass, plotted against speed. (B) A U-shaped graph of metabolic rate against
speed, as calculated from Equation 12.1. (C) Minimum metabolic rates in flight
plotted against body mass, for the same species as in (A) plus the bumblebee Bom-
bus. From Alexander (1999).
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birds if the muscles work with efficiencies in the range 0.08 to 0.2. How-
ever, among the curves shown, only the one for the budgerigar is markedly
U-shaped, as Equation 12.1 suggests it should be. The graph for the star-
ling shows no dependence of metabolic rate on speed, but this may be an
artifact; more recent measurements of metabolic rates of flying starlings
show metabolic rate increasing with speed (Rayner 1999).

Figure 12.3A shows metabolic power, but Equation 12.1 predicts me-
chanical power. Dial et al. (1997) measured the mechanical power output
of the pectoralis muscle (the principal flight muscle) of magpies flying in
a wind tunnel. To do this they needed to know the rates at which the
muscle shortened and the forces it exerted throughout the wing beat cycle.
They calculated the length changes of the muscle from the angle of the
shoulder joint, as seen in films taken from above and from the side.
(Biewener et al. [1998a] have since measured the length changes more
directly by sonomicrography; see Section 5.6.) To measure muscle force,
they took advantage of the fact that the pectoralis muscle inserts on a
flange on the anterior face of the humerus. In a surgical operation prior
to the experiment, they glued a strain gauge onto this flange. Forces ex-
erted by the muscle bent the flange and elicited a signal from the strain
gauge, which was connected to recording equipment through long, light
electrical leads that trailed behind the flying bird. After the experiment,
the bird was anesthetized and the strain gauge was calibrated by exerting
known forces on the muscle origin.

Dial et al. (1997) used the forces and length changes that they measured
in this way to draw work loops (Section 2.3). From the areas of the loops
they calculated the work done in each wing beat cycle and multiplied this
by the frequency to get mechanical power. They found that the power was
20 W/kg body mass in hovering, fell to 8 W/kg at a speed of 6 m/s, and
rose again to 12 W/kg at 14 m/s. Thus, a graph of power against speed
was U-shaped, as predicted by Equation 12.1. At any particular speed, the
power was a little less than predicted from aerodynamic theory (Alexander
1997c), but it should be remembered that only work done by the pecto-
ralis muscle was measured; the contributions of other muscles, notably
the supracoracoideus, were ignored. The measured mechanical powers of
8–20 W/kg are consistent with the metabolic powers measured for other
species of similar size if the muscles work with an efficiency of the order
of 0.12 (Dial et al., 1997).

Magpies seem unable to fly faster than 14 m/s (Tobalske and Dial
1996), although the power requirement at this speed is much less than
the power required for hovering. They can hover for 1–4 s, so why can
they not fly briefly at speeds above 14 m/s? Rayner (1999) has suggested
that speed may be limited, not by power requirements, but by the problem
of producing enough thrust. Total drag (the sum of induced drag and
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profile drag) is least at the maximum range speed. As speed increases be-
yond this, the force required to support the weight of the bird remains
constant but the thrust required to drive it forward through the air in-
creases. However, as speed increases it becomes more difficult to exert
high thrust, for the following reason. Consider a bird flying at speed v,
beating its wings through an angle φ radians with frequency f. If the up-
stroke and downstroke each occupy half the cycle time, the bird advances
a distance v/2f during the downstroke. At the same time, a point on the
wing at a distance r from the base moves ventrally through a distance of
about r φ. Thus, the path of this point through the air makes an angle of
approximately 2fr φ/v with the horizontal. Lift acts at right angles to this
path, at an angle 2fr φ/v to the vertical. As speed v increases, the lift be-
comes more vertical, reducing the ratio of thrust to weight. Birds flying
fast partially overcome this problem by making the downstroke faster (so
that it occupies less than half of the wing beat cycle), and by tilting the
plane of the wing beat (so that the wing moves posteriorly, relative to the
body, as it flaps down [Tobalske and Dial] 1996]). However, beyond a
certain speed even these adjustments cannot produce enough thrust.

Another question that we have not yet answered is, why do birds and
bats change from the vortex ring gait to the continuous vortex gait at
high speeds? We saw in Section 7.6 that horses save energy by changing
gaits; each gait is the most economical, in the range of speeds at which it
is used. Can the same be true for flying animals?

It would be difficult if not impossible to train birds or bats to use each
gait on command, even at speeds at which they would normally use the
other. Consequently, the equivalent experiment to the one on horses illus-
trated in Fig. 7.11A has not been performed. We can only tackle the prob-
lem through aerodynamic theory.

Equation 12.1, which predicts power requirements for flight at different
speeds, is based on the theory of fixed-wing aircraft. It gives reasonable
approximations to the energy cost of animal flight, but cannot predict
the different power requirements of the two gaits. More sophisticated
theories, which take account of the momentum and kinetic energy of the
vortices, have been formulated both for the vortex ring gait (Rayner 1979)
and for the continuous vortex gait (Rayner 1993). Rayner (1999) used
these theories to calculate the power requirements of both gaits for a pi-
geon over a range of speeds. Figure 12.4 shows the power requirements
predicted in this way. They indicate that the vortex ring gait is the more
economical at speeds up to 14 m/s and the continuous vortex gait is more
economical at higher speeds. It appears from their wing movements that
pigeons make the change of gait at 12–14 m/s (Tobalske and Dial 1996).

In addition to these gaits, there is a class of gaits called intermittent
gaits, because the bird alternates periods of a few wing beat cycles in which
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Fig. 12.4. Calculated mechanical power plotted against speed for a pigeon, for
the vortex ring (VR) and continuous vortex (CV) gaits. Ptot , total power; Pind ,
induced power; Ppro , profile power (required to overcome zero-lift drag on the
wings); Ppar , parasite power (required to overcome drag on the body excluding
the wings). From Rayner (1999).

it flaps its wings with periods when it does not. Sparrows (Passer domes-
ticus) and many other small birds commonly use bounding flight, in which
the wings are folded while they are not beating. For example, zebra finches
(Taeniopygia guttata) flying fast alternately flap their wings for about 0.15
s (four wing beat cycles) and fold them for about 0.10 s (Tobalske et al.,
1999). Bounding flight is commonly used by small birds with low wing
loading, low aspect ratio, and rounded wing tips (Rayner 1985b). The
largest bird known to use it is the green woodpecker (Picus viridis, mass
0.2 kg).

The other common intermittent gait is undulating flight, also known
as flap-gliding. In this gait, bouts of wing flapping alternate with bouts of
gliding with the wings spread. This gait is used by many medium- and
large-sized birds, including crows and gulls (Rayner 1985). Budgerigars
(Melanopsittacus undulatus) and starlings (Sturnus vulgaris) use undulat-
ing flight at low speeds and bounding flight at high speeds (Tobalske and
Dial 1994; Tobalske 1995).

Aerodynamic theory suggests that bounding flight should need less en-
ergy than continuous flapping flight at high speeds. When a bird is
bounding, the wings are spread and generate lift only during the flapping
phases. Consequently, in the flapping phases of bounding flight they must
generate more lift than in continuous flapping, and suffer more induced
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drag. However, while folded they suffer no profile drag. As speed increases,
induced drag becomes a smaller proportion of total drag and profile drag
becomes a larger proportion. If the speed is high enough, the reduction
in profile drag, due to bounding, more than compensates for the increased
induced drag. Rayner (1985b) showed that this would be the case only at
speeds above 1.2 times the maximum range speed, but that undulating
flight could save energy at all speeds. However, zebra finches and some
other birds bound at low speeds, and even when hovering (Tobalske et al.,
1999). Rayner (1985b) suggested that bounding might enable the mus-
cles to work more economically than in continuous flapping, whenever
the power output required for flight was less than the maximum that the
muscles could provide. Muscles work most efficiently at a particular rate
of shortening (Fig. 2.3D). Intermittent flapping may enable the muscles
to operate at their most efficient shortening rate, at speeds at which the
power requirement is less than continuous flapping (using the same short-
ening rate) would provide. However, Tobalske et al. (1999) found that
zebra finches do not keep the rate of shortening of the muscles constant,
but reduce the angular velocity of the wing in the downstroke from 7
degrees per millisecond in hovering to about 5.5 degrees per millisecond
in fast flight. This reduction in angular velocity results from a marked
reduction of the amplitude of the wing beat.

So far, I have not mentioned inertial power requirements for forward
flight. As we noted in Section 11.3, kinetic energy given to each wing in
each stroke is #Iωmax

2, where I is the moment of inertia of the wing about
its base, and ωmax is the maximum angular velocity attained during the
stroke. Birds have two wings, and there are two strokes (one up and one
down) in each wing beat cycle. Thus, the inertial power is 2Iωmax

2 f , where
f is the wing beat frequency. The wing beats through an angle φ in time
1/2f, so ωmax = 2φf (if the stroke is made at constant angular velocity) and
the inertial power is 8Iφ2f 3. Alternatively, if the angular velocity varies
sinusoidally, ωmax = πφf and the inertial power is 2π2Iφ2f 3. Notice that in
these expressions, the frequency f is cubed and the angle φ is squared, so
small changes in these quantities may have a large effect on power.

Van den Berg and Rayner (1995) measured the moments of inertia of
the wings of birds ranging from a 10-g tit (Parus caeruleus) to a 2-kg
heron (Ardea cinerea) and calculated inertial power, assuming sinusoidal
wing motion. In their paper, they count negative work done decelerating
the wings as well as positive work done accelerating them, but I will give
their result counting positive work only, as in the previous paragraph.
They found that the inertial power for a bird of mass m kilograms was
3.9m0.80 watts (0.10 W for a 10-g bird and 6.8 W for a 2-kg one). They
point out that these values may be a little too high as they did not allow
for the wing being partially folded (reducing the moment of inertia) in
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the upstroke. Rayner (1995) calculated that the aerodynamic power for
bird flight at the minimum power speed is 12m1.1 watts (0.076 W for a
10-g bird and 26 W for a 2-kg one). These data indicate that the work
done accelerating the wings of a 2-kg bird in the first half of a wing stroke
is less than the aerodynamic work to be done in the second half. Thus, the
inertial work may be recovered at the end of the wing stroke, if the kinetic
energy of the wings is used to do aerodynamic work. However, the kinetic
energy given to the wings of a 10-g bird is greater than the aerodynamic
work to be done in the second half of the stroke, so the inertial work
cannot all be recovered as aerodynamic work. There is scope in small birds,
but apparently not in large ones, for energy saving by elastic mechanisms,
as explained in Section 3.6. It is possible that the tendons of the principal
flight muscles may be compliant enough to have a significant role as en-
ergy-saving springs. Pennycuick and Lock (1976) suggested that feather
elasticity may be important, but Alexander (1988) raised an objection.

Most measurements of the metabolic rates of insects in forward flight
have used tethered insects, which may not have been beating their wings
sufficiently vigorously to support their weight. Ellington et al. (1990)
achieved the remarkable feat of measuring the oxygen consumption of
individual free-flying bumblebees (Bombus). They were unable to fit the
bees with masks, as has been done in most experiments with birds, and so
flew them in a miniature wind tunnel that recirculated the air, so that its
oxygen content gradually fell. They measured the falling oxygen consump-
tion and calculated that the metabolic rate was about 350 W/kg through-
out the range of speeds at which the bees would fly, 0–4 m/s.

Figure 12.3C shows minimum metabolic rates in flight of the birds and
bats included in Fig. 12.3A, together with the bee. Metabolic rate per unit
mass falls as body mass increases. The same graph shows mechanical power
requirements, estimated by Rayner (1995). This shows mechanical power
per unit mass increasing as mass increases. Together, the two lines on the
graph show that smaller animals have less efficient flight muscles. Similarly,
muscles used for running operate at lower efficiencies for smaller legged
animals (Fig. 7.12).

The mechanical power required for flight, shown in Fig. 12.3C, is pro-
portional to (body mass)1.10, implying that larger flying animals need more
power per unit mass than small ones. However, as we noted in Section
12.2, larger flying animals cannot produce as much power per unit body
mass as small ones. If the required power per unit mass increases with body
size, and the available power falls, there must be an upper limit to the size
range of animals that can fly. The largest modern flying animal is possibly
the Kori bustard (Ardeotis kori; I have weighed a 16-kg specimen). How-
ever, some extinct birds and pterosaurs were substantially larger (Alexan-
der 1998a). That argument for a size limit for flying animals seems clear,
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but, surprisingly, a parallel argument based on metabolic rates is not. The
metabolic power per unit mass required for flight (Fig. 12.3A) is propor-
tional to (body mass)0.83. It does not seem to be known how maximum
metabolic rates of birds are related to body mass, but maximum aerobic
metabolic rates for mammals are proportional to (body mass)0.81 (Taylor
et al., 1981), and it seems likely that the exponent for birds is about the
same. The exponents 0.83 and 0.81 are not significantly different, so these
metabolic data fail to explain the size limit for flying animals.

So far, we have considered only the cost of steady, level flight. Much
higher power may be required for takeoff, making repeated short flights
much more expensive of energy than a single flight over the same total
distance. Nudds and Bryant (2000) trained zebra finches (Taeniopygia
guttata) to fly repeatedly between two perches 5.5 m apart. Each perch
was periodically drawn tight against the wall of the aviary, obliging the
bird to leave it and fly to the other. The metabolic rates of the birds and
of controls that perched undisturbed were measured by the doubly labeled
water technique (Section 5.3). From the results, it was calculated that the
metabolic rate during the short flights was 6.6 W. The expected metabolic
rate for a bird of the same mass (13 g) in steady flight is only 1.6 W (Rayner
1995). Much of the cost of these short flights was probably due to the need
to accelerate and climb at takeoff. The aviary was deliberately arranged to
prevent the birds from gaining kinetic energy at takeoff by dropping from
the perch and gliding, in the manner described for flying squirrels in Sec-
tion 10.4.

12.3. OPTIMIZATION OF FLIGHT

This section asks how wings should be adapted to different lifestyles, how
fast animals should fly, and whether they should flap their wings in bursts
or all the time.

We saw in Section 10.6 that soaring birds seem generally to have wing
designs well suited to their styles of soaring; slope soarers have higher wing
loadings and aspect ratios than birds of the same mass that soar in thermals
over land. Analysis of masses and wing dimensions of a much wider selec-
tion of bats (Norberg and Rayner 1987) and birds (Rayner 1987) has
revealed other correlations of wing design with flying habits that seem
adaptive. For example, bats and birds that take large prey tend to have
relatively low wing loadings that enable them to carry the prey. Bats and
birds that live in cluttered forest habitats tend to have short wings with
low aspect ratios. Auks and other birds that use their wings both for swim-
ming and for flight tend to have small wings, a compromise between the
requirements of the two modes of locomotion.
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The direct energy cost of a journey is least if the animal flies at its maxi-
mum range speed, but time spent on a journey is unavailable for other
activities, so there may be an advantage in flying faster and arriving sooner.
Let P be the metabolic rate when flying at speed v. The maximum range
speed is the speed for which P/v is least. However, if the animal is able to
feed and lay down energy reserves at a rate Π when it is not feeding, the
true energy cost of traveling unit distance is not P/v, but (P + Π)/v. Thus,
the most energetically advantageous speed may not be the maximum range
speed, but the higher speed that minimizes (P + Π)/v. This is unlikely to
be much higher than the maximum range speed because Π will generally
be much smaller than P. Lindström (1991) showed that even in the most
favorable circumstances, birds generally cannot lay down fat reserves at a
rate faster than 2.5 times the standard metabolic rate; but metabolic rates
in flight are generally about 10 times the standard metabolic rate (Alexan-
der 1998b). Thus, we may expect to find that birds commonly fly a little
faster than the maximum range speed.

Pennycuick (1997) has measured the speeds of various birds, most of
them flying distances of several hundred meters between their nests or
roosts and their feeding areas. He measured the direction and speed of
the wind as near as possible to the birds, and subtracted the wind vector
from the ground speed to obtain the airspeed. The mean measured air-
speeds for different species ranged from 9 m/s for a little blue heron
(Egretta caerulea, wing loading 25 N/m2) to 19 m/s for a common murre
or guillemot (Uria aalge, wing loading 171 N/m2). He compared them
to estimates of the minimum power speed and the maximum range speed,
based on measurements of the masses and wing dimensions of the same
species. Unfortunately, there is considerable uncertainty about the conclu-
sions that should be drawn from the comparisons.

The problem concerns the profile drag. Equation 12.1 makes the profile
power (mg times the first term in the brackets) proportional to (Speed)3.
The zero-lift drag coefficient in this term refers to the wings and body
together. Pennycuick’s (1975) theory on which his estimates are based
treats the profile power as the sum of two terms, one (power to overcome
profile drag on the wings) independent of speed and the other (power to
overcome drag on the body) proportional to (Speed)3. The assumption
that profile drag on the wings is independent of speed is contentious, and
it makes estimates of minimum power and maximum range speeds very
sensitive to the drag coefficient for the body. Pennycuick (1997) made
estimates for two different drag coefficients, a high one that he had pre-
viously used and a lower one based on recent wind tunnel measurements.
The new estimates are not necessarily better than the old ones. Minimum
sink speeds for gliding (which are expected to equal the minimum power
speed for flapping flight) have been measured for two of the species in his
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paper (Fulmarus glacialis and Coragyps atratus [Pennycuick 1960; Parrott
1970]. In each case, the minimum sink speed is closer to Pennycuick’s old
estimate of the minimum power speed than to his new one.

Pennycuick (1997, 2001) found that the speeds observed in the field
for most of the species lay between the old estimates of minimum power
speed and maximum range speed. However, if the new estimates were
used, almost half the species flew at speeds below the minimum power
speed. These conclusions contrast with the argument above that birds
should fly faster than the maximum range speed. Pennycuick (1997)
points out that the predicted optima are rather flat, so little energy is lost
by flying slightly below the optimum speed. On the other hand, a small
increase of speed, in the neighborhood of the maximum range speed, re-
quires a substantial increase in power and so in the mass of muscle re-
quired. He argues that this may make it advantageous to fly a little more
slowly than the maximum range speed.

Migrating birds often have to cross deserts or oceans where they can
find no food. For example, garden warblers (Sylvia borin) crossing the
eastern part of the Sahara Desert have to fly 2200 km, apparently with no
opportunity to feed on the way (Biebach 1998). Bristle-thighed curlews
(Numenius tahitiensis) flying from the Hawaiian Islands to Alaska cross
4000 km of ocean with no opportunity to feed (Piersma 1998). These
journeys are possible only because the birds start out with a very large
store of fat in the body. The warblers start very fat with masses of around
24 g, and arrive two or three days later at the other side of the desert
having lost a mean of 7.3 g, of which 5.1 g is estimated to have been fat
and 2.2 g protein. The curlews start off with a mean body mass of 675 g,
of which 289 g (43%) is fat. Fat has the advantage over other foods that
its energy content per unit mass is higher.

A rough calculation will show why so much fat is needed. Birds of the
size of garden warblers would have metabolic rates in flight of at least 100
W/kg (Fig. 12.3C). They might fly as fast as 14 m/s, in which case flying
2200 km would take about 160,000 s (44 h) and use 16 MJ/kg body
mass. Metabolism of 1 kg fat yields 40 MJ, so this calculation suggests
that 0.4 kg fat would be needed per kilogram of bird. The birds lose mass
on the journey; their mean mass is about 20 g, so they might be expected
to use 8 g fat. In fact, as we have seen, they only use 5 g. Possible reasons
for the discrepancy are that there was a little protein metabolism (but only
enough to supply about 2 MJ/kg); the birds may have been aided by wind;
and some of the data used in this rough calculation may not be accurate.

Interestingly, much of the lost protein seems to be muscle (Biebach
1998). As the fat load falls, the bird becomes lighter and less muscle is
needed to power flight. The bird can make itself lighter still by burning
off the excess muscle. Gut protein is also metabolized, greatly reducing
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the mass of the gut, which will not be needed until the bird has crossed
the desert or other unfavorable terrain and can feed again. The bird re-
duces the energy cost of flight, by reducing its mass as much as possible.
Kvist et al. (1998) took advantage of natural fluctuations of the body mass
of knots (Calidris) to measure the energy cost of flight of the same birds
at different body masses. They flew the birds in a wind tunnel for periods
of up to 10 h, and measured their metabolic rates by the doubly labeled
water technique (Section 5.3). They confirmed that the metabolic rate was
less at lower body masses, but found that the effect was less pronounced
than aerodynamic theory predicted.

Geese, pelicans, and some other large birds habitually fly in V-forma-
tions (skeins), with the left wing tip of one bird close behind the right
wing tip of another, or vice versa. This raises the possibility that energy
may be saved by interference between neighboring birds’ trailing vortices.
Vortices behind left wing tips and behind right ones have circulations in
opposite directions, so the bird that is behind in the skein will tend to
cancel out the trailing vortex of the bird in front. Ideally, this canceling
out might leave vortices only behind the outer wings of the birds at the
extreme ends of the arms of the V. The skein of birds would resemble,
aerodynamically, a single aerofoil of exceedingly high aspect ratio. A high
aspect ratio reduces induced drag, saving energy. Weimerskirch et al.
(2001) used data loggers (see Section 5.7) to record the heart beat fre-
quencies of trained pelicans (Pelecanus onocrotalus) flying behind a boat
or an ultralight aircraft. Their results indicated that the bird leading a
skein had as high a metabolic rate as when flying alone, but that the other
birds had lower metabolic rates.

In this chapter we have seen how the angles of the body and the wing
stroke change as flying insects increase their speed. We have seen how
many birds and bats change from a vortex ring gait at low speeds to a
continuous vortex gait at higher speeds, and we have discussed the inter-
mittent gaits of some birds. Our discussion of optimum flight speeds was
hampered by uncertainty about maximum range speeds. Further research
is needed to check, for other species, Rayner’s (1999) explanation of gait
change in pigeons (Fig. 12.4). We would like to know more about the
circumstances in which birds use intermittent gaits, and the advantages
(if any) that they gain by doing so. It would also be useful to have better
information about maximum range speeds that might help us to under-
stand the speeds at which birds actually fly. For this purpose, maximum
range speeds should be determined by metabolic measurements.



Chapter Thirteen...............................................................
Moving on the Surface of Water

WATER STRIDERS (Gerris and Halobates), some other insects,
and fisher spiders (Dolomedes) walk on the surface of water, sup-
ported by surface tension. Basilisk lizards (Basiliscus) run on

water, relying on quite different forces. This chapter considers both these
means of moving over the surface, and also discusses swimming on the
surface as performed, for example, by ducks. More general aspects of swim-
ming that apply to submerged swimmers as well as to those that swim at
the surface are discussed in later chapters.

13.1. FISHER SPIDERS

Water striders and fisher spiders stand on water with the distal leg seg-
ments (the tarsus) resting on the surface (Fig. 13.1A). Surface tension acts
horizontally in a level water surface, but the animal’s weight depresses the
surface so that it slopes where it meets the animal’s foot (Fig. 13.1B).
Consequently, the forces Fst exerted on the foot by surface tension have
an upward component that supports the animal’s weight. If the load on
the foot is increased, more of the foot is submerged, and surface tension
acts at a steeper angle to the horizontal (Fig. 13.1C). The contact angle
(α, Fig. 13.1B) remains constant; for water on insect cuticle it is about
110° (Denny 1993).

A liquid of surface tension γ meeting a solid along a line of length l
exerts a force γl on the solid. If it meets the solid at an angle β to the
horizontal (Fig. 13.1B) the vertical component of the force is γl sin β.
Thus, the maximum possible vertical force on a foot acts when β = 90°,
and can be calculated by multiplying the surface tension of the liquid
by the perimeter of the foot. The surface tension of water at 20°C is 0.073
N/m (Denny 1993), so a large fisher spider (Dolomedes) with a mass of
1 g (weight 0.01 N) could be supported by feet of total perimeter 0.01/
0.073 = 0.14 m. The spider would have legs about 50 mm long, of which
around 15 mm would rest on the surface (Suter et al., 1997). The total
perimeter of contact (counting both sides of all eight legs) would be 15 ×
2 × 8 mm or 0.24 m, which is more than sufficient to support the animal.



Fig. 13.1. Diagrams of a foot of a fisher spider on the surface of water. (A) shows
the foot in posterior view, and the other diagrams show it in section. (B) and (C)
show it pressing down on the water with a small force and a larger force, respec-
tively. (D), (E), and (F) illustrate three possible effects that could enable a foot
moving toward the left to exert propulsive forces: (D) shows a wave pushed by the
moving foot; (E) shows water flowing round the foot and the dimple in the water,
exerting drag; and (F) shows asymmetrical surface tension forces. Further explana-
tion is given in the text.
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The forces that surface tension exerts on geometrically similar animals
are proportional to their lengths, but their weights are proportional to
length cubed. Therefore, surface tension cannot support large animals.
For example, a 1-kg animal (1000 times the weight of the spider that we
have been considering) would need feet with a perimeter of 140 m.

To be able to move on the water surface, spiders must be capable of
exerting horizontal as well as vertical forces on it. Dolomedes swim by back-
ward sweeps of their second and third pairs of legs. The two pairs of legs
sweep back in rapid succession, accelerating the animal, which then glides
along passively for a while before making the next leg stroke. Suter and
Wildman (1999) observed a spider accelerating at up to 2.3 m/s2, im-
plying forces up to 0.23 times its weight. The forces exerted by the legs
that propel the animal must have been larger than this, because there was
presumably some resistance to the movement of the other two pairs of
legs, which slide passively forward over the water surface.

Suter et al. (1997) asked how the propulsive forces are generated. One
possibility is that a wave builds up behind the backward-moving foot,
which then pushes on the wave (Fig. 13.1D). Another is that the move-
ment of the foot is resisted principally by hydrodynamic drag (Fig. 13.1E).
A third is that the movement of the foot would make the dimple in the
water surface asymmetrical, so that the surface tension forces on the two
sides of the foot would act at different angles, giving a resultant with a
horizontal component (Fig. 13.1F). Suter et al. (1997) performed experi-
ments with an amputated spider leg to investigate these possibilities. They
built a device that held the distal parts of the leg horizontal on the surface
of water, as in swimming. The leg pressed down on the water with a force
that could be varied. The water was made to flow smoothly past the leg at
various speeds, and the horizontal component of the force that it exerted
on the leg was measured. This experiment is referred to repeatedly in the
paragraphs that follow.

First, we consider the possibility that the propulsive force is mainly
due to a wave. We will have to consider the speeds of waves, because an
animal cannot push on a wave that travels faster than it can move its foot.
Waves on the surfaces of liquids travel at speeds that depend on their wave-
lengths (Denny 1993). For small waves, the principal force tending to
flatten them is surface tension, and the shorter their wavelength the faster
they move. For large waves, the principal flattening force is gravity, and
the longer their wavelength the faster they move. The slowest waves have
an intermediate wavelength, 2π! γ/ρg , where γ is the surface tension
(0.073 N/m for water), ρ is the density (1000 kg/m3 for water), and g is
the gravitational acceleration (9.8 m/s2). Their speed is (4gγ/ρ)1/4. These
formulas tell us that the slowest waves on water have a wavelength of 17
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mm and travel at 0.23 m/s. A spider will not get a wave to push on unless
it sweeps its feet back at at least 0.23 m/s. Suter et al. (1997) confirmed
with their apparatus that the foot produced no observable wave unless it
was moved at at least 0.21 m/s. When the living spiders swam, they swung
their swimming legs back at angular velocities that made their distal ends
move at speeds ranging from 0.16 to 0.62 m/s. More proximal parts of
the foot traveled more slowly, so in some swimming sequences little or
none of the foot was traveling fast enough to make waves. On these occa-
sions, at least, the spiders cannot have been relying on wave forces for
propulsion.

Next, we consider the possibility that drag is the important force. In
the experiments with amputated legs, the horizontal component of force
increased approximately in proportion to the square of the speed, as ex-
pected for drag, but this is not inconsistent with the other possibilities. At
any speed and dimple depth, the measured horizontal force was fairly close
to a theoretical estimate of the drag. The surface of the water was dis-
turbed in the wake of the leg (Fig. 13.1E), showing that eddies were
formed. Work must have been done to give kinetic energy to the disturbed
water, so eddies imply drag.

Finally, there is the possibility that asymmetrical surface tension forces
may be important. The closeness of the measured forces to the theoretical
drag suggests that this effect contributed only a little, if anything, to the
propulsive force. Also, 25% reduction of surface tension (by replacing the
water with dilute ethanol) had little effect on the force. The conclusion
of Suter et al. (1997) is that drag is certainly important, but that waves
may be important when the legs move fast, and that surface tension may
also contribute.

Suter and Wildman (1999) pointed out that Dolomedes has two gaits.
At speeds up to 0.2 m/s (averaged over a complete cycle of acceleration
and deceleration) it swims as described above, by oarlike movements of
the second and third pairs of legs. The tarsi are kept approximately hori-
zontal, and the spider is always in contact with the water surface. This gait
is described as rowing. A different gait, described as galloping, is used at
speeds from 0.3 m/s up to a maximum of 0.7 m/s. The animal advances
in a series of leaps, losing contact with the surface of the water. Between
leaps it strikes the water with the first three pairs of legs. Instead of laying
the tarsi flat on the water surface as in the rowing gait (Fig. 13.2A) it
moves them in a near-vertical plane. They hit the water so fast that an air-
filled cavity opens up in the water anterior to the leg (Fig. 13.2B). We will
see something similar happening with different animals in the next section
of this chapter.
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Fig. 13.2. Diagrams of a fisher spider performing (above) the rowing gait and
(below) the galloping gait. Arrows represent the components of force exerted by
the foot on the water. The angle α between the foot and the water surface is less
than 30° when the foot hits the water, and 90–150° when it leaves it again. From
Suter and Wildman (1999).

13.2. BASILISK LIZARDS

Basilisk lizards (Basiliscus basiliscus) with masses up to at least 130 g run
short distances over the surface of water on their hind legs (Glasheen and
McMahon 1996b). At 100 times the weight of the spiders discussed in
the previous section, they are much too large to be supported by surface
tension. Glasheen and McMahon (1996a) explained how they are sup-
ported. As in running on solid ground, the mean vertical force on the feet,
over a complete stride, must equal body weight. It will be convenient to
express this in another way. During one stride, gravity exerts on the animal
an impulse (force multiplied by time) equal to mgτ, where m is body mass,
g is the gravitational acceleration, and τ is the stride duration. To support
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Fig. 13.3. Diagrams of the foot of a basilisk lizard (A) at the instant of hitting the
water surface and (B) a little later.

the body, the feet must exert an equal impulse on the ground (or in the
case of the basilisk on the water). In the discussion that follows we will
consider a 90-g lizard (weight 0.9 N). Basilisks of this mass have a stride
frequency of about 8 Hz, so the stride duration is 0.125 s and the impulse
required in each stride is 0.9 × 0.125 = 0.113 N s, or 0.056 N s from each
hind foot.

Three phenomena are important. First, the sole of the foot is slapped
down on the surface of the water with high velocity, typically 3 m/s in the
case of 90 g lizards (Glasheen and McMahon 1996a). This accelerates the
water under the foot, giving the water momentum (mass multiplied by
velocity). Newton’s second law of motion tells us that force equals mass
multiplied by acceleration. Impulse is force integrated over time, and mo-
mentum is mass multiplied by (acceleration integrated over time). From
this it follows that the momentum given to the water equals the impulse
applied to it. Different parts of the water are given different accelerations,
but we can define a virtual mass of water as the mass that would have the
same momentum as is actually given to the water if the whole of the virtual
mass were accelerated to the velocity with which the foot hits the water
(Fig. 13.3). Glasheen and McMahon (1996a) dropped a weighted model
foot onto the surface of water and used a force transducer to measure the
impulse. From the results of dropping the foot from various heights they
calculated that the virtual mass accelerated by the foot of a 90-g lizard was
3.3 g. This mass, accelerated to 3 m/s, would have momentum equal to
0.0033 × 3 = 0.010 N/s, 18% of what is needed.

Secondly, after hitting the water the foot sinks down into it. The water
does not immediately close over the foot; instead, the foot makes a tempo-
rary air-filled hole in the water (Fig. 13.3B). The hole is still intact when
the foot is withdrawn, 0.06 s after hitting the surface. While the foot is at
the bottom of the hole, its upper surface is exposed to atmospheric pres-
sure but its under surface is exposed to the hydrostatic pressure at that
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depth. Thus, an upward force acts on the foot, equal to the hydrostatic
pressure multiplied by the area. Glasheen and McMahon’s (1996a) photo-
graphs of a 90-g basilisk show that the final depth of the hole was about
100 mm. The hydrostatic pressure at that depth is the depth (0.10 m),
multiplied by the density of water (1000 kg/m2), multiplied by the gravi-
tational acceleration (9.8 m/s2). It is about 1000 N/m2. That is the final
pressure when the hole is deepest; the mean pressure over the time while
the foot is in the hole is half that, 500 N/m2. The area of the foot was
6 × 10−4 m2, so the mean hydrostatic force on it was 500 × 6 × 10−4 = 0.3
N. If this force acted for the 0.06 s that the foot was in the water, its
impulse was 0.3 × 0.06 = 0.018 N s, about 32% of what was needed.

Thirdly, drag acts on the foot as it is pushed down into the water. As
already noted, the area of the foot was 6 × 10−4 m2. It was pushed 0.1 m
down into the water in 0.06 s, so its mean speed was 1.7 m/s. The density
of water is 1000 kg/m3, and the drag coefficient of the foot would proba-
bly be about 1.0 (similar to disks and cylinders). With these data, Equation
3.8 gives a drag of 0.5 × 1000 × 6 × 10−4 × 1.72 × 1.0 = 0.9 N. In 0.06 s,
this would give an estimated impulse of 0.05 N s, 90% of what was needed.

Those rough estimates of the hydrostatic and drag forces are apparently
too high. Glasheen and McMahon (1996a) pushed their model down into
water at various speeds, measuring the force on it. After the initial slap on
the surface, the measured force was the sum of the hydrostatic and drag
forces. They found that it was only 68% of what my calculation gives. Thus,
my estimate of the sum of the impulses from these two forces should be
reduced to 0.68(32 + 90) = 83% of the requirement. With the 18% from
the slap impulse, that gives almost exactly the required total. However,
Glasheen and McMahon (1996a) noted that individual steps differ from
each other; in some the foot is slapped down harder on the water, or driven
deeper, than in others. They calculated from the results of their model
experiments that the impulses delivered in different steps ranged from
about 70% to about 130% of the required mean.

13.3. SURFACE SWIMMERS

Ducks, penguins, water snakes, and many other animals often swim at the
surface of water, with parts of their bodies exposed to the air. Ducks swim
by paddling with their feet, penguins by using their wings as hydrofoils,
and water snakes by undulating their bodies. These methods of propulsion
are discussed in the chapters that follow. In this chapter we are concerned
only with the resistance they have to overcome when swimming at the
surface, due to the waves that their motion generates.
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Moving ships make waves that spread out on either side in the shape of
a V. So also do surface-swimming animals, as can be seen by watching
ducks on a smooth pond. Waves formed at the bow and stern travel at the
speed of the boat or animal, and have the wavelength appropriate to that
speed. We saw in Section 13.1 that the slowest waves on water have a
wavelength of 17 mm and travel at 0.23 m/s. Waves of longer or shorter
wavelength travel faster. For the shorter wavelengths, surface tension is
the predominant flattening force, but for the longer waves it is gravity.
The animals that we are concerned with in this section travel faster than
0.23 m/s, so they make waves. They are much more than 17 mm long, so
these waves are gravity waves. Work is needed to give potential and kinetic
energy to the water in the waves, so there is a force resisting the motion
of the boat or animal due to the presence of the waves. It is called wave
drag.

The importance of wave drag is illustrated by comparisons of the meta-
bolic rates of animals swimming at the surface or deeply submerged. For
example, Baudinette and Gill (1985) measured the oxygen consumption
of little penguins (Eudyptula minor) swimming in a flume (Fig. 5.2B).
They found that the metabolic rates of the penguins were 6.3 W/kg when
they were resting, 8.4 W/kg when they were swimming under water at
0.72 m/s, and 12.4 W/kg when they were swimming at the surface at the
same speed. Similar measurements on sea otters (Enhydra) showed that
for them swimming at the surface required 70% more metabolic power
than swimming submerged at the same speed (Williams 1999). Some wave
drag acts even on animals that are completely submerged but close to the
surface. To avoid it, it is necessary to swim deeper than about 2.5 body
diameters (Hertel 1966).

A simple equation gives the speed of waves that have wavelengths long
enough for surface tension to be unimportant. A wave of wavelength λ
travels at speed vwave,

vwave = ! gλ
2π

(13.1)

where g is the gravitational acceleration (Denny 1993). If the wave-
length of the waves matches the waterline length of the hull, lhull, the bow
and stern waves interfere constructively with each other and the waves
become very large. The speed at which this happens is called the hull
speed; it is ! glhull/2π . For a duck with a waterline length of 0.33 m, this
is 0.72 m/s, and for a duckling with a waterline length of 0.12 m it is
0.43 m/s. As a boat or animal approaches its hull speed, the wave drag
becomes very large.

Prange and Schmidt-Nielsen (1970) measured the oxygen consumption
of mallard ducks (Anas platyrhynchos) swimming in a flume. By increasing
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the speed of the flowing water, they were able to make the ducks swim at
speeds up to 0.7 m/s, which is remarkably close to the calculated hull
speed of 0.72 m/s. The metabolic rates of the ducks were 7 W/kg when
they were resting on the surface of the water, and around 12 W/kg when
they swam at speeds of 0.35–0.5 m/s. At higher speeds the metabolic rates
rose steeply, reaching 22 W/kg at 0.7 m/s.

Speedboats travel faster than their hull speeds by hydroplaning. The
boat rides up its bow wave, so that it slopes bow up and strikes the water
at a positive angle of attack. This results in hydrodynamic lift. A boat that
is traveling below its hull speed floats relatively low in the water and is
supported entirely by buoyancy, but a hydroplaning boat rides higher in
the water and is supported largely by lift. Drag on a hydroplaning boat is
considerably lower than would be predicted by extrapolation from lower
speeds, because less of its surface area is under water and because wave
drag is largely avoided. Aigledinger and Fish (1995) found that ducklings
with a hull speed of 0.43 m/s were capable of short bursts of swimming
at 1.73 m/s by hydroplaning. When hydroplaning, they rose higher in the
water and their bodies had an angle of attack of about 16°.

The siphonophore Velella floats on the surface of the sea and is blown
along by the wind. The gas-filled float that gives it buoyancy has a triangu-
lar extension on its upper surface, which functions as a sail. This sail has a
low aspect ratio (i.e. it is long and low) so its lift/drag ratio is low, at any
angle of attack (Francis 1991). Consequently, it cannot sail at small angles
into the wind, like yachts with high aspect ratio sails. Also unlike a yacht,
it has no means of steering. It sails downwind at a small angle to the
direction of the wind.

Though all the animals discussed in this chapter travel over the surface
of water, their modes of propulsion and the phenomena that prevent them
from sinking are very different. Fisher spiders are supported by surface
tension, basilisk lizards by a combination of effects that depend on the
foot being driven down into the water, and ducks and Velella by buoyancy.
Velella sails like a yacht, and other surface swimmers are propelled by limb
movements. Capillary waves were important in our discussion of spiders,
and gravity waves in our discussion of ducks. I suspect that further research
on surface swimmers might be profitable, looking for ways in which they
may possibly minimize wave drag.



Chapter Fourteen...............................................................
Swimming with Oars and Hydrofoils

T HIS CHAPTER is about swimming by means of limbs or fins that
remain more or less flat as they move through the water. It is not
concerned with animals that swim by undulation either of a fin or

of the whole body; they are dealt with in the next chapter.
A swimming animal can use its appendages to propel it in two different

ways, making use either of drag or of lift. For example, ducks swim by
spreading their webbed feet and moving them backward through the
water. Drag on the backward-moving feet acts forward, providing the
thrust that drives the bird forward. Penguins, however, swim by beating
their wings up and down more or less as if they were flying, and are pro-
pelled by lift on the wings. Similarly, paddle steamers are driven by drag
on the blades of the paddle, whereas more modern ships are driven by lift
on the blades of a propeller.

14.1. FROUDE EFFICIENCY

Flying animals have to exert large vertical forces to support their weight,
and generally much smaller horizontal forces to propel themselves. Most
swimming animals, however, are close in density to the water they swim
in, so any vertical forces they may have to exert are small. Their principal
requirement is for thrust, not weight support. Whether the thrust is de-
rived from lift or from drag, it is obtained by driving water backward.
From this follows a principle that is important for all swimming animals.
The thrust equals the rate at which momentum is added to the wake.
Consider an animal swimming with velocity v. Let dmwake/dt be the mass
of water that it drives backward in unit time, accelerating this water from
rest to velocity −vwake. Then the thrust is vwakedmwake/dt. Notice that the
same thrust can be obtained by accelerating a lot of water to a low velocity,
or a little to a high velocity. The power that the animal has to exert to
overcome the drag on its body at velocity v is the thrust multiplied by the
velocity of the body, vvwakedmwake/dt; we can think of this as the useful
power. If the animal were propelling itself by pushing on an immovable
object, this is all the power it would need. However, while the body is
being driven forward, water is driven backward. Additional power (in-
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duced power) is needed to give kinetic energy to this water. The rate at
which kinetic energy is added to the water in the wake is #vwake

2dmwake/
dt. Thus the total of the power requirements we have considered so far is
(v + #vwake)vwakedmwake/dt. We can define an efficiency, known as the
Froude efficiency, as the power expended against drag on the body divided
by the sum of this power and the induced power:

Froude efficiency =
v

v + #vwake
(14.1)

This shows that for efficient propulsion, vwake should be made as low as
possible. It is better to accelerate a lot of water to a low velocity than a
little to a high velocity.

The Froude efficiency is also called the theoretical efficiency, because
there may be further power requirements of which it fails to take account.
For example, in the case of an animal that propels itself by means of
hydrofoils, work has to be done against profile drag on the hydrofoil. (The
distinction between profile drag and induced drag was explained in Sec-
tion 10.3.)

14.2. DRAG-POWERED SWIMMING

Water beetles and various aquatic bugs swim by means of oarlike legs.
Some of them use two pairs of legs for swimming, and some just one pair
(Nachtigall 1965). Figure 14.1 shows forces acting on a beetle that is
rowing at speed v, moving the blades of its oarlike legs backward and
forward at speed voar relative to its body. (It would, of course, be possible
for the speeds of the oars in the power stroke and the recovery stroke to
be different, but we will assume for the sake of simplicity that both strokes
are made at the same speed.) In the power stroke (Fig. 14.1A) the oars
move backward relative to the water at speed voar − v. Because they are
moving backward, the drag on them acts forward. I have given these drag
forces the symbol Fthrust because these are the forces that propel the beetle.
In the recovery stroke (Fig. 14.1B) the oars move forward relative to the
water at speed voar + v, so the drag on the oars now acts backward, resisting
the beetle’s motion. At this stage the oars are feathered so as to make this
drag, Ffeather, as small as possible. Throughout the cycle of movement, drag
Fhull acts on the body. The net force on the body is Fhull − 2Fthrust in the
power stroke and Fhull + 2Ffeather in the recovery stroke. If the beetle is swim-
ming at a steady speed, the forces acting over a complete cycle must bal-
ance, whence

Fhull = Fthrust − Ffeather (14.2)
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Fig. 14.1. Diagrams of a swimming beetle (A) during a power stroke and (B)
during a recovery stroke. (C) Water movements in the beetle’s wake.

The power required to move the oars relative to the body is 2voarFthrust

in the power stroke and 2voarFfeather in the recovery stroke, so the mean
power output is voar (Fthrust + Ffeather). The power required to move the
body through the water is vFhull = v (Fthrust − Ffeather). Thus, the efficiency of
rowing is

Efficiency = 1 v
voar
2 1Fthrust − Ffeather

Fthrust + Ffeather
2 (14.3)
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Fig. 14.2. Ventral and lateral views of the water beetle Acilius showing successive
positions of the hind legs in swimming. The other legs are not shown. Redrawn
from Nachtigall (1960).

The speed of the oars, voar, must be greater than v, because the oars must
move backward relative to the water in the power stroke. Equation 14.3
tells us that for efficient swimming voar should be as little greater than v as
possible, which implies that large oars are more efficient than small ones.
This is the principle that we have already met in our discussion of Froude
efficiency; it is more efficient to propel yourself by pushing large masses of
water slowly than by pushing small masses fast. The equation also makes
the obvious point that for efficient swimming the drag on the oars in the
recovery stroke should be kept as low as possible.

The oars give backward momentum to the water near them, but the
body drags water along with it, giving forward momentum to the water
in its wake. The principle of conservation of momentum tells us that the
beetle’s movements cannot alter the total momentum of it and the water.
If it is swimming at constant speed, the backward momentum given to
the water by the oars equals the forward momentum in the wake of
the body.

Nachtigall (1960) studied the water beetle Acilius, which is about 17
mm long and swims under water at up to about 0.5 m/s. It rows itself
along with its second and third pairs of legs, which are fringed with long
hairs (Fig. 14.2). You might suppose that a fringe of hairs would be inef-
fective as an oar blade, because water can pass through the gaps between
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the hairs. Cheer and Koehl (1987) have shown that very little water may
pass between the hairs of fringed appendages moved through water if the
hairs are closely spaced and if the Reynolds number is low enough. (In
this context, the linear dimension used to calculate Reynolds number is
hair diameter.) The Reynolds number for the hairs on Acilius swimming
legs is higher than for the appendages of the smaller animals that Cheer
and Koehl considered. Nevertheless, the fringes of hairs provide 54% as
much thrust as a solid paddle of the same area would do (Nachtigall 1960).

In the power stroke (Fig. 14.2, positions 1–4) the hairs are fully spread
in a vertical plane, making the effective area of the blade as large as possi-
ble. In the recovery stroke (positions 5–8) the hairs fold down so as to
trail more or less horizontally behind the leg. In addition, the hair-bearing
segments of the leg, which are oval in cross section, rotate about their
long axes so as to move edge-on through the water in the recovery stroke,
further reducing drag. These changes in hair and leg position are made
automatically, due to the asymmetrical arrangement of hairs on the legs.

Nachtigall (1960) fixed Acilius legs in a water tunnel and measured
the forces on them in the positions both of the power stroke and of the
recovery stroke. He also analyzed film of Acilius swimming. His results
show that the term v/voar in Equation 14.3 was about 0.7 and the term
(Fthrust − Ffeather)/(Fthrust + Ffeather) was about 0.8 (see also Alexander [1983]).
Multiplied together, these give an efficiency of about 0.56. However,
Nachtigall (1960) pointed out that there are further energy losses due to
water being pushed sideways as the legs swing in their arcs. When account
was taken of this, the overall efficiency with which work done by the legs
was used to propel the body fell to about 0.45. I have not considered
inertial work in this discussion because, in contrast to the situation for
hovering flight, inertial work in rowing can generally be assumed to be
small compared to hydrodynamic work. This implies that kinetic energy
given to a limb and its added mass of water at the beginning of a stroke
can generally be used to do work against drag at the end (see Section 3.6).

The energy cost of swimming depends not only on the efficiency, but
also on the drag coefficient of the body. A poorly streamlined body will
need a lot of power to propel it, even if the efficiency of rowing is high.
Nachtigall (1960) measured drag on Acilius bodies in a water tunnel and
found that the drag coefficient based on frontal area was 0.23. At the same
Reynolds number, the drag coefficients of a well-streamlined body and of
a sphere would be about 0.1 and 0.5, respectively, so Acilius is only moder-
ately well streamlined.

Power strokes, in which the beetle accelerates, alternate with recovery
strokes in which it decelerates. Consequently, v and Fhull fluctuate. To dis-
cover the consequences of this, we will calculate the work done against drag
on a body that accelerates from an initial speed v − ∆v to a final speed v + ∆v,
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Fig. 14.3. Part of the trunk of the crustacean Speleonectes, showing the limb move-
ments that power swimming. From Kohlhage and Yager (1994).

with constant acceleration a. Its speed at time t is (v − ∆v) + at]. Drag is
approximately proportional to the square of speed, and the power required
to overcome drag is the drag multiplied by the speed, and so is proportional
to speed cubed. Thus, the power required at time t is k[(v − ∆v) + at]3,
where k is a constant. The work done against drag can be calculated by
integrating the power with respect to time, from time 0 to time 2∆v/a,
when the final velocity is attained. This work is (2kv 3∆v/a)[1 + (∆v/v)2].
The power is this work divided by the time 2∆v/a in which it is done:

Power = kv 3 [1 + 1∆v
v 2

2

] (14.4)

Thus, the fluctuations of velocity increase the work that has to be done
against drag by a factor 1 + (∆v/v)2. Note that the increase is relatively
small, unless the amplitude of the velocity fluctuations is a large fraction
of the mean velocity. In this analysis, I have ignored the work done giving
kinetic energy to the body while it is accelerating, because this energy is
used to do work against drag as the body decelerates.

The velocity fluctuations ∆v could be reduced by making shorter oar
strokes with higher frequency. This would tend to reduce the power re-
quired for swimming at the same mean speed. However, if the strokes
were made too short, the inertial work done accelerating the oars would
become too large, in comparison to the hydrodynamic work, to be recov-
ered. Alternatively, ∆v/v could be reduced by having two sets of oars that
worked out of phase with each other, so that each made its power stroke
during the recovery stroke of the other. However, it is difficult to see how
the second and third pairs of legs of a water beetle could work more than
slightly out of phase without colliding; and if strokes of the left legs alter-
nated with strokes of the right ones the beetle would yaw from side to
side and drag would be increased.
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Many small crustaceans swim by means of limbs fringed with bristles.
Some of them have many pairs of swimming limbs, up to 32 in the case
of Speleonectes. This animal is about 20 mm long and lives in caves in the
Bahamas, where it swims with its ventral side uppermost. It usually beats
its limbs in a metachronal rhythm, each pair of legs moving slightly after
the next more posterior pair. Thus, waves of limb movement travel for-
ward along the body (Fig. 14.3). This makes the animal move at about 7
mm/s. About half the limbs are making their power stroke at any instant,
so it might be expected that the speed of swimming would be almost
constant. However, the speed fluctuates through a range of a few millime-
ters per second; the peaks coincide with the power stroke of the longest
limbs, in the middle of the trunk (Kohlhage and Yager 1994).

Some fish row with their pectoral fins and some others use their pectoral
fins as hydrofoils, as we shall see in the next section. Blake (1979b, 1980a)
analyzed film of an angelfish (Pterophyllum) rowing, calculating both the
drag forces on the fins and the inertial forces needed to accelerate and
decelerate the masses of water that moved with them. He found that in
this case the inertial forces were greater than the drag, so that the fin
muscles had to do work to accelerate the added mass of water and negative
work to decelerate it. The conclusion from his calculations was that the
overall efficiency, with which work done by the fins was used to propel the
body, was only 0.16.

Frogs swim by a kicking action of the hind legs, similar to the human
breaststroke. Thrust is provided principally by drag on the large hind feet,
but additional thrust is obtained at the end of the stroke when the feet
meet sole to sole, squeezing out a rearward jet of water (Gal and Blake
1988a, b).

Ducks row with their webbed feet, making power strokes with the left
and right foot alternately. This causes little or no yawing, because the
feet keep close to the median plane. Semiaquatic mammals such as mink
(Mustela) and muskrats (Ondatra) also perform drag-based swimming by
alternate movements of their hind legs (Fish 1996).

14.3. SWIMMING POWERED BY LIFT ON LIMBS
OR PAIRED FINS

In the power stroke of drag-powered swimming, the limb or fin that serves
as an oar moves backward through the water, with its surface more or less
at right angles to its path (Fig. 14.4A). In contrast, in the power stroke of
lift-powered swimming the limb or fin moves vertically or along a sloping
path, with a relatively small angle of attack (Fig. 14.4B, C, D). Grebes
(Podiceps) swim by means of their lobed feet. Johannson and Norberg
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Fig. 14.4. Diagrams of (A) drag-powered swimming and (B–D) alternative tech-
niques of lift-powered swimming. The animals are swimming toward the right of
the page. Each diagram shows the path of the oar or hydrofoil relative to the water.
The oar or hydrofoil is shown in section at two positions in each diagram, with
the force that provides thrust indicated by arrows.

(2001) described how the feet move upward through the water in the
power stroke, generating lift that serves to propel the bird, as shown in
Fig. 14.4B. The bird wrasse (Gomphosus) swims by beating its pectoral fins
more or less as shown in Fig. 14.4B (Walker and Westneat 1997). The
body decelerates during the downstroke and accelerates during the up-
stroke, showing that at least most of the thrust is provided by the upstroke.
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In the human crawl stroke, the hand moves downward during the first
half of the power stroke, apparently providing lift to propel the swimmer
as in Fig. 14.4C (D. I. Miller 1975). Sea lions (Zalophus) swim by beating
their pectoral flippers, more or less as shown in Fig. 14.4C (English 1976).
All of these examples could easily be mistaken for drag-powered swim-
ming, because the foot, hand, or flipper moves posteriorly relative to the
body in the power stroke, with its large surfaces more or less vertical. The
observation that shows that the animal cannot be being propelled by drag
is that the limb is not moving backward relative to the water.

Though Gomphosus obtains thrust principally from the upstroke, this is
not the case for all fish that swim by using their pectoral fins as hydrofoils.
Drucker and Lauder (1999) used particle image velocimetry (Section 5.4)
to reveal the water movements driven by the pectoral fins of Lepomis. A
20-cm fish swimming slowly, at 10 cm/s, produced vortex rings only dur-
ing the downstroke, showing that only the downstroke was generating
thrust. At higher speeds both the downstroke and the upstroke produced
vortex rings. The downstroke ring and the subsequent upstroke ring re-
mained linked, like the vortex rings produced by flying moths (Fig. 12.1).
The downstroke ring was angled slightly downward, providing weight
support for the fish, which is a little denser than water. Another fish of
very similar size and shape, Embiotoca, produces pairs of linked vortex
rings even when swimming slowly (Drucker and Lauder 2000). Both spe-
cies supplement the thrust from their pectoral fins by tail movements when
they swim fast (Section 15.1). Drucker and Lauder (2001) used particle
image velocimetry to investigate turning by Lepomis.

The hydrodynamic force on an oar or hydrofoil can be regarded as act-
ing at a single point, the center of pressure. In the power stroke of rowing,
the blade of the oar must be moved posteriorly, relative to the body, at a
speed greater than the swimming speed. In the power stroke of lift-
powered swimming by the techniques illustrated in Fig. 14.3B and C the
hydrofoil moves vertically relative to the water, which implies that it must
be moved posteriorly relative to the body at a speed equal to the swimming
speed. These requirements may limit the speed of swimming (Alexander
1989b). Consider an animal that beats a limb backward and forward with
frequency f, each forward or backward stroke taking time 1/2f. If the
center of pressure is at a distance r from the base of the limb, the distance
it moves relative to the body in its backward stroke cannot exceed 2r, so
the speed of the backward movement (and so the speed of swimming)
cannot exceed 4rf. We will work out the consequence of this for penguins,
if they swam as illustrated in Fig. 14.3B or C. A 4-kg Humboldt penguin
(Spheniscus) had wings 0.16 m long, so the center of pressure was probably
about 0.10 m lateral to the shoulder (Hui 1988). This bird beat its wings
at 2.75 Hz when swimming at 1.7 m/s. It would probably have beaten
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them at higher frequencies when swimming faster, but seems unlikely to
have been capable of frequencies above 4 Hz (Clark and Bemis 1979). At
4 Hz, 4rf would have been 1.6 m/s. If it swam as shown in Fig. 14.3B or
C, it could not swim faster than this.

Penguins do not swim by these techniques, but more nearly as shown
in Fig. 14.3D, and can swim much faster. Humboldt penguins have been
filmed swimming at 4.5 m/s in a zoo aquarium (Hui 1987). Hui (1988)
filmed Humboldt penguins swimming submerged in a long tank with a
window in the side. Stripes painted on the wings enabled him to measure
their angles of attack as well as to plot their paths through the water. The
path of the distal part of the wing sloped at around −50° and +50° in the
downstroke and upstroke, respectively. The angle of attack generally lay
between 0 and +10° in mid downstroke, and between −10 and −25° in
mid upstroke. Lift must act forward and up in the downstroke, forward
and down in the upstroke. The upward and downward components cancel
out over a cycle, so the mean force on the wings is forward thrust. Hui
also made resin casts of penguin wings and measured the lift and drag on
them in a wind tunnel at an appropriate Reynolds number. He obtained
lift coefficients for the distal part of the wing ranging from a surprisingly
low value of +0.3 at angles of attack around +20°, to −0.8 at −20°. Taking
these measurements together with the angles measured from the films, he
calculated that peak thrust was 4 N in the downstroke and 7 N in the
upstroke for a 4-kg penguin swimming at 1 m/s. The mean calculated
thrust force was approximately equal to the drag on the body, which Hui
measured by towing a formaldehyde-fixed carcass (or a resin cast of the
carcass) along a tank of water. These measurements gave drag coefficients
based on wetted area of 0.011–0.015 for the cast, and slightly more for
the preserved carcass. This is much less than for unstreamlined bodies such
as spheres, but a well-streamlined body with the same ratio of thickness
to length, at the same Reynolds number, would have had a drag coefficient
based on wetted area of only about 0.003. Nachtigall and Bilo (1980)
calculated drag coefficients for live penguins (Eudyptula) from measure-
ments of their decelerations while they glided with their wings motionless
relative to the body. They obtained a much lower wetted-area drag coeffi-
cient than Hui did, 0.0044. The measurements are not strictly comparable
because Hui had removed the wings from his specimens, but this does not
explain the discrepancy.

Hui (1988) considered the possibility that unsteady effects might be
important in penguin swimming. The distance traveled in each cycle was
only about 12 wing chords, so unsteady effects cannot be confidently dis-
counted (Section 11.2). However, his attempt to apply an unsteady theory
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gave a much less good match of thrust to drag than the calculation (de-
scribed above) that ignores unsteady effects.

We have already seen that for flying birds there is an optimum wing area
that minimizes the gliding angle for any given speed (Equation 10.23).
A similar argument could be formulated for birds that use their wings
only for swimming. It would give a much smaller optimum area, mainly
because density (which appears in Equation 10.23) is 800 times larger for
water than for air at sea level. Appropriately, penguins have much smaller
wings than flying birds of equal mass; for example, about 1/40 of the area
of the wings of an eagle (Hui 1988). Guillemots (Uria aalge) use their
wings both for flight and for swimming, so their wing area has to be a
compromise. The wing loading of a 0.95-kg guillemot was 171 N/m2,
whereas a more typical bird of the same mass, a herring gull (Larus argen-
tatus), had a wing loading of only 46 N/m2 (Pennycuick 1997). Accord-
ingly, guillemots fly fast, at about 19 m/s, whereas herring gulls fly at only
about 10 m/s. Guillemots beat their wings at about 8.7 Hz when flying,
but only 1.9–2.8 Hz when swimming (Lovvorn et al., 1999), so their
muscles cannot be shortening at optimum speed in both modes of locomo-
tion. J. M. V. Rayner tells me that flying herring gulls beat their wings at
about 2.5 Hz.

Marine turtles swim by beating their fore flippers, apparently producing
thrust as shown in Fig. 14.3D. At least some of them can swim quite fast.
Davenport et al. (1984) recorded a young Chelonia mydas, with a carapace
only 11 cm long, swimming at speeds up to 1.4 m/s.

There are some indications that swimming with limbs used as hydrofoils
tends to be more economical of energy than swimming with limbs used
as oars. Baudinette and Gill (1985) measured the oxygen consumption of
penguins and a duck of closely similar mass swimming at the surface in a
flume. Their resting metabolic rates were similar, but when they swam at
speeds ranging from 0.3 to 0.7 m/s, the duck used oxygen about twice
as fast as the penguins did at the same speed. Williams (1999) gives meta-
bolic rates for a 20-kg sea otter and sea lions of similar mass swimming
submerged. The comparison is less satisfactory than the one between pen-
guins and ducks, because the mammals had different resting metabolic
rates and swam at different speeds, but it did appear that the sea lions were
the more economical swimmers.

One reason why lift-powered swimming may in some cases be more
economical of energy than drag-powered swimming is that thrust may be
obtained by pushing on larger volumes of water, giving higher Froude
efficiencies (Section 14.1). A photograph of a duckling published by
Aigledinger and Fish (1995) shows a vortex ring produced by a foot
stroke, made visible by trapped bubbles of air. Its small diameter (similar
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to the width of the foot) confirms that the foot can push on only a small
volume of water. The vortex rings produced by the fin movements of
Lepomis and Embiotoca are also rather small, with diameters of 3–6 cm for
20-cm fish (Drucker and Lauder 2000). The rings produced by the left
fin remain separate from those produced by the right one. The wings of
penguins and guillemots, however, are much longer in proportion to the
dimensions of the body than are the fins of the fish, and produce relatively
larger vortex rings. The vortices are shown (again made visible by air bub-
bles) in a photograph of a pigeon guillemot (Cepphus [Rayner 1995]).
This picture shows that each wing stroke produces a single vortex ring,
with a diameter only a little less than the wing span.

Walker and Westneat (2000) wondered whether rowing might offer
some advantage that would make it preferable to hydrofoil propulsion for
some animals. They made computer simulations, using a model that re-
sembled a fish propelled by a pair of pectoral fins. They compared two
versions of the model, identical in body size (15 cm long) and fin dimen-
sions (3 cm long). One beat its fins forward and back in a rowing motion,
feathering them for the return stroke. The other beat its fins up and down
with the same amplitude, adjusting their angle of attack so as to generate
forward lift in both strokes. Walker and Westneat calculated the forces on
the fins, taking account of unsteady effects and of the added mass of water
that moved with them. In these calculations, they made use of the results
of the experiments of Dickinson et al. (1999) on a model fly (Section
11.2). The model fly operated at lower Reynolds numbers than the simu-
lated fish, but no comparable data for more appropriate Reynolds numbers
were available.

In one set of simulations, Walker and Westneat (2000) set the model
moving at a chosen speed, then adjusted the frequency of the fin beat to
make the thrust generated by the fins match the drag on the body. They
calculated the work done on the fins and hence the efficiency of propul-
sion. These simulations showed, as expected, that hydrofoil propulsion
was more efficient than rowing at all speeds.

In another set of simulations, they made the fins beat with a fixed fre-
quency of 10 Hz and calculated the thrust that they would generate with
the body moving at various speeds. In these simulations, the thrust (aver-
aged over a complete cycle) was generally greater or less than the drag,
implying that the fish was accelerating or decelerating. At every speed
except the highest (0.9 m/s), rowing gave more thrust than hydrofoil
propulsion. These results indicate that if efficiency is the most important
criterion, hydrofoil propulsion is preferable to rowing; but that if the abil-
ity to accelerate is more important, rowing is better. The high thrusts that
oars can give will also be valuable for turning and braking. Hydrofoils are
more efficient, but oars seem to be better for maneuverability.
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14.4. SWIMMING WITH HYDROFOIL TAILS

Unlike penguins and sea turtles, which swim by beating paired hydrofoils,
whales swim by beating a single hydrofoil on the tail. However, the princi-
ple of swimming is the same; Fig. 14.4D is as good a diagram of whale
swimming as of penguin swimming. The swimming movements of whales
have been described by (among others) Videler and Kamermans (1985)
and Fish (1993, 1998). Tunas have vertical tail fins that they beat from
side to side, unlike the horizontal flukes of whales that are beaten up and
down, but their swimming action is otherwise similar (Fierstine and Wal-
ters 1968).

There is no sharp distinction between the swimming mechanism of
whales and tunas and that of the more typical fishes described in Chapter
15 as swimming by undulation of the body. The significant difference is
that whales and tunas have a narrow caudal peduncle between the main
part of the body and the hydrofoil tail. To a first approximation, they can
be thought of as rigid hulls propelled by a separate oscillating hydrofoil
at the rear. When we consider more typical fishes we will have to think of
body and tail as a single undulating unit.

The distance traveled by a whale in each cycle of tail movements is
12 or less times the chord length of the fluke, and as few as 4.5 chord
lengths in the case of a killer whale (Orcinus) swimming slowly (Fish
1998). It must therefore be assumed that unsteady effects are important.
For unsteady analyses of whale swimming, the fluke is generally assumed
to move sinusoidally with amplitude h, frequency f, and forward speed v.
The angle at which the plane of the fluke is tilted relative to the horizontal
is also assumed to fluctuate sinusoidally. The fluke has plan area A and
its chord, where it joins the caudal peduncle, is c. The analysis uses two
dimensionless numbers, the reduced frequency and the feathering param-
eter. The reduced frequency is 2πfc/v, that is, 2π divided by the number
of chords traveled in each tail beat cycle. The feathering parameter is the
ratio of the maximum angle of attack of the fluke to the maximum angle
of the path of the fluke to the horizontal: it is zero if the fluke tilts so as
to have zero angle of attack throughout the tail beat cycle, and one if it
remains horizontal throughout the cycle. Fish (1998) calculated feath-
ering parameters ranging from 0.4 to 0.7 for four species of toothed
whales swimming at various speeds. For any combination of reduced fre-
quency and feathering parameter, a thrust coefficient Cthrust can be calcu-
lated (Yates 1983):

Thrust = #ρAv 2Cthrust 1 h
c 2

2

(14.5)
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where ρ is the density of water. Fish (1993) calculated thrust in this way
for several species of toothed whale, and went on to calculate drag coeffi-
cients. He obtained coefficients based on wetted area ranging from about
0.03 at a Reynolds number of 2 × 106 to about 0.003 at a Reynolds num-
ber of 3 × 107. At these Reynolds numbers, the drag coefficient of a thin,
flat plate aligned with the direction of flow would be 0.004 and 0.002,
respectively (assuming a turbulent boundary layer; see Alexander [1983]).
Drag coefficients based on wetted area for well-streamlined bodies are
only 20–30% higher than these, but drag on a swimming whale is higher,
probably mainly because of the “recoil” movements of the body that inevi-
tably occur when the animal beats its tail. Lang (1975) measured the de-
celeration of a dolphin (Stenella) gliding with its body straight between
bursts of swimming. Its drag coefficient based on (volume) 2/3 was 0.027,
approximately the value expected for a streamlined body with a turbulent
boundary layer.

Reduced frequency and feathering parameter can also be used to calcu-
late the efficiency with which work done by the animal is used to overcome
drag on the body. Fish (1998) calculated efficiencies between 0.75 and
0.9 for the toothed whales that he studied.

The swimming muscles of dolphins insert on the vertebrae of the tail
through a very large number of long, slender tendons. Bennett et al.
(1987) measured the elastic properties of the tendons and considered
whether they might serve as energy-saving springs. The tail flukes of the
dolphins that we studied were only around 1% of body mass, but the added
mass of water calculated to move with them increased the total mass that
had to be oscillated to 7% of body mass. Bennett et al. (1987) calculated
that the inertial work was 0.3 of the hydrodynamic work for a dolphin
(Lagenorhynchus) swimming at 5 m/s. Taking account of this, we esti-
mated the effect of tendon elasticity on the work required of the muscles.
We argued that the work required of the muscles is increased if negative
work done at one stage of the tail beat cycle has to be balanced by addi-
tional positive work at another. We assumed that the metabolic energy
cost of swimming would be least if the need to do negative work were
eliminated, and concluded that the tendons were excessively compliant;
the muscles would have to do more positive and negative work than if the
tendons had been thicker. However, we failed to take account of unsteady
effects in our estimate of hydrodynamic work. Blickhan and Cheng (1994)
reanalyzed the data taking account of unsteady effects and concluded that
the tendon compliance was close to the optimal value that would eliminate
the need for muscles to do negative work.

Neither of these investigations took account of the relationship between
the efficiency of a muscle and the rate at which it is shortening (Fig. 2.3).
Alexander (1997b) did, in the theory illustrated by Fig. 3.5. This theory
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shows that to minimize metabolic energy costs, the tendons should be
less compliant than would be required to eliminate negative work. When
interpreted in the light of this theory, even Blickhan and Cheng’s (1994)
calculations indicate that the tendons are more compliant than would be
optimal.

Tunas also have tendons running through the caudal peduncle, con-
necting the swimming muscles to the skeleton of the tail. Their possible
role as energy-saving springs seems not to have been investigated. Knower
et al. (1999) used a buckle transducer (Section 5.6) to record the forces
transmitted by the tendons to the tails of yellowfin (Thunnus) and skipjack
tuna (Katsuwonus) swimming at sustainable speeds in a large water tunnel.
They also recorded electromyograms from the red (aerobic) muscle, which
powers swimming at these speeds. In other experiments, the same group
used sonomicrometry (Section 5.6) to record length changes of red mus-
cle fibers in skipjack (Shadwick et al., 1999). Their results show that the
period when the muscles of the left side of the body are shortening coin-
cides precisely with the period when the tail is moving toward the left,
and similarly for the right side. This suggests that the tendons are not
stretching much, for the following reason. Peak inertial forces act when
the tail is at the extremes of its motion to left and right. For this reason,
force is first required in the muscles of the left side before the tail has
finished moving to the right, and ceases to be required before the tail has
finished moving to the left. The tendons must stretch in phase with the
fluctuations of force, so if they were stretching much the length changes
of the muscle fibers would be out of phase with the movements of the tail.
Unfortunately, the published force records do not show the precise phase
relationship between the forces and the tail movements: the force records
were made to establish the relationship between electromyographic activ-
ity and force.

Dolphins and tunas are remarkably fast swimmers. The highest reliably
recorded speed for a dolphin (or, indeed, for any swimming animal) seems
to be 11 m/s, briefly attained by a trained Stenella attenuata in a lagoon
in Hawaii. The dolphin, 1.9 m long, was chasing a lure towed by a variable-
speed winch. Its sprinting speed in water is about the same as the peak
speed attained on land by elite human athletes in the fastest part of a 100-
m race. Dolphins are often seen swimming in the bow waves of ships that
are traveling at speeds around 10 m/s, but this is not unaided swimming;
an animal that positions itself in the front slope of the bow wave may be
carried along passively at the speed of the ship (Hertel 1966).

Speeds up to 21 m/s have been claimed for Thunnus and Acanthocy-
bium, measured by recording the speed at which hooked fish drew out a
line (Walters and Fierstine 1964). As the line was drawn out, instruments
detected magnetic markers spaced at regular intervals along it and re-
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corded their passage as blips on a chart recorder. The published example
of a record shows a great deal of electrical noise, and it seems possible that
some of the blips that were counted as signals were merely noise. The
highest speeds that have been recorded for tunas by other means are
around 10 m/s (Magnuson 1978).

Tunas presumably owe their speed in part to the unusual arrangement
of blood vessels that keeps their swimming muscles warmer than the water
(see Section 15.2).

14.5. PORPOISING

Dolphins and penguins often leap repeatedly out of the water as they
swim, in a behavior known as porpoising (Au and Weihs 1980; Hui 1987).
This gives the impression of being a strenuous mode of locomotion, but
Au and Weihs suggested that it may actually save energy if the animal is
traveling fast. The essence of their argument is that drag increases with
speed, so the work required to swim unit distance is greater at higher
speeds. However, the work needed to jump unit distance is independent
of speed; Equation 8.4 shows that the length of a jump is proportional to
the square of speed, and so to the animal’s initial kinetic energy. There-
fore, there must be a critical speed, above which it becomes more economi-
cal to porpoise than to remain perpetually underwater.

Attempts to calculate the critical speed lead to much uncertainty (Au
and Weihs 1980; Gordon 1980). The energy cost of swimming close
under the surface is much higher than the cost of swimming deeper (Sec-
tion 13.3), so conclusions are affected by the depth at which the animal
is assumed to swim. It is also not easy to calculate the cost of a leap. The
kinetic energy of the animal is the same when it reenters the water as it
was at the start of the leap (ignoring the trivial effect of air resistance).
However, the added mass of water that moves with the animal when it is
swimming falls away when it leaps, so the kinetic energy of this added
mass is lost. Energy is needed to accelerate a new added mass when the
animal reenters the water. Further, a porpoising animal is traveling down-
ward as it enters the water and upward as it leaves, so while it is in the
water it needs an upward acceleration. To give itself this acceleration, it
must drive water downward. This implies an energy cost. For example, if
it uses lift on its flippers to give itself the upward acceleration it will have
to do work against induced drag.

Au and Weihs (1980) estimated that the critical speed above which por-
poising would save energy was 5 m/s for a 50-kg dolphin and 11 m/s
(probably faster than the animal could swim) for a 5-tonne whale. These
speeds would have been a little different if Au and Weihs had considered
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all the points made above. However, it does not seem very useful to revise
the calculations, because of the uncertainties involved and because of the
paucity of data about the speeds at which dolphins do or do not porpoise.

Hui (1987) observed that Humboldt penguins (Spheniscus) in the San
Diego Zoo generally porpoise only at speeds of 3 m/s or more. He found
that even when porpoising, they were out of the water for no more than
22% of the time, and argued that any resulting energy savings must be
marginal. He suggested that the principal significance of porpoising might
be that it enabled penguins to breathe without spending much time close
below the surface, where drag is high. This suggestion is supported by the
observations of Yoda et al. (1999), who attached data loggers to wild
Adélie penguins (Pygoscelis) to record acceleration, depth, and, in some
cases, speed. The penguins were caught at their nests so that the data
loggers could be fitted, and again when the birds returned from foraging
trips so that the loggers could be retrieved. The records showed zero
depth and downward acceleration whenever the bird was out of the water.
They showed that the birds porpoised only occasionally, and that even
when porpoising they were out of the water only for a small fraction of
the time.

To swim forward, animals must drive water backward. This chapter
started by explaining Froude efficiency, which is higher for animals that
swim by accelerating large masses of water to low velocities than for those
that accelerate small masses to high velocities. Swimmers that use lift on
hydrofoils to propel themselves generally have higher Froude efficiencies
than others that depend on drag on oars. Topics that I would like to see
investigated further include the possible role of tendons as energy-saving
springs in whales and tunas, and the energetics of porpoising.



Chapter Fifteen...............................................................
Swimming by Undulation

FIGURE 15.1 shows twelve stills from a film of a dogfish swimming. It
is passing waves of bending backward along its body; dots on frames 3 to
8 mark successive positions of the crest of one of the waves. This action
drives the fish forward. Many fishes and some snakes and worms swim
in this way, by undulating their bodies. In addition, many fish and cepha-
lopods swim by passing waves of bending along fins. This chapter is
about swimming by undulation, both of the body as a whole and of fins
separately.

15.1. UNDULATING FISHES

In Section 14.4 we considered the tails of tunas and whales in isolation
from the body. We thought of the body as a passive structure, pushed
along by the beating of the hydrofoil tail. This seemed to be a reasonable
simplification, because these animals bend the main bulk of their bodies
only a little as they swim. Their tails are connected to the body by a slender
caudal peduncle that is streamlined in cross section, so that the hydro-
dynamic forces that act on it as it moves from side to side must be small.
If we had examined the swimming movements of tunas and whales more
closely, however, we would have found waves on their bodies (see illustra-
tions in Webb [1975]). There is no sharp distinction between the move-
ments of these animals and those of fishes such as the dogfish.

There are substantial differences between the patterns of undulation
that different fishes use for swimming (Fig. 15.2). In the eel the wave-
length of the waves is about 0.6 of the length of the body, so at any instant
the body forms 1.7 waves. In saithe the wavelength is about equal to the
length of the body, and in scup it is 1.5 times the length of the body. The
wavelike nature of the movements is less obvious in scup than in the oth-
ers, because the body never forms a complete cycle of the waveform. In all
three cases, the amplitude of the waves increases toward the tail. The stride
length is the distance traveled in one cycle of undulation. For the waves
to travel backward relative to the water, as required for propulsion, the
stride length must be less than the wavelength. It seems usually to be at
least half the wavelength.



Fig. 15.1. Tracings at intervals of 0.1 s from a film of a dogfish (Squalus) swim-
ming. The grid squares on the background have 3-inch (76-mm) sides. Sir James
Gray, from whose work this picture is taken, was the most influential pioneer of
research in animal locomotion. From Gray (1933).
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Fig. 15.2. Swimming movements of (left) an eel (Anguilla); (center) a saithe
(Pollachius); and (right) a scup (Stenotomus). Below the outlines of the fish, dia-
grams show how the amplitude of the transverse movements increases from snout
to tail. At the bottom of the figure, sets of three diagrams show how the center
line of the body moves as the tail beats from one side (in the lowest of the three
diagrams) to the other (in the highest). Throughout the figure, the fishes’ heads
face to the left. From Wardle et al. (1995).

Except at the lowest speeds, fish generally keep the amplitude of the tail
beat more or less constant and increase speed by increasing the frequency
of the beat. Stride length (the distance traveled in one tail beat cycle)
equals speed/frequency. It changes little with increasing speed, and is
about the same fraction of body length in different-sized members of the
same species (Videler 1993). This implies that Strouhal numbers (Section
4.2) are more or less independent of speed and size; Strouhal number can
be expressed as length divided by stride length. Triantafyllou et al. (1993)
have argued that the Strouhal numbers that fish and cetaceans use are
close to optimal for the energetics of swimming.

We have seen how the hydrofoil tails of tunas and whales must reverse
their angles of attack at the end of each half cycle of movement, so that
the lift always has a forward component (Fig. 14.4D). This implies that
the direction of the circulation around the hydrofoil (Fig. 10.2D) must
be reversed. Each half stroke must produce a vortex ring, and these rings
are presumably linked to form a chain as shown in Fig. 15.3A. I write
“presumably” because, so far as I know, no one has visualized the vortices
in the wakes of tunas or whales.

The wakes of fishes that swim by more obvious undulation have been
studied by various methods, most successfully by particle image velocime-
try. Wakes like the one shown in Fig. 15.3A have been observed for mullet



Fig. 15.3. (A) Linked vortex rings in the wake of a swimming fish. (B, C) Hori-
zontal sections through swimming fishes and their wakes. The fish is accelerating
in (B), and swimming at constant speed in (C).
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(Chelon [Müller et al., 1997]) and Danio (Wolfgang et al., 1999). How-
ever, in these fish the undulations of the body as well as the side-to-side
movements of the tail produce vortexlike movements in the water. To
understand this effect, consider a point of inflection in the wave form,
where a concave bend merges into a convex one. As the wave travels poste-
riorly, its amplitude increases while its wavelength remains unchanged.
Therefore, the angle of the body to the direction of swimming at the point
of inflection increases. This makes the water near the point of inflection
rotate, forming an incipient vortex. The point of inflection moves posteri-
orly along the fish, carrying this body vortex with it, It reaches the rear
edge of the tail fin as the tail reaches the end of a stroke and as the vortex
ring formed by that stroke is being completed. The body vortex contri-
butes to the vortex that the tail is then shedding.

That is what happens in Chelon, in Danio, and presumably also in other
typically “fish-shaped” fishes. In eels (Anguilla), however, the point of
inflection reaches the posterior end of the body not when the tail is at the
end of a stroke, but halfway through a stroke. The body vortex is shed
separately from the tail vortex, and the wake is more complicated (Videler
et al., 1999).

The dorsal and anal fins of fishes such as Danio are just a little anterior
to the caudal fin. The swimming movements of the body move them as
well as the caudal fin from side to side; and they, like it, generate lift forces
that help to propel the fish. If the tail were cut off immediately posterior
to them, they would function like a caudal fin and propel the fish, leaving
behind a wake of linked vortex rings. In the intact fish, the vorticity from
these fins reaches the caudal fin before it has had time to roll up into vortex
rings (Wolfgang et al., 1999). Lighthill (1970) has argued that if the gaps
between the dorsal and anal fins and the caudal fin are small, the fins will
function like a single continuous fin. However, if the gaps are large
enough, the efficiency of swimming will be enhanced.

The law of conservation of momentum applies to the swimming of fish
as well as of beetles. A water beetle leaves behind it forward-moving water
associated with the drag on its body and backward-moving water associ-
ated with the thrust on its oars (Fig. 14.1C). Water movements associated
with the thrust and drag on undulating fish, however, are not separate. In
Fig. 15.3B, a jet of backward-moving water zigzags through the chain of
linked vortex rings. The fish is giving backward momentum to the water,
so by the law of conservation of momentum the fish itself must be gaining
momentum; it must be accelerating. Fish often alternate bursts of swim-
ming in which they accelerate with intervals of passive gliding in which
they lose speed. They must produce wakes like Fig. 15.3B in the accelerat-
ing bursts. A fish swimming at constant velocity would presumably form
a wake like Fig. 15.3C, in which water is driven alternately to the left
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Fig. 15.4. Diagrams of a fish swimming toward the right, which are explained in
the text. From Alexander (1975b).

and to the right, but there is no backward jet. If the water is given equal
momentum to either side, its net momentum gain is zero and the momen-
tum of the fish will remain constant.

Lighthill (1960) devised a simple theory of swimming that calculates
the Froude efficiency (see Section 14.1) by considering the sideways mo-
mentum left behind in the wake. Figure 15.4A represents a fish swimming
to the right at two instants separated by a short time interval δt. The fish
is swimming with velocity U, so it advances U δt in the interval. Waves of
bending are traveling backward along its body with velocity V, so in the
interval δt these waves travel (V − U )δt backward relative to the un-
disturbed water. A particle of water that is initially at position X1 has moved
to X2 by the end of the interval. (Elsewhere in this book I give all velocities
the symbol v with suitable subscripts, but here we will have four velocities
to consider and it seems clearer to give each a different letter.)

Figure 15.4B shows the fish in the same two positions as in A. The tip
of the tail, traveling forward with velocity U and transversely with velocity
W, has moved U δt forward and W δt transversely in the interval of time δt.
Meanwhile, the particle of water that was initially at X1 has moved trans-
versely a distance w δt. The similar triangles in Fig. 15.4B show us that

w =
W (V − U )
U + V − U

=
W (V − U )

V
(15.1)

It is a fair approximation to think of the fish as leaving behind a cylinder
of water moving transversely with velocity w. The diameter of this cylinder
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equals the height h of the tail fin. (We made a similar assumption about
the air in the wake of flying animals, when we derived Equation 10.5.)
The cross-sectional area of this cylinder is πh 2/4, it is growing with the
velocity U of the fish, and the density of the water is ρ. Thus, the mass of
water set moving in unit time is πρUh 2/4. This water is being given veloc-
ity w, so in unit time the water is given momentum πρUwh 2/4 and kinetic
energy πρUw 2h 2/8. By Newton’s second law of motion, the transverse
force on the tail equals the rate at which transverse momentum is being
given to the water. The work done in unit time is this transverse force
multiplied by the transverse velocity W of the tail; it is πρUwWh 2/4. Of
this, πρUw 2h 2/8 is used giving kinetic energy to the water in the wake,
and the remainder, πρUw (W − #w)h 2/4, serves to overcome the drag
on the body. The Froude efficiency is the work done against drag divided
by the total work:

Froude efficiency =
πρUw (W − #w) h 2/4

πρUwWh 2/4
=

W − #w
W

(15.2)

From this and Equation 15.1

Froude efficiency =
V + U

2V
(15.3)

(This must be to some extent an overestimate, because we have ignored
the tendency of the tail to wag the fish.)

No efficiency can be greater than 1, so the speed V of the waves along
the body must be greater than the forward speed U of the fish. To make
swimming as efficient as possible, V should be only a little greater than U.
This can be achieved by making the height h of the tail fin large. This is
another case where the principle we established in Section 14.1 applies;
the required thrust can be obtained at lower energy cost by accelerating a
large mass of water to a low velocity than a small mass to a high velocity.

The speed U is the stride length multiplied by the tail beat frequency,
and the wave speed V is the wavelength multiplied by the frequency, so
Equation 15.3 can be written

Froude efficiency =
Wavelength + Stride length

2 × Wavelength
(15.4)

For the scup (Fig. 15.2) the stride length is half the wavelength and the
Froude efficiency is 0.75. For the saithe the stride length is only a little
less than the wavelength and the efficiency is even higher.

The theory we have used to calculate efficiency also provides us with an
estimate of the drag on the body. We have seen that the work done against
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drag in unit time is πρUw (W − #w) h 2/4. The drag is this work divided
by the distance U traveled in unit time:

Drag =
πρw (W − #w) h 2

4
(15.5)

=
πρW 2 (V 2 − U 2) h 2

8V 2

(using Equation 15.1 to eliminate w).
Webb (1975) analyzed film of a 0.3-m rainbow trout (Salmo gairdneri)

swimming in a water tunnel at 0.1–0.6 m/s. He measured U, V, W, and
h, and used Equation 15.5 to calculate the drag. He also calculated the
friction drag that would act on the fish if it were a rigid body moving at
the same speed, using Equation 10.3. He found that throughout the range
of speeds, the drag calculated from Lighthill’s theory was about 4 times
the friction drag. Pressure drag would act on a rigid body, as well as fric-
tion drag, but for a well-streamlined body such as a trout it is expected to
add only about 20% to the friction drag. The drag on the swimming fish
is thus around 3 times the drag on an equivalent rigid body. It has been
suggested that the undulating movements of the body may prevent the
boundary layer growing to the thickness that would be expected for a
rigid body at the same Reynolds number, increasing friction drag
(Lighthill 1971). The thinner the boundary layer for a given speed of
movement through the water, the greater the friction drag; notice in
Equation 3.7 that viscous force is inversely proportional to the thickness
of a fluid layer. However, there is another reason for the drag calculated
from Equation 15.5 being higher than for a rigid body. Side-to-side move-
ments of the tail cause transverse “recoil” movements of the anterior end
of the body; to some extent, the tail wags the fish. Work has to be done
against the drag resisting the recoil movements, as well as against the drag
resisting forward movement. Webb (1992) argued that this effect is more
important than thinning of the boundary layer. However, Anderson et al.
(2001) showed by particle image velocimetry that some thinning of the
boundary layer occurs around swimming dogfish (Mustelus) and scup
(Stenotomus).

Webb (1975) used Equation 10.3 (which assumes a turbulent boundary
layer) to calculate the friction drag. He used it although the Reynolds
numbers calculated from the length and speed of the fish were only
0.2–1.6 × 105, well within the range in which the boundary layer might
be expected to remain laminar. He did this because there was a good
deal of turbulence in the water tunnel, even in the absence of the fish. If
he had used Equation 10.2 (for a laminar boundary layer) the drag calcu-
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lated from the films would have been about 8 times the friction drag
(Alexander 1977b).

Attempts to measure drag on fish carcasses have often given much
higher drag coefficients than would be expected for a rigid streamlined
body, apparently because drag is enhanced by the carcass flapping like a
flag (Webb 1975). However, measurements from film of the deceleration
of a cod (Gadus) gliding after a burst of swimming, with body and tail
straight and fins folded, gave a drag coefficient based on wetted area of
only 0.011 (Videler 1993). The fish was 0.3 m long, and it decelerated
from 1.2 to 0.7 m/s, so its Reynolds numbers were around 3 × 105. The
friction drag coefficient should have been about 0.004 for a laminar
boundary layer or 0.007 for a turbulent one. This confirms (if any con-
firmation is needed) that the drag on a fish with its body held straight is
similar to the drag on other streamlined bodies.

Webb (1971) performed an ingenious experiment to check that
Lighthill’s theory gives a good estimate of the power required for swim-
ming. He measured both the mechanical power (calculated from
Lighthill’s theory) and the metabolic power (from oxygen consumption)
of trout swimming in a water tunnel. From these data he calculated that
the muscles were doing work with efficiencies around 0.1. He then
attached small plates to the backs of the fish, increasing drag by amounts
that could be calculated, and again measured oxygen consumption at a
range of swimming speeds. As expected, the metabolic rate was higher, at
any speed, than without the plates. From the difference he calculated that
work was done against drag on the plates with efficiencies around 0.1. The
efficiency with which work was done against the known drag on the plates
agreed with the apparent efficiency of doing the work calculated from
Lighthill’s theory, tending to confirm that the theory gave reasonable esti-
mates of power requirements.

Many other measurements have been made of the metabolic rates of
swimming fishes (Videler 1993). Metabolic rate increases rapidly with in-
creasing speed. As a general rule,

Metabolic rate ≈ Resting metabolic rate + a(Speed)b (15.6)

where a and b are constants. The exponent b seems generally to be about
2.5 (Alexander 1974b). This is the exponent we would expect if the fish
were a rigid body with a laminar boundary layer, whose motion was re-
sisted only by friction drag. (This follows from Equation 10.2; remember
that the Reynolds number, which appears in the equation, is proportional
to the square root of speed, making the drag proportional to (Speed)1.5,
and that the power requirement is the drag multiplied by the Speed.) We
have, of course, just seen that the power requirement is much greater than
for a rigid body, but it is greater by a fairly constant factor.



S W I M M I N G B Y U N D U L A T I O N 275

Fish have a maximum range speed, at which the energy cost of swim-
ming unit distance is least. It can be found as in Fig. 7.11A, by drawing a
tangent from the origin on a graph of metabolic rate against speed. Videler
(1993) determined maximum range speeds from measurements of
metabolic rates of teleost fishes of masses ranging from 5 mg (a larva) to
360 g. He found that maximum range speed (m/s) was about 0.47
(mass, kg)0.17. At this speed, the cost of transport (J/kg m) was about
1.1(mass, kg)−0.38. This is much less than the costs of transport for running
or flying animals of the same mass (Figs. 7.12 and 12.3; note that costs of
transport can be calculated from the metabolic powers in Fig. 12.3 by
dividing by speed). However, the comparison of swimming with running
and flight looks very different if only endotherms are considered (Williams
1999). Mammals and birds that swim by means of hydrofoils (penguins,
seals, and whales) have costs of transport around ten times as high as fish
of equal mass, approximately equal to the costs of running. (We saw in
Section 14.3 that mammals and birds that swim by rowing have even
higher costs of transport.)

This does not imply that penguins, seals, and whales are inefficient
swimmers; they have higher costs of transport than fish because their max-
imum range speeds are higher, due to higher resting metabolic rates. Con-
sider a fish whose swimming metabolic rate is given by Equation 15.6 with
an exponent b of 2.5. Its cost of transport T at speed v is the metabolic
rate divided by mv, where m is body mass:

T =
(R/v) + av 1.5

m
(15.7)

Here R is the resting metabolic rate and a is a constant. To find the maxi-
mum range speed at which T has its minimum value we will differentiate
this equation.

dT
dv

=
− (R/v 2) + 1.5av 0.5

m

At the maximum range speed, dT/dv = 0, so

Maximum range speed = 12R
3a2

0.4

(15.8)

By putting this speed into Equation 15.7 we get

Cost of transport at maximum range speed =
2.0a 0.4R0.6

m
(15.9)

Birds and mammals generally have resting metabolic rates around 10 times
as high as fish of equal mass (Alexander 1999). If they swim as efficiently
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as fishes, a will be the same as for fishes. Thus, Equations 15.8 and 15.9
tell us that we should expect the maximum range swimming speeds of
mammals and birds to be 100.4 = 2.5 times as high as for fish of equal mass,
and cost of transport at the maximum range speed to be 100.6 = 4 times as
high as for fish. The maximum range speeds and costs of transport given
for seals, whales, and penguins by Videler (1993) actually average about
2 and 10 times the predicted values for fish, respectively. This argument
has not given us a full explanation of the high costs of transport of endo-
therms, but it shows that they are largely due to higher resting metabolic
rate, rather than to less efficient swimming.

Fishes accelerating rapidly from rest (making “fast starts”) start by
bending the body into a C- or S-shape (reviewed by Domenici and Blake
[1997]). In a C-start, the preparatory bend is followed by powerful exten-
sion of the body. The resulting direction of travel is very variable, but is
commonly 120–180° to the direction in which the fish was originally fac-
ing. In S-starts, the movements following the preparatory S bend are
broadly similar to the movements of steady swimming. The fish accelerates
more or less in the direction in which it was initially facing. C-starts are
commonly used as escape responses, and S-starts for predator strikes.
Papers on fast starts commonly give peak instantaneous accelerations,
but the final velocity and the time in which it is attained are probably
generally more relevant to the life of the fish. Performances tabulated by
Domenici and Blake (1997) include a 0.32-m trout (Onchorhynchus)
reaching 2.8 m/s in 125 ms, and a 0.4-m pike (Esox) reaching 4.0 m/s in
108 ms. James and Johnston (1998) found that the speeds attained in fast
starts by Myoxocephalus 5.5–32 cm long were roughly proportional to the
square root of body length.

One might expect the speeds attained in fast starts to be limited by the
work that muscle can perform in a single contraction. The pike mentioned
above reached 4 m/s after one contraction of the muscle of each side of
its body. At this speed, the kinetic energy per unit mass of its body was
8 J/kg. To this we must add the kinetic energy of the added mass of water
that would move with it, giving a total of about 10 J/kg. Further kinetic
energy would be given to the water in the wake. A clever experiment by
McCutcheon (1977) showed that a small fish (Brachidanio) accelerating
from a low speed by beating its tail once to left and right, pushed in each
beat on a mass of water that was three or four times its body mass. If this
water had been pushed directly backward, the kinetic energy given to the
water would have been only a small fraction of the kinetic energy given to
the fish. However, because the water was pushed at large angles to left and
right, the kinetic energy that had to be given to it added about 80% to the
work that had to be done to accelerate the fish. If this were true also for
the pike fast start, the work required would be about 18 J/kg. The axial
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muscles of a pike make up about 55% of body mass, so this is 33 J/kg
muscle. This may be compared to the 54 J/kg done by the leg muscles of
a jumping bushbaby (Section 8.1). The comparison is probably unfair,
because relatively little work may be done in the preparatory stroke of a
fast start, leaving the muscle of one side of the body to do most of the
work (James and Johnston 1998).

Ahlborn et al. (1997) used a physical model to support their contention
that momentum given to the water in the preparatory stroke is used to
contribute to the impulse accelerating the body in the return stroke.
Wolfgang et al. (1999) studied the flow in the wake of a Danio making a
60° turn.

15.2. MUSCLE ACTIVITY IN UNDULATING FISHES

Many records have been made of electromyographic activity in swimming
fishes (see Altringham and Ellerby 1999). It has been found that waves of
muscle activation travel backward along the body, like the waves of bend-
ing. However, in all cases the wave of activation travels faster than the
wave of bending. In eels it travels only a little faster than the wave of
bending, but in scup it travels so fast that activation is almost simultaneous
all along the length of the fish. At the anterior end, activation of the muscle
on one side of the body generally starts while that part of the body is
completing a bend toward the other side. This allows time for the muscle
to develop substantial force before it starts shortening and so bending the
body toward its own side. Electromyographic activity continues through
much of the time while the muscle is shortening, but ends while the mus-
cle is still shortening, allowing time for the force to decline before the
muscle starts being stretched again. Further posteriorly, because the wave
of activation is traveling faster than the wave of bending, the electromyo-
graphic signal starts earlier in the period when the muscle is being
stretched, and may end very soon after it has started to shorten. This sug-
gests that posterior muscles may exert force largely while being stretched,
and so may do as much negative as positive work (Hess and Videler 1984).

This possibility has been investigated for several species (Altringham et
al., 1993; Wardle et al., 1995; Hammond et al., 1998). Electromyograms
were recorded while the fish swam. At the same time, the length changes
of muscles were determined, either by calculation from the curvature of
the body, as seen in films, or by sonomicrometry. The fish were then killed
and muscle fiber bundles were dissected out. Work loop experiments were
performed, in which the muscles were subjected to length changes with
frequencies and amplitudes imitating swimming, while being stimulated
electrically for the part of the cycle in which electromyographic activity
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Fig. 15.5. Graphs of instantaneous power output against time for superficial white
muscle 0.35, 0.5, and 0.65 body lengths (BL) from the snout of a swimming saithe
(Pollachius virens). From Altringham et al. (1993).

had been observed. This procedure should produce work loops imitating
the muscle’s performance during swimming. These experiments have con-
firmed that posterior muscles do negative work when first activated (Fig.
15.5). As a result, these muscles may do little or no net work in steady
swimming. Their principal function may be to transmit forces exerted by
more anterior muscles to the tail.

This situation has been made more understandable by the theoretical
work of Cheng et al. (1998). They undertook the very difficult task of
calculating the forces all along the body of a swimming saithe. They
started with detailed measurements of the body form and swimming
movements of a 0.4-m saithe swimming at 1.2 m/s. They calculated not
only the hydrodynamic forces, but also the inertial forces needed to accel-
erate and decelerate each part of the body in its side-to-side beating, and
the forces needed to overcome the elasticity and viscosity of the body tis-
sues. Taking account of all these forces, they calculated the bending mo-
ments that the muscles would have to exert, in all parts of the body and
at all stages of a cycle of swimming movements. They found that to make
the body move as it does, the wave of muscular bending moment would
have to travel faster along the body than the wave of bending, and that
the bending moments required in the posterior parts of the body were
greatest while the muscles were still being stretched. It may seem wasteful
to have the wave of muscle activation traveling so fast along the body that
muscle near the posterior end does largely negative work, but if the wave
did not travel so fast, the body would not move as it does. It would be
interesting to extend the calculations to discover how different rates of
propagation of the wave of activation would affect the pattern of move-
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ment, the speed of swimming, and the energy cost. We do not yet know
whether the observed rate is optimal.

In most fishes, the bulk of the axial musculature is white but there is a
superficial band of red muscle on each side of the body (Fig. 15.6A), and
sometimes some pink muscle with intermediate properties. Bone (1966)
showed that the white muscle is anaerobic and the red aerobic. Electro-
myographic records from fish swimming in water tunnels show that at low
speeds, which can be sustained for long periods by aerobic metabolism,
only the red muscle is active (see, for example, Rome et al., [1988]). At
higher speeds that require anaerobic metabolism and cannot be sustained,
the white muscle is brought into use. Burgetz et al. (1998) found that in
Onchorhynchus white muscle is brought into use at speeds above 70% of
the critical speed, defined as the maximum speed that could be maintained
for 30 min.

The proportion of red muscle varies markedly between species. It is
about 1% of the whole in cod (Gadus), 5% in saithe (Pollachius), 10–14% in
herring (Clupea) and mackerel (Scomber), and even more in tunas (Videler
1993). In tunas and lamnid sharks it is not confined to the surface, but
extends well in toward the vertebral column, and is kept up to 20 K
warmer than the water (Carey 1982). Its elevated temperature increases
the power output that can be obtained from it, as demonstrated by work-
loop experiments with bundles of red muscle fibers from tuna (Thunnus
[Altringham and Block 1997]). This should enable the fish to swim faster.
In experiments in a water tunnel, Sepulveda and Dickson (2000) com-
pared the swimming performance of juvenile tuna (Euthynnus), whose
muscles were 1.0–2.3 K warmer than the water, and mackerel (Scomber),
which were only 0.1–0.6 K warmer than the water. They found no signifi-
cant difference in maximum sustainable swimming speed between fish of
the same size. However, their tuna were only slightly warmer than the
water, and there may have been some other difference between the species
that gave the mackerel an advantage.

Fishes can swim at their peak sprinting speeds only for short times.
Bainbridge (1960) measured the speeds of fish swimming in an annular
tank and found, for example, that a 20-cm dace (Leuciscus) could be stimu-
lated to swim at 2.2 m/s only for a short burst lasting less than one second,
but would sustain 1.2 m/s for 5 s and 0.08 m/s for 20 s. He and Wardle
(1988) found that 25-cm saithe could swim a short burst at 2.2 m/s, and
could sustain 1.2 m/s for 2 min or 0.9 m/s for 200 min. The maximum
speed that can be sustained aerobically is presumably a larger fraction of
the speed attainable in a short burst for fish with a larger proportion of
red muscle.

The red muscle has a lower maximum shortening speed (vmax, Equations
2.3) than white muscle from the same fish, by a factor of 2.8 in the case



Fig. 15.6. Diagrams of the axial musculature of a typical teleost. (A) A thick trans-
verse section, showing superficial red fibers running parallel to the long axis of the
body and deeper white ones arranged helically. (B) A side view, showing a few of
the helical trajectories formed by white fibres. (C) A few of the myomeres, as seen
when the skin is removed.
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of carp (Cyprinus [Rome et al., 1988]). In work loop experiments it gives
maximum power at a lower cycle frequency, as shown, for example, by Fig.
2.5B. Altringham and Johnston (1990) found that the optimum fre-
quency for power output from Myoxocephalus muscle was about 2 Hz for
the red muscle and 6 Hz for the white. The red muscle was used in slow
swimming with tail beat frequencies of 1–4 Hz, and the white muscle in
faster swimming at 4–9 Hz. Thus, each muscle type was adapted to the
range of frequencies in which it was required to operate. The maximum
power output was about 5 W/kg for the red muscle, and 30 W/kg for the
white. Suppose that a fish whose muscle is capable of these power outputs
has 5% red muscle and 95% white. The power available for a short burst of
swimming will be almost 120 times the power that can be sustained for
prolonged swimming. If power requirements are proportional to
(speed)2.5, as suggested by the sentence following Equation 15.6, the max-
imum burst speed may be expected to be 1200.4 = 6.8 times the aerobically
sustainable speed. However, this may be an overestimate because no ac-
count has been taken of the power required to accelerate to high speed.

The red muscle fibers run parallel to the long axis of the body, but many
of the white fibers make large angles with the long axis, up to a maximum
of about 40° (van der Stelt 1968; Alexander 1969). For most of the length
of the body of typical teleosts they are arranged in helices, as indicated in
Fig. 15.6A, B, but a different pattern is found in the caudal peduncle and
throughout the swimming muscle of selachians and some of the more
primitive teleosts.

If all the white fibers ran parallel to the long axis of the body, fibers close
to the median plane would shorten much less in a bend, than more lateral
fibers, and so would do less work. Alexander (1969) presented mathemati-
cal models showing that the observed fiber arrangements might enable all
the white fibers to shorten by equal fractions of their length. Rome and
Sosnicki (1991) measured sarcomere lengths in bent carp (Cyprinus) and
found as predicted that at several positions along the length of the body,
sarcomere length was uniform throughout the white muscle of each side
of the body. Katz et al. (1999) measured muscle length changes in the
white muscle of swimming Chanos, by sonomicrometry. They checked by
dissection after each experiment that the sonomicrometry crystals were
aligned with the muscle fibers, so as to measure muscle strain accurately.
They found that the strain in deep white muscle was about half the strain
in superficial red muscle in the same cross section, but since they recorded
from only one position in the white muscle, their results do not show
whether strain was uniform throughout the white muscle as predicted by
Alexander (1969). Wakeling and Johnston (1999) measured strain at sev-
eral distances from the median plane in swimming carp, again by sonomi-
crometry. Their results seemed to show that muscle strains were propor-
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tional to distance from the median plane, as when a homogeneous beam is
bent. It is not clear from their paper whether the pairs of sonomicrometry
crystals were aligned with the muscle fibers or parallel to the long axis of
the body; if the latter, their results are not inconsistent with the predic-
tions of Alexander (1969).

If my theory is correct, strain in the helically arranged white muscle of
typical teleosts is about one-quarter of red muscle strain for any particular
radius of bending. If the muscle behaves like a homogeneous beam, white
muscle strain ranges from almost equal to red muscle strain (in the most
lateral white muscle) to very much less (close to the median plane). In
either case, the average strain in the white muscle is much less than in the
red. To take full advantage of the capacity of the muscle to do work, the
fish should bend its body to smaller radii of curvature when swimming
with the white muscles than when swimming with the red. Katz et al.
(1999) measured red muscle strain in Chanos. They found that when it
swam at speeds at which only red muscle was active, peak strains in red
muscle about halfway along the body were about ±7.5%. When it swam
faster, using the white muscle, accelerating bursts of a few tail beat cycles
in which peak strains at the same location in the red muscle were ±13%
alternated with decelerating intervals in which peak strain was ±6%. More
posteriorly, strains were larger. Fast starts also are powered by white mus-
cle. Teleosts bend to smaller radii of curvature (therefore, larger muscle
strains) in fast starts than in steady swimming (Domenici and Blake 1997).

Thin sheets of collagen fibers (myosepta) divide the axial muscles of
fishes into W-shaped myomeres (Fig. 15.6C; dissection shows that the
shape is more complex than is apparent from this surface view). Successive
myomeres are derived from different segments of the embryo and are sep-
arately innervated. Van Leeuwen (1999) pointed out that because the my-
omeres are not activated simultaneously, there may be differences between
the forces exerted by the muscle in successive myomeres, making it neces-
sary for forces to be transmitted from the muscle to the skin or axial skele-
ton. He presented a mathematical analysis that seems to show that the
complex shape of the myosepta is optimally adapted to this force-transmit-
ting role.

15.3. FINS, TAILS, AND GAITS

At low speeds, fish often swim by undulating a fin or fins, instead of the
whole body. The underlying principle of this technique of locomotion is
the same as for swimming by undulation of the whole body. A possible
advantage of undulating the fins is that the increased drag that results
from the undulations will act only on the fins, and not on the whole body.
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A disadvantage is that all the power must come from the fin muscles, which
are generally much smaller than the axial muscles.

In some cases median fins are used. Sea horses (Hippocampus) and the
African electric fish Gymnarchus swim by undulating their dorsal fins
(Blake 1980b). Both South American knife fishes (Gymnotidae) and Afri-
can knife fishes (Notopteridae) swim by undulating their long anal fins
(Blake 1983). In other cases, pectoral fins are more important, but it is
not always easy to make a sharp distinction between the use of pectoral
fins as oars or hydrofoils (Chapter 14) and swimming by undulation of
the pectoral fins. The action of the greatly enlarged pectoral fins of rays is
clearly undulation in the case of species with relatively low aspect ratio
fins, such as the stingray Taeniura (Rosenberger and Westneat 1999), but
is better regarded as the flapping of a hydrofoil in Myliobatidae (Daniel
1988; see also Rosenberger 2001). Many teleosts use undulations of both
median and pectoral fins (Long et al., 1994).

Fish that propel themselves by means of several fins may be able to turn
on the spot; in other words, they may be able to turn while keeping the
center of gravity of the body stationary. Walker (2000) showed that the
boxfish Ostracion can (almost) do this. He pointed out that this does not
necessarily make the fish good at turning in confined spaces. Ostracion has
70% of the length of its body enclosed in a rigid carapace, so needs a space
0.7 body lengths wide to turn in. In contrast, Schrank et al. (1999) found
that three species of fish with flexible bodies could turn around between
vertical walls only 0.11–0.26 body lengths apart.

Webb (1994; and in Alexander 1989a) has shown how teleost fish
change gaits as they increase speed. Typically, the following gaits are used,
starting with the slowest:

1. Propulsion by median and paired fins. The muscles that operate these fins
are predominantly red.

2. Burst and coast swimming by undulation of the body, powered by red
muscle. In burst and coast swimming, groups of a few cycles of body undulation
alternate with periods in which the body remains straight and glides passively
forwards.

3. Swimming by continuous undulation of the body, still powered by red
muscle.

4. Burst and coast swimming by undulation of the body, powered by white
muscle.

5. Swimming by continuous undulation of the body, powered by white
muscle.

Burst and coast swimming is used (gaits 2 and 4) in the ranges of speeds
at which the muscles powering locomotion would be working well below
their capacity for power output if the body were undulated continuously.
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An advantage of burst and coast swimming is that, while coasting, the fish
presumably avoids the increased drag associated with undulation. How-
ever, Chanos appear to forego this advantage. At speeds at which they
might be expected to use gait 4 they alternate bursts of high-amplitude
body undulation with intervals of lower amplitude undulation, instead of
coasting with the body straight (Katz et al., 1999).

The bass (Micropterus) is an example of a fish that uses the full range of
gaits, but many fish omit some of them (Webb 1994). For example, tunas
and sharks do not use gait 1, and sea horses and rays use only gait 1.
Hove et al. (2001) have described the sequence of gaits used by boxfish
(Ostracion), which use both median fins and pectoral fins at low speeds.

Surfperch (Embiotoca) swim with their pectoral fins at low speeds and
by undulating their bodies at higher speeds. Drucker and Jensen (1996)
filmed surfperch of masses ranging from 5 to 500 g swimming in a water
tunnel, and measured the speeds at which they made the gait transition.
This speed rose from 0.2 m/s for 5-g fish to 0.4 m/s for 100-g fish, but
did not rise further for larger fish. The frequency of the pectoral fin beat
at the gait transition speed was proportional to (body mass)−0.12. The expo-
nent is close to the exponent of −0.14 observed for stride frequency at the
trot–gallop transition in mammals (Heglund et al., 1974), but this may
be coincidental.

Squids and cuttlefishes swim by fin undulation at low speeds and by jet
propulsion (discussed in Chapter 16) at higher speeds.

15.4. UNDULATING WORMS

The animals discussed so far in this chapter have been relatively large and
fast. Consequently, the Reynolds numbers associated with their swimming
were large enough for inertial forces to have been much more important
than viscous forces for their propulsion. For example, even a fish larva 1
cm long swimming at 5 cm/s has a Reynolds number of 500.

Some animals that swim by undulation are much smaller and slower.
For example, Gray and Lissman (1964) filmed a 0.8-mm nematode (Tur-
batrix) swimming at 0.7 mm/s with a Reynolds number of 0.6. Because
swimming is driven by side-to-side movements of the slender body, it may
be informative to calculate a Reynolds number using the diameter of the
worm (0.03 mm) as the scale of length and the speed of the side-to-side
movement of a point on the body (3.5 mm/s) as the velocity. That gives
a Reynolds number of 0.1. With Reynolds numbers as low as these, inertial
forces will be negligible and we need consider only viscous forces.

Gray and Hancock (1955) calculated the forces on a cylindrical, undu-
lating organism swimming at low Reynolds numbers. They applied their
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Fig. 15.7. Diagrams of a nematode worm swimming toward the right of the page.
(A) Two successive positions of the worm, with a segment of the body marked by
a dot. (B) The velocity of the marked segment resolved into forward and transverse
components. (C) The velocity resolved differently into axial and normal compo-
nents. (D) The axial and normal components of the hydrodynamic force on the
segment. From Alexander (2001).

theory to spermatozoa, but it is equally applicable to small nematodes. It
depends on the assumption (which greatly simplifies the mathematics)
that the hydrodynamic force on any short segment of the body is equal to
the force on an equal length of an infinite cylinder of the same diameter
moving with the same velocity and orientation. Lighthill (1976) pre-
sented a more rigorous theory that avoids this assumption.

The worm shown in Fig. 15.7A is swimming toward the right. The
segment of its body marked by a dot has components of velocity forward
(i.e., toward the top of the diagram) and to the right (Fig. 15.7B). Alterna-
tively, its velocity can be resolved into a component vaxial along the axis of
the segment, and a component vnormal at right angles to it (Fig. 15.7C).
Consequently, a hydrodynamic force acts on the segment, which has com-
ponents δFaxial and δFnormal in the axial and normal directions (Fig. 15.7D).
These forces could be resolved into a component in the direction of swim-
ming and a component at right angles to it. At any instant, the transverse
components to left and right will (more or less) cancel out. The thrust
component on the segment may sometimes be positive and sometimes
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negative, but if the integral of the thrust components along the whole
length of the body is positive, the worm will accelerate; and if the integral
is negative, the worm will slow down.

At the low Reynolds number involved, hydrodynamic forces are propor-
tional to velocity. The axial force per unit length on the segment will be
Caxialvaxial, and the normal force per unit length will be Cnormalvnormal, where
Caxial and Cnormal are constants. Let the waves have wavelength λ and ampli-
tude a, and let them travel posteriorly along the body with velocity vwave.
Then Gray and Hancock’s (1955) theory leads to

v
vwave

=
1 − (Caxial / Cnormal)

1 + (λ2/2π2a2) (Caxial / Cnormal)
(15.10)

This equation shows that backward-moving waves will propel the worm
forward, only if Caxial is less than Cnormal. This will be the case; Caxial/Cnormal

will be 0.5 or a little more, depending on the ratio of worm diameter to
wavelength (Lighthill 1976). If the amplitude is one-fifth of the wave-
length and the diameter is 1/25 of the wavelength (these are typical
values), Equation 15.10 gives v/vwave = 0.22, which lies within the range
of 0.2–0.3 observed by Gray and Lissmann (1964).

Alexander (2001) used Gray and Hancock’s (1955) theory to estimate
the mechanical power required for swimming. Making reasonable as-
sumptions about the efficiency of nematode muscle, I estimated that the
metabolic power required for swimming was likely to be between 1 and
10% of the animal’s metabolic rate. In contrast, the metabolic rate of a fish
swimming at its maximum range speed is typically three times its resting
metabolic rate (Alexander 1998b). Locomotion is probably far less im-
portant in the energy budgets of these small worms than in those of larger
swimmers.

Equation 15.10 shows that if Caxial is greater than Cnormal, the animal will
be propelled in the same direction as the waves. This point was made
initially by Taylor (1952), a distinguished mathematician who did not at
the time realize its application to real animals. The parapodia of polychaete
worms have the effect of making Caxial greater than Cnormal, and these worms
swim forward by means of forward-moving waves. However, the parapo-
dia are not simply passive appendages. They beat forward and back as the
animal undulates, enhancing their propulsive effect (Clark and Tritton
1970).

This chapter has shown how most fish and some other animals swim by
undulating either the whole body or the fins alone. It has shown that the
drag on an undulating body seems to be greater than for a rigid body of
the same size and shape traveling at the same speed. It has shown how
waves of muscle activation travel along the body of a swimming fish and
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how the red and white muscles are used, and that fish use different gaits
at different speeds. Finally, we have seen that the hydrodynamics of swim-
ming of small worms that swim by undulation is quite different from the
hydrodynamics of fish that swim by similar movements, because the Reyn-
olds numbers are much lower.

The invention of particle image velocimetry (Section 5.4) has given a
great boost to research on swimming by undulation, making it very much
easier than before to study the water movements around a swimming ani-
mal. Much has been achieved with it, but much remains to be done. There
is scope also for much more research on gaits. Are gait changes as speed
increases driven simply by the need to recruit more muscle, or do fish (like
horses, Fig. 7.11) save energy by changing gaits? Another topic that I
would like to see explored further is the significance of the helical arrange-
ment of the white swimming muscles of fishes. My theory (Alexander
1969) has been challenged, and may be wrong.



Chapter Sixteen...............................................................
Swimming by Jet Propulsion

T HIS CHAPTER is about animals that propel themselves through
water by squirting a jet of water out of a contracting cavity. They
include squids and other cephalopods that drive water out of the

mantle cavity by contraction of its muscular wall (Fig. 16.1A); a few bi-
valve molluscs, such as Pecten, that squirt jets of water out of their mantle
cavities by adducting the valves of the shell (Fig. 16.1B); and medusae,
which contract to expel water from the space enclosed by their bell. Other
examples of jet-propelled swimmers include salps, which draw water in at
the anterior end of the body and expel it at the rear (Madin 1990); and
dragonfly larvae, which squirt water from the rectum (Mill and Pickard
1975). Jet propulsion by squids, scallops, and medusae has been studied
more thoroughly than the jet propulsion of other animals. Accordingly,
this chapter concentrates on them.

16.1. EFFICIENCY OF JET PROPULSION

Figure 16.2 shows two designs for jet-propelled animals. Figure 16.2A
represents an animal such, as a jellyfish, that draws water in from the rear,
then ejects it toward the rear. Figure 16.2B shows an animal, such as a
salp, that takes water in from in front and ejects it to the rear. In each
case the animal is swimming at velocity v, and the water has velocity vintake

(forward) as it enters the animal and vjet (backward) as it is ejected. These
velocities are defined relative to the undisturbed water. In case A, vintake > v
(water entering from the rear must be traveling faster than the animal).
In case B, however, vintake < v (the entering water is being pushed forward
by the approaching animal, but it is traveling less fast than the animal and
so is overtaken by it).

In previous chapters, we used Equation 14.1 to calculate Froude effi-
ciencies for rowing, hydrofoil propulsion, and swimming by undulation.
In swimming by those methods, the water is accelerated just once, toward
the rear. In jet-propelled swimming, however, water is accelerated first
forward and then backward, and we need a different equation, as Ander-
son and De Mont (2000) have pointed out. The analysis that follows is
not the same as theirs.
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Fig. 16.1. Diagrams showing the masses of water pushed on by swimming ani-
mals: (A) a squid and (B) a scallop swimming by jet propulsion; and (C) a teleost
fish swimming by undulation. All the animals are swimming toward the left of the
diagram, by driving water toward the right.

Let a mass m jet of water pass through the animal in unit time. This water
starts at rest, is accelerated to velocity vintake (forward), decelerated, and
finally accelerated to v jet (backward). To calculate the net rate of change
of momentum we need to consider only the initial and final velocities;
the rate of change of momentum is m jetv jet. The force propelling the animal
equals the rate of change of momentum, so the rate at which work is
being done against drag (the useful power) is m jetvv jet. Kinetic energy is
given to the entering water at a rate # m jetv intake

2, and though this kinetic
energy is subsequently taken from the water there is no apparent mecha-
nism for it to be recovered and reused. Kinetic energy is finally lost in
the wake at a rate # m jetv jet

2. The total power requirement is m jetvv jet + #
m jet (v intake

2 + v jet
2):

Efficiency =
Useful power
Total power

=
2vv jet

2vv jet + vintake
2 + v jet

2
(16.1)

If water is taken in at the rear as in Fig. 16.2A, vintake > v and the efficiency
has an upper limit at which vintake = v:

Maximum efficiency (rear intake) =
2vvjet

2vv jet + v2 + v jet
2

(16.2)

=
2vv jet

(v + v jet)2
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Fig. 16.2. Diagrams of jet propulsion by animals that take water in (A) from the
rear and (B) from in front. In each case (1) shows water being taken in and (2)
shows it being ejected.

However, if water is taken in at the front as in Fig. 16.2B, vintake < v, and a
higher maximum efficiency is possible. It is obtained when vintake = 0:

Maximum efficiency (front intake) =
2vv jet

2vv jet + v jet
2

(16.3)

=
v

v + #v jet

This equation is identical with Equation 14.1, apart from the difference
in the subscript. We have not so far considered the possibility that vintake

may be negative. In that case, the efficiency is as given in Equation 16.3,
because the intake velocity and the jet velocity are in the same direction,
and kinetic energy given to the incoming water is retained in the jet.

There is a hidden assumption in our discussion so far. We have assumed
that the swimming velocity v is constant. However, when an animal is
swimming by jet propulsion its velocity fluctuates. The animal accelerates
while it is expelling a jet of water. Unless vintake is strongly negative, it decel-
erates while water is being taken in to refill the cavity from which the
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water is expelled. The drag on the animal fluctuates not only because the
velocity fluctuates, but also because the animal is bigger when the cavity
is full than when it is empty. Further, the effective mass of the animal
fluctuates; an animal with its cavity full has greater mass than when its
cavity is empty. Equations that took account of all these fluctuations would
be rather complicated. However, if the frequency of the jet-propulsion
cycle is sufficiently high, these fluctuations are small enough to be ignored,
and Equations 16.1 to 16.3 apply.

Now make the very different assumption that the intervals of time be-
tween jets are so long that the animal glides (almost) to a halt between
one jet and the next. Assume also that the thrust, during the brief jet
pulses, is very much greater than the drag. During each pulse, a mass mjet

of water that was initially at rest is ejected at velocity vjet , and the body of
mass m is accelerated from velocity 0 to a maximum velocity vmax. By the
law of conservation of momentum,

mvmax = m jetv jet (16.4)

Because the animal is almost stationary when it takes in water, even water
drawn in from the rear can be drawn in at low velocity, so little energy need
be wasted imparting forward velocity to the water. The work required for
one cycle of swimming is the sum of the kinetic energies given to the body
and to the jet, #(mvmax

2 + m jetv jet
2). Of this, #mvmax

2 can be thought of as
useful work. It provides the work that is done against drag as the animal
decelerates in the interval between jets. Thus,

Efficiency =
mvmax

2

mvmax
2 + m jetv jet

2

From this and Equation 16.4,

Efficiency =
vmax

vmax + v jet
(16.5)

Equations 16.3 and 16.5 show that, both for steady front-intake jetting
and for intermittent jetting, it is more efficient to swim by means of a low-
velocity jet than with a high-velocity jet. To attain the same swimming
speed, the mass of water ejected in unit time must, of course, be greater if
the jet velocity is low than if it is high. However, the efficiency of rear-
intake jetting, given by Equation 16.2, is greatest when vjet = v.

Daniel (1983) has made a more realistic (and correspondingly more
complicated) analysis of animal swimming by jet propulsion. His mathe-
matical model represents a hydrozoan medusa of diameter 10 mm, which
alternately expels water at a constant rate for 0.1 s, and draws water in at
a constant rate for 0.2 s. Figure 16.3 shows how it moves in the first six



Fig. 16.3. Graphs showing the movements predicted by a mathematical model of
a hydrozoan medusa, in the first few cycles of swimming, starting from rest. (A)
Distance traveled; (B) instantaneous velocity; (C) instantaneous acceleration; and
(D) velocity and acceleration averaged over a complete swimming cycle. From
Daniel (1983).
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cycles of jetting, starting from rest. It accelerates in each contraction
phase, and decelerates in each refilling phase. The acceleration is greater
at the end of each contraction phase than at the beginning, although the
rate of ejection of water is constant, because the effective mass of the ani-
mal falls as water is ejected. The mean velocity (averaged over a cycle)
increases during the first few cycles starting from rest, but then settles
down at an almost constant value. The pattern of movement predicted by
the model agrees well with observations of living hydrozoan medusae (see
also Daniel 1985).

Each time the medusa’s muscles contract, kinetic energy is given to the
animal and the added mass of water that moves with it. In the intervals
between contractions, some of this kinetic energy is lost, doing work
against drag as the animal decelerates. In the first few cycles of jetting, the
kinetic energy gained in the acceleration exceeds that lost in the decelera-
tion. There is a net increase in kinetic energy in each cycle, and a large
proportion of the work that the muscles have to do is required to supply
it. If swimming continues until a steady state is reached, there is no net
gain in the kinetic energy of the body and added mass. Work is then re-
quired only to overcome drag, to give kinetic energy to the water in the
jet, and to deform the bell of the medusa. For the present, we will ignore
the work required to deform the bell: it is discussed in the next section.

Hydrozoan medusae generally alternate bouts of a few cycles of jet pro-
pulsion with intervals of rest. For example, Daniel (1985) observed that
Gonionemus typically made 5 to 10 bell contractions in a 1- to 3 bout,
followed by a rest of 10–90 s. It is only in the later stages of a bout that
the animal approaches a steady state. Daniel’s (1983) model predicted that
for these cycles the Froude efficiency was only 0.09; in other words, the
work done giving kinetic energy to the jet was ten times the work done
against drag. Daniel (1985) measured the oxygen consumption of swim-
ming medusae and calculated that the metabolic cost of transport was an
order of magnitude higher than predicted for fish of the same mass. The
animals were tethered and may not have been using oxygen at the same
rate as if they had been swimming freely, but it seems clear that medusan
locomotion is costly.

Thus, the swimming performance of medusae is unimpressive. We will
now ask whether the same is true for other animals that swim by jet pro-
pulsion. Squids swim by alternately expanding and contracting the mantle
cavity. They draw water into the cavity through a wide slit at its anterior
end and expel it through a tube called the siphon. Squids appear well
streamlined and are reasonably fast. For example, Illex with masses of 0.4–
0.5 kg can attain 2.8 m/s in a short burst of swimming, and can sustain
a speed of 0.76 m/s aerobically (O’Dor and Webber 1986). In its resting
position, the siphon faces anteriorly, so a jet from it propels the animal
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backward, with the posterior end leading. In that case, although water is
taken in at the anterior end, this is the rear end relative to the direction
of travel. Figure 16.2A can represent a squid swimming backward. How-
ever, the siphon can be bent to face posteriorly and propel the animal
forward, in which case the animal functions as in Fig. 16.2B.

How efficient is squid swimming? Webber and O’Dor (1986) inserted
a cannula connected to a pressure transducer into the mantle cavity of
Illex, so that they could record the pressure there as the squid swam in a
water tunnel. The faster it swam, the larger the pressures that they re-
corded. For example, when a 0.3-kg specimen was swimming steadily at
0.58 m/s, the peak pressure in the mantle cavity in each jetting cycle was
5300 Pa above the pressure in the water outside the animal. Thus, the
pressure of the water fell by 5300 Pa as it was ejected from the cavity. By
applying Bernoulli’s equation (Equation 10.6), we can estimate that it
must have been ejected at a velocity of 3.2 m/s relative to the animal. The
velocity vjet of the jet relative to the undisturbed water would have been
3.2 − 0.58 ≈ 2.6 m/s. Anderson and De Mont (2000) have pointed out
that calculations like this may be inaccurate, because there may be differ-
ences of pressure within the mantle cavity. However, the errors are proba-
bly small enough not to concern us here. By putting the swimming speed
of 0.58 m/s and jet velocity of 2.6 m/s in Equation 16.2, we can calculate
that the efficiency cannot have been greater than 0.29. This estimate is a
little pessimistic because, although most of the water was presumably
ejected while the pressure was near its peak, some must have been ejected
while it was lower. If we use the mean pressure during ejection, 2500 Pa,
instead of the peak pressure, we get an efficiency of 0.38. Even this is far
lower than the efficiency of 0.75 that we calculated in Section 15.1 for a
typical teleost swimming by undulation.

Webber and O’Dor (1986) also measured the oxygen consumption of
squid swimming in their water tunnel. They compared an Illex that had a
mass of 0.4 kg with its mantle cavity empty to a 0.5-kg salmon (Onchorhyn-
chus). This comparison seemed fair because the mass of water in the mantle
cavity fluctuated during the jetting cycle about a mean value of about 0.1
kg. At 0.76 m/s, the maximum speed that could be sustained aerobically,
the metabolic rate of the squid was 1.6 W more than when the animal was
stationary. The salmon could swim aerobically at 1.35 m/s, using 1.2 W
more than when stationary. Thus, the squid swam more slowly than the
fish, but nevertheless used more power. This must have been largely due
to its lower Froude efficiency.

The efficiency is lower because the mass of water that the squid ejects
in unit time from its mantle cavity is much less than the mass that the fish
pushes on with its tail. At 0.76 m/s, the squid jetted with a frequency of
0.89 Hz, expelling about 0.2 kg water each time. Thus, it was ejecting
puffs of water at a mean rate of 0.18 kg per second. In contrast, the fish
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pushed on a continuous cylinder of water of diameter equal to the height
of its caudal fin (Fig. 16.1C; see also Section 15.1). The fish was 0.37 m
long, and the height of its caudal fin must have been about 0.08 m. A
cylinder of water of this diameter, 0.76 m long, has a mass of almost 4
kg. This is the mass of water accelerated each second. Thus, the squid is
accelerating much smaller masses of water than the fish, and has to acceler-
ate them to much higher velocities to obtain the same thrust.

Squid such as Illex swim continuously in aquaria and undertake long
migrations in the wild (Webber and O’Dor 1986). In contrast, scallops
spend most of their time resting on the bottom and swim only a few
meters at a time (Dadswell and Weihs 1990). They escape from predators
such as starfish by bursts of swimming in which they climb at a steep angle.
They swim by repeatedly opening their shells and clapping them shut. As
the shell opens, water is drawn in from all sides. When it closes, a flap of
tissue around the edge of the shell directs the outflowing water through
openings on either side of the hinge (Fig. 16.1B). Cheng et al. (1996)
used a starfish to stimulate Placopecten to swim. These scallops had shells
about 65 mm long, and swam at around 0.25 m/s, climbing at angles
around 25°. As they climbed, they opened and closed their valves through
angular ranges of around 10°, at frequencies of about 3.6 Hz. Dadwell
and Weihs (1990) described level swimming at speeds up to 0.79 m/s. In
level swimming, the scallop’s tendency to sink is apparently counteracted
by the shell functioning as a hydrofoil.

Marsh et al. (1992) used miniature pressure transducers to record pres-
sures inside the mantle cavities of slightly smaller (50 mm) scallops of
other species, again using predators to stimulate swimming. They re-
corded peak pressures of about 3000 Pa as the valves closed in each swim-
ming cycle. Bernoulli’s equation (Equation 10.6) implies that water
ejected when the pressure was at this peak would be accelerated to 2.5
m/s, many times faster than the scallops can have been swimming (the
swimming speed was not reported). Hence, the Froude efficiency must
have been low. Cheng and De Mont (1996) estimated Froude efficiencies
of around 0.3 for Placopecten.

As well as the pressure transducers, Marsh et al. (1992) attached two
sonomicrometry crystals to the shells of their scallops, one to each valve.
This enabled them to record the changes of distance between the crystals
(see Section 5.6) as the scallops swam. Knowing how far the crystals were
from the hinge, and the dimensions of the valves, it was easy to calculate
from these records the changes of volume of water in the mantle cavity.
Thus, pressures and volume changes were measured simultaneously. When
a pump moves a volume V of fluid against a pressure difference ∆p, it
does work V∆p. Marsh et al. (1992) calculated the work done on the water
by the adductor muscle (Fig. 16.4A). They found that this was about
20 J/kg muscle in the first cycle of a burst of swimming, falling to about
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Fig. 16.4. (A) A diagrammatic section through a scallop, showing the adductor
muscle and the hinge. (B) A diagram of the mantle of a squid, showing the arrange-
ment of collagen fibers and muscle fibers.

10 J/kg after about 20 cycles. The muscle has to do work on the elastic
hinge that connects the valves, as we will see in the next section, but this
is small compared to the work done on the water.

Marsh and Olson (1994) performed work loop experiments (see Section
2.3) on bundles of fibers isolated from Argyropecten adductor muscle. In
these experiments they imitated the pattern of length change seen in
swimming scallops, and stimulated the fibers electrically at the appropriate
stage of the cycle. The work that the muscle did in these experiments (17
J/kg) was approximately equal to the work per unit mass of muscle re-
corded in the experiments on intact animals.

16.2. ELASTIC MECHANISMS IN JET PROPULSION

Scallops have a large muscle to close the shell, but no muscle to open it.
Instead, the shell is opened by elastic recoil of a block of abductin (a rub-
berlike protein). The two valves of the shell are held together at the hinge
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by a strip of flexible but relatively inextensible protein, the outer hinge
ligament. The abductin forms the inner part of the hinge ligament (Fig.
16.4A). It is compressed as the shell closes, and recoils to open the shell.
Thus, some of the work done by the adductor muscle as it closes the shell
is stored as elastic strain energy in the abductin and later released by elastic
recoil to do the work of opening. Alexander (1966) showed by a simple
experiment that 91% or more of the work done on the abductin as the
shell closes is returned in the elastic recoil as it opens.

This work can be estimated from the records of Marsh et al. (1992),
which show the pressure in the mantle cavity falling to 300 Pa below
ambient while the shell is opening. We have already seen that the pressure
rises to 3000 Pa above ambient while it is closing. The volume of water
that enters the shell during opening equals the volume that leaves during
closing, so these pressures indicate that the work done on the water during
opening is about one-tenth of the work of closing. This work is low be-
cause the area of the gape through which the water enters is larger than
that of the openings through which the jet leaves; and because the forward
movement of the scallop, with the opening gape in front, will help to fill
the mantle cavity.

If the hinge ligament were stiffer, it would store more strain energy
when the shell was closed. More work would have to be done on it to close
the shell, but correspondingly more energy would be available to open it,
and it would open faster, enabling the scallop to make more swimming
cycles in unit time. This might enable it to swim faster. Alternatively, if it
swam at the same speed as before, its efficiency would be improved, be-
cause it would expel more water in its jets, per unit time. These arguments
may seem attractive, and suggest that it would be possible to predict an
optimum stiffness for the hinge by balancing the benefits of faster opening
against the increased work of opening. However, a simple mathematical
model on those lines would predict that the shell should start opening as
soon as closing is complete. It does not do that. Instead, the swimming
cycle consists of three approximately equal parts; one-third of the period
is spent opening, one-third closing, and one-third gliding forward with
the shell closed (Cheng et al., 1996).

We have not yet considered the inertia of the valves or of the water
immediately outside them. The valves gain and lose angular velocity twice
in each cycle of opening and closing. This implies fluctuations of their
kinetic energy, and of the kinetic energy of the added mass of water that
moves with them. Are these large enough to be important for the work
of swimming? Cheng et al. (1996) showed that they are not; the peak
kinetic energies given to the valves and to the added mass of water are
very small compared to the kinetic energy given to the jets of water that
propel the animal. They made a proper hydrodynamic analysis of swim-



298 C H A P T E R S I X T E E N

ming, but a simple argument will confirm that the inertial work of swim-
ming must be small. The scallops they studied opened and closed their
shells through a range of about 0.2 radians, opening and closing each
taking about 0.1 s. Thus, the angular velocities of opening and closing
were about 2 rad/s. Each valve approached and moved away from the
median plane at about 1 rad/s. The lengths of the valves (measured at
right angles to the hinge) were about 60 mm, so the peak velocities of
opening and closing, at the edge of the shell, were about 0.06 m/s. This
is only one-fortieth of the velocity of 2.5 m/s, which we estimated for the
jet. The added mass of water is much greater than the mass of the valves
themselves, and can be estimated as the mass of a sphere of water of 60
mm diameter, or about 100 g. A pair of circular valves of 60 mm diameter,
opening through 0.2 rad, would draw in almost 20 g water, so the added
mass is about five times the jet mass. If five times the mass is given one-
fortieth of the velocity, the kinetic energy given to the added mass (twice
in each cycle) is 5/402 = 0.003 of the kinetic energy given (once in each
cycle) to the jet. Critical readers will find many gross approximations in
that calculation. However, the result is not too different from the conclu-
sion of the far more sophisticated calculations of Cheng et al. (1996) that
the inertial work of opening and closing the shell is about 1% of the work
required to power the jet.

Energy savings by elastic mechanisms have been a recurring theme in
this book, starting with the discussion of basic principles in Section 3.6.
It appears that in the case of the scallop the potential for savings of this
kind is negligible, because the inertial work estimated above is so small.
The hinge ligament makes it unnecessary for scallops to have shell-opening
muscles, but it does not save them useful amounts of energy.

Just as scallops depend on the elasticity of the hinge ligament to open
the shell, medusae depend on the elastic properties of their mesoglea to
enlarge the bell. De Mont and Gosline (1988) measured the elastic prop-
erties both of the intact bell of the medusa Polyorchis and of isolated blocks
of mesoglea, and calculated the strain energy stored during swimming
movements. They also performed experiments on living Polyorchis that
were tethered by gluing the apex of the bell to a support. They used a
pressure transducer to record pressure changes within the bell of tethered
animals as they made swimming movements. At the same time, they made
video records from which they were able to calculate the changing volume
of the bell. They plotted the pressures and volumes as a work loop, from
which they were able to calculate the work done pumping water to pro-
duce the jet. This was presumably not exactly the same as if the medusae
had been swimming freely, but is probably a reasonable approximation. It
would have been extremely difficult to make the measurements on free-
swimming medusae.
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One of the tethered medusae habitually made single contractions, after
which its bell was left vibrating passively. The frequency of these free vibra-
tions matched the frequency of contractions of the bell of freely swimming
medusae of the same size, showing that the swimming frequency is the
animal’s resonant frequency and that the bell can be refilled by elastic
recoil of the mesoglea. In this, the medusa resembles scallops, in which
the shell is refilled by elastic recoil of the hinge ligament.

The work loops showed that Polyorchis of 30 mm diameter did about 50
µJ of work in each swimming cycle, driving the jet. The measurements of
elastic properties showed that the strain energy stored in each cycle was
about 30 µJ. As the medusae swam at their resonant frequency, the inertial
work required for the swimming movements must have matched the elas-
tic work, 30 µJ. We saw that in scallops the inertial work is very small
compared to the hydrodynamic work of driving the jet. In contrast, in
medusae the inertial work is similar in magnitude to the hydrodynamic
work. The explanation for this difference is that scallops expel water
through small openings at high velocity, whereas medusae expel water
through a wide opening at low velocity. Both in scallops and in medusae,
energy is saved by swimming at the resonant frequency of the system; but
whereas the savings are trivial in scallops, they are substantial in medusae.
In scallops, the elasticity of the hinge ligament is important only as a mech-
anism for opening the shell, but in medusae the mesoglea also has an
important energy-saving role.

Though important, the mesoglea is rather inefficient in this role. The
mechanical tests on isolated blocks of mesoglea showed that only 60% of
the work done deforming it was returned in its elastic recoil. Observations
of the vibrations of a tethered medusa as they died away after a single
contraction gave the same result (De Mont and Gosline 1988). In con-
trast, we have already seen that the hinge ligament of scallops gives 91%
energy return.

An elastic mechanism also has a role in squid swimming. The mantle
consists of a thick layer of muscle sandwiched between two sheets of colla-
gen fibers (Fig. 16.4B). Most of the muscle fibers run circumferentially,
so when they contract, the diameter of the mantle is reduced and water is
driven out of the mantle cavity. The volume of the muscle remains con-
stant, so the circumferential contraction must be accompanied by length-
ening of the mantle, or thickening of its wall, or both. The collagen fibers
in the inner and outer sheets run at small angles to the animal’s long axis
and more or less prevent lengthening, so the mantle must thicken as it
contracts. In addition to the inner and outer sheets, there are some colla-
gen fibers running through the thickness of the muscle layer that are
stretched as the mantle contracts and thickens. Refilling of the mantle
cavity is powered largely by elastic recoil of these fibers (Gosline and Shad-
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wick 1983; MacGillivray et al., 1999). However, their elastic recoil does
not do all the work of refilling. In addition to the circular muscle fibers,
there are some radial muscle fibers (Fig. 16.3B). When they contract, they
thin the mantle and stretch the circular fibers. Gosline et al. (1983)
showed that the radial muscle fibers are active especially in the later part
of the refilling phase of the jetting cycle.

The (negative) pressure in the mantle cavity during refilling is small
compared to the (positive) pressure in jetting (Webber and O’Dor 1986).
This shows that the work of refilling is small compared to the work of
jetting. Also, the rates of change of radius of the mantle are small, com-
pared to the velocity of the jet (calculated from data in Gosline et al.,
1983). By an argument like the one for scallops (above), this shows that
the inertial work required to drive the radial movements of the mantle
wall, and of the water immediately around it, is relatively small.

The principal message of this chapter is that jet propulsion is a relatively
inefficient swimming technique. This is because the volume of the animal
limits the volume of water that can be ejected to provide thrust, in each
cycle of movement. One of the major gaps in our knowledge that I would
like to see filled concerns gait change and maneuverability in squids.



Chapter Seventeen...............................................................
Buoyancy

F RESHWATER has a density of 1000 kg/m3, and seawater about
1026 kg/m3. Animals’ bodies consist largely of materials that are
denser than either. For example, the muscles of fishes (both selachi-

ans and teleosts) have densities between about 1040 and 1080 kg/m3,
and teleost guts have densities around 1040 kg/m3 (Alexander 1993b).
The soft parts of Nautilus, removed from the shell, have a density of about
1060 kg/m3 (Denton and Gilpin-Brown 1973). Skeletal materials are gen-
erally denser, for example, 1060–1180 kg/m3 for selachian cartilage,
1300–2000 kg/m3 for teleost bone, and 2700 kg/m3 for mollusc shell
(Alexander 1993b; Wainwright et al., 1976). Consequently, aquatic ani-
mals that lack adaptations that would give them buoyancy are denser
than the water they live in. For example, the densities of fish that lack
swimbladders or other buoyancy adaptations are generally between 1050
and 1090 kg/m3 and the densities of typical squids about 1070 kg/m3

(Jones and Marshall 1953; Denton and Gilpin-Brown 1973). These ani-
mals will sink if they stop swimming. This chapter is about the means by
which aquatic animals avoid sinking, either by means of low-density or-
gans that reduce their density to that of the water, or by generating upward
hydrodynamic forces.

17.1 BUOYANCY ORGANS

Many different materials serve as buoyancy aids in animals. Gases give
buoyancy to many siphonophores, which have gas filled floats; to a few
cephalopods (Nautilus, Sepia and Spirula) that have gas-filled chambers
in their shells; and to most teleost fishes, which have gas-filled swimblad-
ders. The densities of gases are negligible in comparison with the densities
of water and of animals’ bodies, but the material that encloses the gas may
have a high density. For example, the walls of a Nautilus shell have a den-
sity of 2700 kg/m3, and when the chambers are completely full of gas the
density of the complete shell is about 910 kg/m3, only a little less than
the density of water (Denton and Gilpin-Brown 1973). The gas-filled shell
of Sepia is much more lightly built, and has a density of only about 500
kg/m3 in the most buoyant individuals. The densities of Nautilus, Sepia,
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and most teleosts that have well-developed swimbladders are very close to
the density of the water they live in (Denton and Gilpin-Brown 1973;
Alexander 1993b).

Some other animals gain buoyancy from low-density lipids. The livers
of a few sharks contain very large quantities of the hydrocarbon squalene
(Corner et al., 1969) or of wax esters (Van Vleet et al., 1984), and the
densities of these sharks are very close to that of seawater. Wax esters pre-
dominate in the adipose tissues of the coelacanth Latimeria and permeate
its remarkably oily muscles (Nevenzel et al., 1966). Many lantern fishes
(Myctophidae) have gas-filled swimbladders but some do not. Some that
have no gas accumulate wax esters around the vestigial swimbladder and
in their muscles, and have densities of 1025–1037 kg/m3, close to or only
a little more than the density of seawater (Capen 1967). Triglycerides
have densities around 930 kg/m3, but squalene and wax esters have lower
densities, around 860 kg/m3.

In some other animals, the body fluids have remarkably low densities,
due to peculiarities in their ionic composition. Many squids that swim at
substantial depths contain large quantities of coelomic fluid, which has the
same osmotic concentration as seawater or the blood, but has the sodium
ions largely replaced by ammonium (Denton and Gilpin-Brown 1973).
The densities of these fluids are about 1010 kg/m3, and the intact animals
have almost exactly the density of seawater. Scyphozoan jellyfish, some si-
phonophores, and ctenophores have mesogloea that is slightly less dense
than seawater, due to exclusion of sulfate ions (Bidigare and Biggs 1980).

Some deep-water teleosts have no swimbladder and contain only mod-
est quantities of lipids, but have poorly ossified bone and watery tissues,
and have less than half as much protein in their bodies as coastal teleosts
of equal mass (Denton and Marshall 1958). Two species had densities
of 1032 and 1039 kg/m3, substantially less than most teleosts without
swimbladders, but still more than seawater.

We will calculate the quantities of low-density materials that are needed
to match the densities of typical fish to the water they live in. Consider
a fish that, without a buoyancy organ, would have volume Vwithout and
density ρwithout. We will give it a buoyancy organ of density ρbuoy. What
must the volume Vbuoy of this organ be, to match the density of the animal
to that of the water (ρwater)? The total mass of the animal is
Vwithout ρwithout + Vbuoy ρbuoy, so for it to have the same density as the water

Vwithout ρwithout + Vbuoy ρbuoy

Vwithout + Vbuoy
= ρwater

By rearranging this equation we find that the volume of the buoyancy
organ, as a fraction of the total volume of the animal, is



B U O Y A N C Y 303

Table 17.1.
The volumes and masses of buoyancy organs of various densities required to match the densities
of animals to seawater (1026 kg/m3) or freshwater (1000 kg/m3)

Density of buoyancy In seawater In freshwater
organ (kg/m3) Volume Mass Volume Mass

Swimbladder Negligible 0.05 0 0.07 0
Sepia shell 600 0.09 0.04 0.13 0.07
Squalene or wax esters 860 0.23 0.19 0.35 0.30
Nautilus shell 910 0.30 0.26 0.45 0.41
Ammoniacal fluids 1010 0.75 0.74 Impossible Impossible

Note. The volumes and masses of buoyancy organs are expressed as fractions of total body volume or
mass. It is assumed that, without the buoyancy organ, the density of the animal would be 1075 kg/m3. Two
entries are “impossible” because a fluid that is denser than freshwater cannot give buoyancy in freshwater.

Vbuoy

Vwithout + Vbuoy
=

ρwithout − ρwater

ρwithout − ρbuoy
(17.1)

It is often more convenient to measure the mass of a buoyancy organ, than
its volume. Let the mass of the body excluding the buoyancy organ be
mwithout , and let the mass of the buoyancy organ be mbuoy. Then Vbuoy =
mbuoy / ρbuoy, and if the animal has the same density as the water
(Vwithout + Vbuoy) = (mwithout + mbuoy)/(ρwater). By substituting these equations
in Equation 17.1 we find

mbuoy

mwithout + mbuoy
=

(ρbuoy/ρwater) (ρwithout − ρwater)
ρwithout − ρbuoy

(17.2)

Table 17.1 has been calculated from Equations 17.1 and 17.2. It shows
how large buoyancy organs need to be to match the density of a typical
animal to freshwater or seawater. As it predicts, teleosts with densities
close to seawater or freshwater generally have swimbladders occupying
about 5 or 7%, respectively, of their volume (Jones and Marshall 1953;
Alexander 1959b). Other buoyancy organs are much denser, so have to
be much larger.

17.2. SWIMMING BY DENSE ANIMALS

A fish that is denser than water may prevent itself from sinking simply by
swimming with its body tilted, so that the thrust generated by its swim-
ming movements has a vertical as well as a horizontal component. The
horizontal component must equal the drag Fdrag , so the vertical component
must be Fdrag tan α. This vertical component of the thrust may be aug-
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mented by hydrodynamic lift (Flift), due to the body functioning as a hy-
drofoil. The ratio of these two effects is

Lift
Vertical component of thrust

=
Flift

Fdrag tan α
(17.3)

The ratio Flift/Fdrag will depend on the shape of the fish. Flatfish (Pleuronec-
tiformes) are shaped like low-aspect ratio aerofoils, so their bodies will be
more effective as hydrofoils than those of most other fish. Weihs (1973)
estimated that lift/drag ratios up to 5 should be possible for them. This
implies that when the body is tilted at small angles, the lift should be much
larger than the vertical component of thrust.

Most other fish have narrow bodies, much less well shaped for generat-
ing lift. Rather than swimming with the whole body inclined at an angle
of attack, these fish can be expected to do better by swimming with the
body horizontal and using fins as hydrofoils to counteract their tendency
to sink.

Sharks obtain some of the lift that they need from the tail, which has
the asymmetrical form that is described as heterocercal (Fig. 17.1). It
drives water downward as well as backward as it beats from side to side,
and so provides an upward component of force as well as forward thrust.
Alexander (1965) demonstrated the upward force in experiments with
severed tails. By releasing streams of dye into a water tunnel in which a
leopard shark (Triakis) was swimming, Ferry and Lauder (1996) showed
that the tail drives water downward as well as backward.

For a swimming shark to be in equilibrium, not only must the upward
forces balance the downward ones, but the moments of the forces about
a transverse axis must balance. Until recently, it was believed that the bal-
ance of forces was as shown in Fig. 17.1A. The hydrodynamic force on the
tail exerts an anticlockwise moment about the center of mass. The weight
of the fish acts (by definition) at the center of mass, and so exerts no
moment about it. However, the Archimedes upthrust acts at the center of
buoyancy, which is slightly anterior to the center of mass because the pos-
terior parts of the body are denser than the anterior parts. Consequently,
the upthrust exerts a clockwise moment about the center of mass. How-
ever, because the centre of buoyancy is so close to the center of mass, this
moment is far too small to balance the anticlockwise moment from the
tail. It was believed that the upward force needed to balance the moments
was provided by lift on the pectoral fins. These fins cannot be folded, but
project on either side of the body like the wings of aircraft. Alexander
(1965) calculated that for the moments on a swimming dogfish (Scyliorhi-
nus) to be balanced, the pectoral fins must supply about 70% of the re-
quired lift, and the tail 30%.
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Fig. 17.1. Diagrams showing the forces acting on a shark swimming at constant
depth (A) if lift is obtained from the pectoral fins and (B) if lift is provided by the
tilted body. In each case, the heterocercal tail also contributes to the lift.

That interpretation had to be changed when Wilga and Lauder (2000)
used particle image velocimetry to examine the flow behind the pectoral
fins of a leopard shark swimming in a water tunnel. They found no vortices
behind the fins except when the shark was initiating a climb or descent.
There were no vortices behind the fins in level swimming, so they were
providing no lift. Indeed, the fins were held at an angle of attack at which
no lift could be expected. However, the fish swam with their bodies tilted
nose-up. The angle of tilt was about 11° when the shark swam slowly, and
less at higher speeds. It appeared that lift was acting on the body, as shown
in Fig. 17.1B. Presumably, the center of lift on the body was anterior to
the center of mass, as required to balance the moments. It would be ex-
pected to be well forward, because the centers of lift of aerofoils are much
nearer their leading than their trailing edges, and because the posterior
parts of the body are much narrower than the head. It seems likely that
other species of shark also rely on body lift, but this has not yet been
demonstrated. The finding that Triakis swims so as to get lift from its
body rather than its fins is unexpected. The body is much longer than it
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is wide, so its aspect ratio is very low. The lower the aspect ratio of a
hydrofoil, the greater the induced drag (Equation 10.13).

Many tunas lack swimbladders, and so are denser than the water in
which they swim. For example, Euthynnus has a density of about 1086
kg/m3 (Magnuson 1970). They swim with their pectoral fins extended
and have been believed, like sharks, to depend mainly on lift on these fins
to counteract their weight in water (Magnuson 1970). This point needs
reexamination in the light of the experiments on Triakis. For the present,
we will suppose that the fins are the main source of lift. If the fish swam
too slowly, they would not be able to provide enough lift. For example, a
1-kg (0.38-m) Euthynnus needs about 0.6 N lift from its pectoral fins
(Magnuson 1970). The plan area of these fins (measured as indicated for
bird wing areas, in Fig. 10.1A) is about 0.003 m2. We have no measure-
ments to tell us the maximum lift coefficient that these fins can have with-
out stalling, but it seems likely to be about 1.0. Equation 10.4 tells us that
with this lift coefficient, the pectoral fins would give the required lift at a
swimming speed of 0.6 m/s. This suggests that a 0.38-m Euthynnus
should be capable of swimming at speeds down to 0.6 m/s (1.6 body
lengths per second). Euthynnus observed in an aquarium by Magnuson
(1973) never swam slower than 2.0 body lengths per second.

Rather than swim a straight, horizontal path, it may be more economi-
cal of energy for a fish that is denser than water to alternate powered swim-
ming on an upward slope and a gliding descent (Weihs 1973). This can
save energy because swimming by beating the tail requires more power
than would be needed to propel a rigid body at the same speed (Section
15.1). While a fish is gliding, the additional power is not required. Weihs
(1973) estimated that Euthynnus should be able to glide at a minimum
angle of about 11°. This would enable it to save 20% of the energy that
would be needed for level swimming, by climbing and gliding. However,
this estimate has not been checked by experiment.

As we have seen, fish that are denser than water and depend on their
pectoral fins for lift cannot swim below a critical speed if they use these
fins as fixed hydrofoils. However, they may be able to hover if they beat
the fins backward and forward, like the wings of a hovering hummingbird.
If the fish is substantially denser than the water, the power required is
high (Section 17.3), probably more than the pectoral fin muscles of most
teleosts can provide. Jones (1952) and Bishai (1961) altered the densities
of various perciform fishes by reducing the ambient pressure, making the
swimbladder expand. Initially, the fish had densities very close to that of
the water. When the pressure was reduced, they compensated for their
reduced density by beating their pectoral fins. This enabled them to re-
main stationary in mid water, in freshwater of density 1000 kg/m3, until
their densities fell to about 975 kg/m3. If the pressure and so their density
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were reduced further, the fish had to swim downward by beating their
tails to avoid being carried to the surface. The converse experiment, of
testing the ability of fish to hover when their density was increased, does
not seem to have been performed, but it seems likely that most teleosts
would be able to compensate only for small increases of density by beating
their pectoral fins. In this respect, the mandarin fish (Synchropus) seems
to be exceptional (Blake 1979a). This small coral reef fish has an unusually
high density of 1150 kg/m3, but spends much of its time hovering close
above the bottom by beating its pectoral fins.

17.3. ENERGETICS OF BUOYANCY

A fish that is denser than water must swim or hover actively, using meta-
bolic energy, to prevent itself from sinking. One with a buoyancy organ
may be able to float almost motionless in mid water, but expends metabolic
energy growing and maintaining the buoyancy organ. Also, because the
buoyancy organ makes its body bulkier than it would otherwise be, it
needs more energy to swim at any given speed. Alexander (1990) esti-
mated the energy costs of different buoyancy strategies and discussed their
relative merits for animals with different ways of life.

Consider first an animal of mass m whose body has a density ρ that is
greater than the density (ρwater) of the water. The weight of the animal is
mg, where g is the gravitational acceleration. Its volume is m/ρ, so the
upthrust that acts on it, by Archimedes’ principle, is mgρwater/ρ. The lift
Flift needed to prevent sinking is the difference between the weight and
the upthrust:

Flift =
mg (ρ − ρwater)

ρ
(17.4)

The animal may hover, keeping itself stationary in the water by beating
its fins. If it beats a pair of fins of length r through an angle φ, the power
required can be estimated (using Equation 11.8) as

Power = 1 Flift
3

2ρwater r 2φ2
0.5

(17.5)

= 3m
3g3 (ρ − ρwater)3

2ρ3ρwaterr 2φ 4
0.5

(This estimate is of induced power. The total power required, including
also profile power, would be higher.)

To get a rough idea of the magnitude of this power, consider a 1-kg fish
of density 1075 kg/m3, in water of density 1026 kg/m3. Teleosts of this
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mass are typically about 0.4 m long (Peters 1983). Equation 17.5 shows
that less power is needed if the fins are long and beat through a large
angle, so we will assume relatively long pectoral fins, 0.1 m from base to
tip, each beating through an angle of π radians (180°). With these data,
Equation 17.5 gives a mechanical power requirement for hovering of
about 0.04 W. If the efficiency of the muscles is 0.25 (Section 2.5), the
metabolic power required for hovering will be 0.16 W. The resting meta-
bolic rate of a 1-kg fish at (for example) 20°C would be about 0.4 W
(Peters 1983). Thus, the energy cost of hovering would be high.

Geometrically similar fish would have fin lengths proportional to (body
mass)0.33, so Equation 17.5 predicts that geometrically similar fish of equal
density would need power proportional to (m3/m0.67) 0.5 = m 1.17. Resting
metabolic rates of fish of different sizes are about proportional to m0.8

(Peters 1983). Thus, the power required for hovering, expressed as a mul-
tiple of the resting metabolic rate, should be about proportional to m0.37.
We estimated that it would be about 40% of the resting metabolic rate of
a 1-kg fish, but it should be only 7% of the resting rate for an 8-g fish, the
size of the fish we are about to discuss.

The power required for hovering by a helicopter is reduced by ground
effect when the rotor is less than about three blade lengths above the
ground. Blake (1979a) found that the mandarin fish Synchropus often
hovered with its pectoral fins less than one fin length above the bottom,
well within the region where ground effect is expected to be important.
However, it was capable of hovering far enough above the bottom for
ground effect to be insignificant. Blake analyzed film of an 8-g Synchropus
hovering out of ground effect and calculated that its mechanical power
output was 0.5 mW. If the efficiency of the muscles was 0.25, the corres-
ponding metabolic power requirement was 2 mW. This is 22% of the
predicted resting metabolic rate of an 8-g fish at 20°C (Peters 1983),
far more than estimated in the previous paragraph for a fish of this mass.
The explanation for the discrepancy is that Synchropus has an exceptionally
high density, 1150 kg/m3. We made our calculations for a fish of density
1075 kg/m3, which has to generate only 0.4 times as much lift. The
power requirement given by Equation 17.5 is proportional to (lift)1.5, so
this less dense fish should need only 0.41.5 = 0.25 times as much power as
Synchropus.

Now consider a fish that does not hover. It is denser than the water
and swims all the time at speed v. Let it be supported by lift on pectoral
fins of span s, and assume that the induced drag factor (Section 10.3) is
approximately 1. We can estimate the mechanical power required to gen-
erate this lift by multiplying the induced drag (Equation 10.9) by the
swimming speed
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Power =
2Flift

2

πρwatervs 2
(17.6)

=
2m 2g 2 (ρ − ρwater) 2

π ρ2 ρwatervs 2

This power is additional to the power that would be needed for swimming
at the same speed if the fish had the same density as the water.

Again consider a 1-kg fish of density 1075 kg/m3. A 1-kg Euthynnus
would have a pectoral fin span of 0.14 m and would cruise at about
0.8 m/s (Magnuson 1970, 1973) so we will assume these values. With
these data, Equation 17.6 gives a mechanical power requirement of 0.009
W, or (assuming an efficiency of 0.2, as before) a metabolic requirement
of 0.045 W. This is lower than the cost we calculated for hovering by a
1-kg fish, and would be considerably lower if we had made the fins
as long as in the hovering calculation. If the fish swims faster, the basic
power requirement that would be needed if it were the same density as
the water will be greater, but the additional power given by Equation 17.6
will be less.

Geometrically similar fish would have fin spans proportional to m0.33.
The maximum range swimming speeds of fishes tend to be proportional
to m0.17 (Videler 1993). Thus, Equation 17.6 predicts that geometrically
similar fish of equal density will need power proportional to m2/
m0.17m0.67 = m1.16 to generate the lift they need. The metabolic rates of fish
swimming at their maximum range speeds are about proportional to m0.79

(calculated from equations in Videler [1993]). Thus, the energy cost of
generating lift, expressed as a fraction of the swimming metabolic rate, is
predicted to be about proportional to m0.4. As for hovering, the cost of
generating the required lift is relatively less for smaller fish.

Now consider animals with buoyancy organs that match their densities
to the water. What is the energy cost of having these organs? There will
be a cost of growing and maintaining the organ, which we will ignore for
the present. While the animal is stationary, that is the whole of the energy
cost, but when it swims there is an additional cost; because the animal is
bigger than it would have been without the buoyancy organ, it needs more
power to swim.

If animals were rigid bodies, the power P required to propel them
through water of density ρwater could be calculated by multiplying the drag
(Equation 10.1) by the speed v:

P = #ρwaterAv 3Cdrag (17.7)

where A is an area and Cdrag is the corresponding drag coefficient. For
geometrically similar animals of volumes V, A would be proportional to
V 0.67. The Reynolds number is proportional to length times speed, or to
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V 0.33v, and drag coefficients for streamlined bodies with laminar boundary
layers are about proportional to 1/(Reynolds number)0.5, or to V −0.17v −0.5.
Thus, we expect the power required for swimming to be

P = kV 0.5v 2.5 (17.8)

where k is a constant. We started this argument with the assumption that
the power was the same as would be needed to propel a rigid body, but
we saw in Section 15.1 that the power used by a swimming fish is several
times higher. Equation 17.8 will still hold, provided the power is the same
multiple of the rigid body power for different fish and different speeds.

Now consider an animal that has a buoyancy organ of volume Vbuoy in
addition to its basic volume V. Because it is bigger, it needs additional
power Pbuoy to swim:

P + Pbuoy = kv 2.5 (V + Vbuoy)0.5 (17.9)
= kv 2.5 (V 0.5 + 0.5VbuoyV −0.5 + . . .)

(using the binomial theorem, which is explained in mathematical text-
books). If Vbuoy is not too large, we can ignore later terms in the series and
subtract Equation 17.8 from 17.9 to obtain

Pbuoy ≈ 0.5 kv 2.5VbuoyV −0.5 (17.10)
Pbuoy

P
≈ 0.5 Vbuoy

V (17.11)

Thus, the increased size of the animal, due to the presence of the buoyancy
organ, adds about 2.5% to the power needed for swimming by a fish with
a swimbladder that adds 5% to its volume, and 11.5% for a fish with squa-
lene or wax esters that add 23% to its volume (Table 17.1).

Equation 17.6 showed that for animals that are denser than the water,
the power required to generate lift falls as the swimming speed increases.
Equation 17.10 shows that for animals with buoyancy organs, the addi-
tional power required for swimming increases as speed increases. This tells
us that for animals that swim slowly, it is more economical to have a buoy-
ancy organ; and for those that swim fast, it is more economical to depend
on hydrodynamic lift. The speed at which the balance of advantage
changes from a buoyancy organ to lift should be higher for animals with
swimbladders (which add only a little to the volume of the body) than for
animals with denser buoyancy organs (which have to be larger).

However, we have not yet considered the cost of growing and main-
taining the organ. A fish with a swimbladder must expend energy secreting
gas into the swimbladder, both to enlarge the swimbladder as it grows
and to replace gases lost by diffusion. Alexander (1972) attempted to cal-
culate the energy cost of replacing diffusion losses for fish living at differ-
ent depths in the sea. I was unable to reach a reliable quantitative conclu-
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sion, because the efficiency of gas secretion had not been measured. Even
now there seem to be no measurements of the energy cost of secreting
swimbladder gases, though the mechanism of gas secretion is well under-
stood (Pelster and Scheid 1992). However, it seems clear that the cost of
replacing diffusion losses from the swimbladder will be significant only
for fish that live at substantial depths where the hydrostatic pressure is very
high. Even for them it may not be very large. The walls of swimbladders
are generally made remarkably impermeable to diffusing gases by deposits
of ribbonlike guanine crystals, especially in deep sea fishes (Denton et al.,
1970; Lapennas and Schmidt-Nielsen 1977).

Animals, such as ammoniacal squids, that make themselves buoyant by
modifying the composition of their body fluids must use energy to secrete
ions in and out of this fluid to maintain its composition. Cephalopods,
such as Nautilus and Sepia, that depend on gas-filled shells for buoyancy
must expend energy maintaining the osmotic pressure differences that
prevent the cavities from filling with liquid (Denton and Gilpin-Brown
1973). I see no easy way of calculating the energy costs in these cases.
However, we can make a very simple calculation of the energy cost of
accumulating squalene or wax esters.

Consider an animal of mass m containing a mass mbuoy of low-density
lipid. If it has a relative growth rate G (i.e., if its mass increases at a rate
Gm), it must accumulate lipid at a rate Gmbuoy to keep its density constant.
If the enthalpy of combustion of the lipid is H, this ties up energy that
would otherwise be available for metabolism at a rate Gm buoyH. For a
typical 1-kg fish, G would be about 10−8 s−1 (Calder 1984). With this
growth rate, the fish would add 37% to its body mass in a year. Also mbuoy

would be about 0.19 kg (Table 17.1). The enthalpies of combustion of
squalene and wax esters must each be about 40 MJ/kg (see data for similar
compounds in Weast [1987]). Hence, we can estimate that the energy
cost of accumulating the lipid would be 0.08 W. This is only half of the
energy cost that we estimated for hovering by a 1-kg fish without a buoy-
ancy organ.

17.4. BUOYANCY AND LIFESTYLE

We have seen that some swimming animals have densities very close to
that of the water they live in, and so can remain almost motionless in mid
water, with little tendency to rise or sink. Others are considerably denser
than the water, and sink quite rapidly if they stop swimming. Some of
the buoyant animals have gas-filled floats, while others depend for their
buoyancy on low-density lipids or on body fluids of unusual composition.
We have assessed as far as we could the energy costs associated with differ-



312 C H A P T E R S E V E N T E E N

ent buoyancy strategies. This section is about the relative merits of the
different strategies for animals with different ways of life.

If an animal is denser than the water it lives in, frictional forces will help
to hold it in place when it rests on the bottom. For this reason, there may
be a positive advantage in being denser than water for animals that spend
a lot of time resting on the bottom. These include selachians, such as
Scyliorhinus and Raia, which have densities of about 1075 kg/m3 (Jones
and Marshall 1953); teleosts, such as the flatfishes (Pleuronectiformes),
which have lost the swimbladder and have similar densities; and octopus.
Indeed, it might be an advantage to some of these fishes to be even denser.
Webb (1989) has shown that the lift that acts on Raia and Pleuronectes
when they rest on the bottom in even quite a slow current may be enough
to make them lose their frictional grip.

Some animals that swim perpetually are also denser than water. They
include pelagic sharks; tunnies, such as Euthynnus and Katsuwonus, which
have lost their swimbladders and have densities of 1080 to 1100 kg/m3

(Magnuson 1973); and squids, such as Loligo (about 1070 kg/m3 [Denton
and Gilpin-Brown 1973]). These animals depend on hydrodynamic lift to
prevent sinking. Calculations in Section 17.3 showed that the energy cost
of swimming fast might be less for animals that rely on lift than for those
that have buoyancy organs. These dense animals may swim fast enough
for buoyancy organs to be disadvantageous.

Our theoretical discussion showed that animals that swim slowly or
hover in mid water can save energy by evolving a buoyancy organ. A large
proportion of teleosts have well-developed swimbladders that give them
densities very close to that of water (Jones and Marshall 1953; Alexander
1959b), and are capable of resting almost motionless in mid water.
Whereas most sharks are denser, the basking shark Cetorhinus has enough
squalene in its body to match its density almost exactly to seawater (Bone
and Roberts 1969). It swims slowly, filter feeding. The cephalopods that
have gas-filled shells that match their densities closely to the water (Nauti-
lus, Sepia, and Spirula) are more sluggish in their behavior than squids
such as Loligo. These animals may spend most of their time swimming
slowly enough for the balance of advantage to favor buoyancy organs.

The less dense the buoyancy organ, the smaller it need be, and the less
the extra energy cost of swimming given by Equation 17.10. This suggests
that swimbladders or similar gas-filled floats should be the preferred buoy-
ancy organs. However, evolution is constrained by ancestry, and we should
not expect every animal to have the type of buoyancy organ that seems in
theory to be the most advantageous. Also, gas-filled floats present prob-
lems for animals that make large changes of depth.

Pressure under water increases by one atmosphere for every ten meters
of depth. The gases in the swimbladders of most fish are at the same pres-
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sure as the surrounding water, and are compressed or expand as the pres-
sure changes, according to Boyle’s law (Alexander 1959c). Thus, a swim-
bladder that contains enough gas to give the fish neutral buoyancy when
it is close to the surface is reduced to half the required volume at 10 m
depth (where the pressure is 2 atm), and one-tenth of the required volume
at 90 m (10 atm). Whenever the fish descends from the surface, it becomes
denser than the water and must swim to prevent itself from sinking fur-
ther; unless, of course, it can secrete gas fast enough to keep the volume
of the swimbladder constant. Similarly, a swimbladder that contains
enough gas to give a fish neutral buoyancy at 90 m will expand so greatly
if the fish ascends too far that the fish may be carried helpless to the surface
and the swimbladder may burst.

The range of depths at which the density of a fish with a swimbladder
is close enough to the density of the water for it to hover by fin movements
alone may be very restricted. Jones (1952) found that perch (Perca) could
not hover at pressures more than 16% below the pressure to which the
swimbladder was adapted. Fishes of the order Cypriniformes (carps, chara-
cins, catfish, etc.) have swimbladders with less extensible walls than other
teleosts, inflated with gas at pressures up to 0.14 atm above ambient. These
swimbladders change volume less for small changes of ambient pressure
than do the swimbladders of other fish, possibly enabling these fish to
hover over a greater range of depths (Alexander 1959a, 1961).

Teleosts can keep their density constant if they change depth sufficiently
slowly, by secreting gas into the swimbladder or allowing it to diffuse out
into the blood. Jones and Scholes (1985) measured the rate at which cod
(Gadus morhua) can compensate for depth changes by keeping them in a
pressure tank with a viewing window. They were able to vary the pressure
in the tank from 1 to 7.5 atm, simulating depths from 0 to 65 m. After
each change of pressure, they monitored the rate of compensation by occa-
sional brief tests in which they adjusted the pressure to find the one at
which the fish just floated. They found that the cod adjusted to simulated
increases of depth at a rate of only 1 m per hour at 12°C, or less at lower
temperatures. The rate of compensation for simulated decreases of depth
depended on the depth but not on the temperature; it was 1 m/h at a
simulated depth of 5 m, and 20 m/h at 65 m.

Within the simulated range of depths, the rate of compensation for in-
creased depth was constant. This is what we should expect. Water and fish
tissues are effectively incompressible, so the swimbladder volume required
for neutral buoyancy is the same at all depths. However, the mass of gas
required to fill that volume increases in proportion to the pressure, which
increases linearly with depth. If the mass of gas that can be secreted in
unit time is independent of depth, the rate of compensation for increased
depth should also be independent of depth. However, like other processes
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driven by metabolism, secretion can be expected to proceed more slowly
at lower temperatures. Compensation for decreased depth is by passive
diffusion from the swimbladder to the blood, driven by a difference in
partial pressure that increases with depth. Accordingly, it is faster at greater
depths.

Some other fish can secrete gas faster than cod. For example, Pomatomus
can secrete fast enough to compensate for depth increases at a rate of 2.5
m/h (Wittenberg et al., 1964). However, it seems clear that any fish that
is required to keep its swimbladder volume constant would be restricted
to slow rates of change of depth.

Some fish make very rapid daily changes of depth. Notable among them
are the lantern fishes (Myctophidae), which are extremely plentiful in the
oceans. They spend the nights near the surface but the days much deeper.
Barham (1966), in a submersible vehicle, observed lantern fishes commut-
ing between the top 50 m of the sea and depths of around 300 m, at rates
of the order of 100 m/h. Fish changing depth as fast as that cannot keep
their swimbladder volumes constant. One option for them would be to
keep enough gas in the swimbladder to match their density to the water
at the nighttime depth, and to tolerate compression of the swimbladder
to a small fraction of its nighttime depth by day. The converse strategy of
keeping enough gas in the swimbladder for neutral buoyancy at the day-
time depth would not be an option, because it would expand to unman-
ageable volumes as they ascended in the evening.

In these circumstances, swimbladders may lose their advantage over
other types of buoyancy organs. Compare a fish with a swimbladder with
one that relies on wax esters for buoyancy. At night, when they are near
the surface, both fish have the same density as the water, but the swimblad-
der gives the same buoyancy for less volume. By day, when they are much
deeper in the water, the fish with the swimbladder has to generate hydro-
dynamic lift to prevent itself from sinking further, but the one with wax
esters still has almost exactly the same density as before. The shortcomings
of the swimbladder at depth may outweigh its advantage by day. Lantern
fishes that have lost their swimbladders and rely instead on wax esters for
buoyancy (Capen 1967) may benefit from the change.

The shells of Nautilus, Sepia, and Spirula are sufficiently rigid to keep
the volumes of gas within them constant as the animal changes depth.
Consequently, large pressure differences develop across the wall of the
shell as the animal descends, and if it goes too deep the shell implodes.
Spirula has the strongest shell, capable of withstanding 170 atm, or a
depth of about 1700 m (Denton 1974).

This chapter started with the observation that animals without buoy-
ancy organs are denser than water. This may be an advantage if they spend
most of their time on the bottom. Buoyancy organs that match the density
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of the animal to the water reduce the energy cost of slow swimming. They
increase the cost of fast swimming because, by increasing the volume of
the animal, they increase drag. Because gases have negligible density, a
gas-filled float can be smaller than any other, but unless it has a rigid wall,
its volume is changed by the changes of pressure when the animal swims
to different depths. Our discussion of the costs and benefits of buoyancy
organs has been incomplete, because we do not yet know the metabolic
energy costs of maintaining buoyancy or changing depth by secretion of
gas into a swimbladder or by withdrawing fluid from a cephalopod shell.



Chapter Eighteen...............................................................
Aids to Human Locomotion

U NLIKE ANIMALS, we humans make a great deal of use of manu-
factured aids to locomotion. We wear shoes. Scuba divers carry
gas cylinders and wear fins on their feet. We ride bicycles and row

boats. And we make a great deal of use of vehicles with engines, including
cars, ships, and aircraft. It seems inappropriate to discuss engine-powered
vehicles in this book, but it seems interesting to ask how devices that do
not incorporate engines enable us to make more effective use of our own
muscles. Why, for example, is it faster and less tiring to cycle than to run?
This chapter attempts to answer questions like that.

18.1. SHOES

Shoes protect our feet and make walking more comfortable on hard,
rough surfaces. As well as protecting us from immediate injury from sharp
objects, running shoes with compliant soles may protect us from the cu-
mulative injuries that may result in osteoarthritis, by cushioning the im-
pacts of the foot with the ground. The foot is still moving when it hits
the ground, typically at speeds around 0.7 m/s. Both the ground and the
foot itself deform a little, but the foot is brought to rest in a very short
distance. The brief peak in force plate records such as Fig. 7.8D, immedi-
ately following impact with the ground, represents the force that deceler-
ates the foot and lower leg (Ker et al., 1989). Most human runners hit the
ground first with the heel, and the fatty pad under the heel helps to cush-
ion the impact (Aerts et al. 1995). The force peak at impact may neverthe-
less be large, especially on artificial surfaces, such as concrete, that are less
compliant than most natural ground. Compliant heels on running shoes
supplement the natural cushioning. Dickinson et al. (1985) found that a
man running barefoot across a force plate produced much larger impact
peaks than when he wore trainers.

Bennett and Ker (1990) and Aerts et al. (1995) used a dynamic testing
machine to squeeze heel pads taken from amputated feet. They found that
briefly applied loads of 1500 N, simulating the impact peaks that occur in
running, deformed the pad by about 4 mm. Alexander and Bennett (1989)
made similar tests on the heels of running shoes and found that the same
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force caused 7–15 mm deformation. Thus, the compliance of the shoe
heels is a very substantial supplement to the compliance of the natural heel
pad. The heels of some brands of shoe are twice as compliant as the heels
of others, suggesting that some shoes should give much more effective
cushioning than others. However, Nigg et al. (1987) made force plate
records of athletes running at the same speed in shoes of different compli-
ances, and found no significant difference in impact forces. The athletes
must have adapted their running style when they changed shoes, but it is
not clear how they did this. There was no apparent difference in the veloc-
ity of the foot or in the angle of the knee at impact. However, there seemed
to be a tendency for runners in less compliant shoes to hit the ground first
with the lateral edge of the heel. This may have increased the effective
deceleration distance, due to the foot rotating about its long axis as it
settled on the ground.

We saw in Section 7.4 that the elastic properties of the arch of the foot,
as well as of the Achilles tendon, save energy in human running. Kinetic
energy lost by the body in the first half of the foot’s period of contact with
the ground is stored as elastic strain energy and restored by elastic recoil
in the second half. The strain energy stored in the heel of a running shoe
cannot help here, because the heel leaves the ground, losing its strain en-
ergy, while the body is still decelerating. However, when the load has been
transferred to the ball of the foot, strain energy is stored in the sole of the
shoe. This energy is returned by elastic recoil just before the foot leaves
the ground. This suggests that the compliance of the sole may have a
significant energy-saving function. Alexander and Bennett (1989) applied
forces of 2000 N to the soles of running shoes, simulating the peak force
that would act on the sole in running, and found that they deformed by
9–12 mm. This should enable the sole of the shoe to store as much strain
energy as the arch of the foot, which flattens by about 10 mm.

There is evidence that extra compliance, additional to the natural com-
pliance of the tendons and foot, could be beneficial. McMahon and Greene
(1978) designed a sprung indoor running track that was depressed and
recoiled by about 9 mm during each footfall of an adult runner. Athletes
regularly ran 3% faster in races on it than on conventional tracks. In princi-
ple, it should be possible to obtain the same advantage on a rigid track
from shoes with compliant soles. Manufacturers have been reluctant to
make soles more compliant than those currently used, because of the dan-
ger of the foot rocking to one side, resulting in a sprained ankle.

It is, of course, important that running shoes not be too heavy, because
a shoe adds to the mass that has to be accelerated and decelerated as the
foot swings forward and back (Section 7.5). However, a sole that incorpo-
rates gas bubbles can be highly compliant and reasonably light.
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Fig. 18.1. Graphs of metabolic energy cost (joules per meter traveled) against
speed, for adult humans walking, running, and riding various bicycles. The graphs
for the Boneshaker, High Wheeler, and Safety bicycle have been extrapolated be-
yond the speeds used in the experiments. The crosses and circles mark record
speeds achieved in one-hour and 24-hour trials, respectively, on various dates be-
tween 1870 and 1894. The broken lines are contours of equal metabolic power.
From Minetti et al. (2001).

18.2 BICYCLES

Figure 18.1 shows energy costs of human locomotion, calculated from
measurements of oxygen consumption. Running uses about 280 J for
every meter traveled, at all speeds from a slow jog to the highest speed
that can be sustained aerobically (about 6 m/s). The cost of cycling in-
creases with increasing speed. It is only about 70 J/m on an ordinary
bicycle or 40 J/m on a racing one, at 6 m/s. Cycling is very much more
economical than running.
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To understand why this should be, we need to remind ourselves of how
energy is used in running. A runner loses and regains external kinetic
energy and gravitational potential energy in every step. Some of the lost
energy is stored as elastic strain energy and returned in an elastic recoil,
but much of it has to be replaced by muscular work, at the cost of metabolic
energy (Sections 7.3 and 7.4). In cycling at constant speed on level
ground, however, the external kinetic energy and gravitational potential
energy (both of the rider and of the bicycle) are constant. The internal
kinetic energy of a runner fluctuates as the legs swing forward and back,
demanding work from muscles (Section 7.5). Fluctuations of internal ki-
netic energy occur in cycling as the legs turn the pedals, but these fluctua-
tions are much smaller than in running because the feet move more slowly.
Metabolic energy is also needed in running to develop the large muscle
forces that are needed to support the weight of the body (Section 7.6). In
cycling, the legs do not have to support the weight of the body, and the
forces they exert on the pedals are much smaller than the forces that the
feet of runners exert on the ground. (The forces involved in cycling have
been measured by means of bicycles with instrumented pedals [Davis and
Hull 1981].)

Cyclists have to do some work to overcome friction in the bearings of
the bicycle, but if the machine is well lubricated, that work is small enough
to be ignored. Nearly all the work that cyclists have to do at constant speed
on level ground is needed to overcome rolling resistance and air resistance
(Pugh 1974). Rolling resistance arises because the tire and the ground
are both distorted by the load at the point of contact. As the wheels re-
volve, different parts of the tires and of the ground are distorted and re-
coil. Much of the work done on them is returned in the recoil, but some
is lost as heat, which is why tires get warm as you travel. In addition,
energy is dissipated by vibrations of the bicycle. The energy lost in these
ways has to be replaced by muscular work. Because every part of a tire is
loaded and unloaded once in each revolution of the wheel, the work re-
quired per meter traveled is more or less independent of speed. Work is
also required to overcome air resistance, but because aerodynamic drag
increases roughly in proportion to the square of speed, the work required
per unit distance is proportional to speed squared. In Pugh’s (1974) exper-
iments, the amounts of work needed to overcome rolling resistance and
air resistance were roughly equal at 6 m/s, but at 12 m/s air resistance
was four times as important as rolling resistance.

Figure 18.1 shows measurements of the metabolic cost of riding old
bicycles as well as modern ones (Minetti et al., 2001). The old bicycles
were genuine antiques, with the exception of the Hobby Horse, which
was a faithful modern copy. The graph shows progressive reduction of the
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energy cost of cycling from the Hobby Horse of the 1820s to a modern
racing bicycle. The Hobby Horse had no pedals. The rider sat on a saddle
low enough for his feet to reach the ground, propelling himself by means
of his feet. In comparison with running, fluctuations of external kinetic
and gravitational potential energy were more or less eliminated, and the
legs were relieved of the need to support the weight of the body, but the
leg movements involved substantial fluctuations of internal kinetic energy.
On this machine it is possible to travel at a moderate running speed, for
little more than half the energy cost of running.

The Boneshaker of the 1860s has pedals attached directly to the front
wheel. The leg movements of pedaling require smaller fluctuations of in-
ternal kinetic energy than those of riding the Hobby Horse, and the en-
ergy cost of riding the Boneshaker is slightly lower. The Boneshaker has
iron rims on its wheels (hence its name). The front wheel has a diameter
of 0.89 m (which is larger than modern bicycle wheels). Because the pedals
are fixed to it, the bicycle advances only one front wheel circumference
(2.8 m) for each revolution of the pedals. Consequently, the rider has to
pedal at high frequency to travel fast.

This problem was alleviated in the High Wheeler of the 1870s (also
known as the Penny Farthing) by making the front wheel much larger.
The example used for the experiments has a front wheel diameter of 1.27
m. The pedals are still attached directly to the wheel, but the machine
travels further for each revolution, so the pedaling frequency is lower at
any given speed. Figure 2.3 shows that any muscle has an optimum rate
of shortening, at which it does work most efficiently. The effect of different
rates of pedaling on efficiency has been investigated by measuring the rates
of oxygen consumption of people on bicycle ergometers. At fairly high
power outputs, the efficiency is near-maximal at pedaling rates of 0.6 to
1.8 revolutions per second, and lower both at higher and at lower rates
(Vandewalle et al., 1987). At a speed of 6 m/s, the pedaling rate is 2.1/s
on the Boneshaker and 1.5/s on the High Wheeler. Cyclists on modern
machines generally prefer rates of about 1.3/s, and select their gears ac-
cordingly.

Following the High Wheeler, the Rover bicycle of the 1880s improved
safety rather than economy of energy. It has wheels of diameter only 0.75
m, making it less painful to fall off than a High Wheeler. The pedaling
frequency at any given speed is nevertheless slightly lower than for the
High Wheeler, because a chain drive (as in modern bicycles) makes the
wheels rotate at a higher frequency than the pedals. The energy cost of
cycling on it was a little higher than for the High Wheeler, due to higher
rolling resistance. Both it and the High Wheeler had solid rubber tires.
The Rover vibrated more severely than the High Wheeler because its
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spokes were shorter than in the large load-bearing wheel of the High
Wheeler, giving it stiffer suspension. The Safety bicycle of the 1890s had
pneumatic tires, making the suspension less stiff and greatly reducing the
rolling resistance. Figure 18.1 shows that it is more economical of energy
than the High Wheeler, and that a modern racing bicycle is still more
economical.

We have seen that at high speeds, air resistance accounts for the great
majority of the work of cycling. It can be reduced a little by using tubes
with streamlined sections instead of round ones to build the frame of the
bicycle. Capelli et al. (1993) found that riders on a bicycle with a stream-
lined frame used 4.5% less oxygen, at a speed of 11 m/s, than on one with
a traditional round-sectioned frame.

The air resistance can be reduced much more by enclosing the bicycle
and rider in a streamlined shell, but this is forbidden by the rules of bicycle
racing. Many enclosed, streamlined bicycles have been built (Abbott and
Wilson 1995). One model (the Cheetah) has done a flying 200 m at 29
m/s. This equals the speed of a real cheetah (Acinonyx jubatus) over the
same distance (Sharp 1997), and is very much faster than the world record
for a flying 200 m on a machine that conformed to the rules (20 m/s).

Bicycles are fast and economical of energy on man-made roads. Moun-
tain bikes, with thick tires and a wide range of gear ratios, are effective
on softer or rougher natural surfaces. However, walking and running are
practicable on much natural terrain that is unsuitable for wheeled vehicles
(LaBarbera 1983).

18.3. SCUBA

Scuba (self-contained underwater breathing apparatus) enables people to
swim underwater. The vital part of the equipment is the gas supply, but
scuba divers also wear fins on their feet. When swimming at the surface,
we depend mainly on our arms for power. We keep our arms submerged
for the power stroke but (in strokes such as the crawl) lift them above the
water for the recovery stroke. Divers cannot lift their arms out of the water,
so their arms are less effective than in surface swimming. Accordingly,
scuba divers depend on their legs for propulsion. Naked feet are too small
to work well as paddles, so fins are used to enlarge them. Fins increase the
mass of water that the feet push on, and so improve Froude efficiency
(Section 14.1).

Pendergast et al. (1996) measured the oxygen consumption of scuba
divers swimming 1.25 m below the surface in an annular pool. At the
speeds that they investigated, the energy cost of scuba swimming was a
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Fig. 18.2. Graphs of metabolic energy cost (joules per meter traveled) against speed
for adult men swimming at the surface, scuba diving, sculling a gondola, paddling
a kayak, and rowing a racing shell. Data are from Capelli et al. (1990) and Pender-
gast et al. (1989, 1996).

little less than for surface swimming, although the divers carried gas cylin-
ders and the surface swimmers with whom I am comparing them did not
(Fig. 18.2). The principal reason for this is that the divers avoided wave
drag by swimming well below the surface (Section 13.3).

18.4. BOATS

Human-powered boats are generally faster than swimming, and less meta-
bolic energy is needed to propel a small boat than to swim at the same
speed. For example, Capelli et al. (1990) measured the oxygen consump-
tion of men sculling a Venetian gondola and found that in the range of
speeds at which swimming is possible, gondoliers used only about one-
quarter as much energy as swimmers (Fig. 18.2).
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Gondolas are heavy, for example 450 kg in the case of the one used for
the experiment. Consequently, by Archimedes’ principle, a large volume
must be below the water surface and friction drag must act on a large area.
Less drag will act on lighter boats of similar shape at the same speed.
Pendergast et al. (1989) measured the oxygen consumption of elite men
paddling a solo kayak with a mass of only 12.5 kg in a canal. At low speeds
they used energy at about the same rate as gondoliers, but at higher speeds
the kayak was much more economical than the gondola (Fig. 18.2).

Both gondolas and kayaks are propelled by lift on a hydrofoil. A gondo-
lier moves his oar from side to side, adjusting the angle of attack of the
blade appropriately, so as to generate thrust by the same principle as the
side-to-side movements of a tuna’s tail (Section 14.4). The blades of a
kayak paddle are driven downward through the water in the power stroke,
propelling the boat by the principle illustrated in Fig. 14.4C. In contrast,
rowing boats are propelled by drag on the oars. The principle is the same
as for water beetles (Section 14.2) but, unlike the beetle, a human rower
lifts the oars clear of the water as he or she brings them forward in prepara-
tion for the next stroke.

Rowing boats designed for practical purposes such as fishing or crossing
rivers are strongly built and correspondingly heavy. They are broad in the
beam, making them stable and relatively safe. The seats are fixed, and
rowing has to be powered by the muscles of the arms and trunk without
assistance from the rower’s legs. Racing shells are very different. They are
extremely light, typically about 14 kg for single sculls and 93 kg for eights
(Abbott and Wilson 1995). They are very long and narrow; a single sculls
shell is typically 8 m long and only 0.3 m wide. This design keeps wave
drag low. Sliding seats enable the leg muscles to be used, and indeed to
provide most of the power. Athletes on ergometers that simulate sliding-
seat rowing can produce almost as much power as on a bicycle ergometer
(Abbott and Wilson 1995).

The world records for 2000-m races represent speeds of 5.0 m/s for
single sculls and 6.2 m/s for eights. A single scull 8 m long has a hull
speed (see Section 13.3) of 3.5 m/s, and an eight 18 m long has a hull
speed of 5.3 m/s. It is only because wave drag is so low that they can
exceed their hull speeds.

Energy costs of rowing as well as of kayaking are shown in Fig. 18.2.
Unfortunately, the data are not strictly comparable because the rowing
shell carried two oarsmen and a cox (each oarsman expended the energy
shown), whereas the kayak carried only one man. Record speeds for kayaks
are just a little slower than for racing shells, for example, 4.6 m/s for a
solo kayak over 1000 m. This suggests that the difference in energy costs
is small at high speeds.
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McMahon (1971) explained why eights can go faster than boats with
fewer crew. He assumed, realistically, that racing shells for different num-
bers of oarsmen are geometrically similar to each other, and that their
weights are proportional to the number of oarsmen. Then, by Archimedes’
principle, the submerged volume must be proportional to the number n
of oarsmen, and the submerged surface area must be proportional to
n2/3. Most of the resistance to the boat’s motion is friction drag, which at
the high Reynolds numbers involved is very nearly proportional to the
area multiplied by the square of the speed v (Equation 10.3). Thus, the
drag is proportional to v 2n2/3, and the power required to v 3n2/3. The power
available is proportional to n, so for the maximum speed

v 3n 2/3 _ n (18.1)
v _ n 1/9

This tells us that eights should travel 81/9 = 1.26 times as fast as single
sculls. The ratio of the record speeds given above is very close to this,
1.24.

The fastest human-powered boats have submerged hydrofoils that lift
the hull clear of the water at speed (Abbott and Wilson 1995). They are
propelled by pedal-driven propellers, either a small submerged propeller
or a large one operating in the air. Speeds up to 5.7 m/s have been re-
corded in 2000-m trials, and 9.5 m/s for a flying 100 m, for one-man
craft.

Much higher speeds over water are attained without an engine by yachts
and sailboards, but these depend on strong winds.

18.5. AIRCRAFT WITHOUT ENGINES

Sailplanes and hang gliders enable humans to soar, slope soaring and soar-
ing in thermals in the same ways as birds (Section 10.6). These aircraft
vary in performance, but some examples are compared, in Fig. 18.3, with
two of the soaring birds that were represented in Fig. 10.7. The sailplanes
glide faster than the animals, as their larger size should lead us to expect.
Minimum sink speed and maximum range speed are both proportional
to the square root of wing loading (Equations 10.20 and 10.21), and
geometrically similar aircraft of equal density have wing loadings propor-
tional to (mass)1/3. Therefore, optimum gliding speeds are expected to be
proportional to (mass)1/6. It must, of course, be admitted that sailplanes
are not geometrically similar to animals and do not have the same density,
but they do nevertheless have higher wing loadings.

The sailplanes also differ from the animals in having lower minimum
gliding angles. (The minimum gliding angles can be found in Fig. 18.3
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Fig. 18.3. Graphs of sinking speed against airspeed for two sailplanes, a hang-
glider, a vulture (Gyps africanus), and a fulmar petrel (Fulmarus glacialis). Modi-
fied from Brower (1983).

by drawing tangents from the origin, as explained in Section 10.4.) Drag
coefficients generally fall as Reynolds number increases (Equations 10.2
and 10.3, where the drag coefficients are the terms in parentheses). Hence,
Equation 10.22 suggests that larger aircraft should have slightly smaller
minimum gliding angles. However, the difference in minimum gliding
angle between the better of the two sailplanes in Fig. 18.3 (1.4°) and the
vulture (4°) is considerably larger than this argument can explain.

A pilot in a sailplane cannot take off unaided, but needs to be towed by
a powered aircraft, a land vehicle, or a winch. Hang gliders, however, need
no such assistance to take off from the top of a sufficiently steep hill. To
make this possible and to make landing safe, hang gliders must be capable
of gliding very slowly, which implies that their wing loading must be low.
Figure 18.3 includes one example of a hang glider. Its minimum sink
speed is only 9 m/s, about the same as for a fulmar petrel. Above the
minimum sink speed, the hang glider performs less well than the bird.
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One reason for this is that optimal wing loading increases with increasing
speed (Equation 10.23). The bird can adjust its wing area to suit its speed
by extending its wings fully at low speeds and partially folding them at
high speeds, but the wing area of a hang glider is fixed.

As well as gliding and soaring, powered flight is possible without an
engine. Many pedal-powered aircraft have been built (Abbott and Wilson
1995). In 1979, Bryan Allen achieved the remarkable feat of flying the
Gossamer Albatross across the English Channel against a headwind. In
1988, Daedalus was flown 119 km from Crete to Santorini. These aircraft
were necessarily very light and correspondingly fragile, with masses, ex-
cluding the pilot, of only 27 and 32 kg, respectively. With huge wings,
their wing loadings were remarkably low, making slow flight possible. The
Gossamer Albatross cruised at 5 m/s, and Daedalus at 7 m/s.

We will estimate the power needed to fly Daedalus. Its mass, with the
pilot on board, was 104 kg, so the lift needed to keep it airborne was 1020
N. Its wingspan was 34 m. Assume that the induced drag factor was 1.0
and that the density of the air was 1.2 kg/m3. Then, at an airspeed of 7
m/s, the induced drag calculated from Equation 10.9 is 10 N. If this is
its maximum range speed (it would be unstable at lower speeds; Section
10.5), the profile drag equals the induced drag and the total drag is 20 N.
The power requirement is the drag multiplied by the speed, 140 W. This
is probably an overestimate, because the aircraft flew low enough to bene-
fit from ground effect (Section 17.3). However, allowance has to be made
for the Froude efficiency of the propeller being less than 100%. Abbott
and Wilson (1995) give an estimate of 200 W for the power requirement
of Daedalus, which is presumably based on informed calculation. Athletes
in training can sustain 300 W on a bicycle ergometer for several hours. If
you compare this with the metabolic power requirements for cycling
shown in Fig. 18.1, please remember that 300 W mechanical power output
requires about 1200 W metabolic power consumption.

It seems extremely unlikely that human-powered aircraft will ever be
robust enough to be useful as a means of transport. To be robust they
would have to be much heavier, but human power is adequate only for
flying very light craft.

This chapter has shown how manufactured equipment can aid human
locomotion, even if it has no motor. Running shoes protect our feet and
enhance their elastic compliance. Bicycles enable us to travel much faster
and more economically over reasonably smooth surfaces than we could
do by running. Similarly, human-powered boats are faster and more eco-
nomical than swimming. Human-powered aircraft are possible, but not
practical.



Chapter Nineteen...............................................................
Epilogue

S O FAR, I have discussed running, swimming, and flight separately.
In this short concluding chapter I consider them together, and at-
tempt some generalizations about locomotion. Dickinson et al.

(2000) is a longer review with similar aims.

19.1. METABOLIC COST OF TRANSPORT

The metabolic cost of transport is the metabolic energy cost of moving
unit mass of animal unit distance. The gross cost is (Metabolic rate of
moving animal)/(Body mass × Distance traveled). The net cost is (Meta-
bolic rate of moving animal − Metabolic rate of stationary animal) / (Mass
× Distance). Both are generally smaller for larger animals.

For running, the net cost of transport (in J/kg m) is approximately
10.7(body mass, kg)−0.32 (Fig. 7.12). This relationship was originally deter-
mined for mammals and running birds, but the graph shows that it is
approximately true for reptiles, amphibians, and arthropods. The points
for individual species are scattered on either side of the line, and in some
cases species of equal mass have costs of transport differing by factors as
large as three. It nevertheless seems to me that the relationship holds re-
markably well for very diverse runners of an extremely wide range of sizes.

In the case of swimming, Videler (1993) found for fishes that the gross
cost of transport (J/kg m) at the maximum range speed is approximately
1.1(mass, kg)−0.38. (The maximum range speed is the speed at which the
gross cost of transport is least.)

The metabolic rates (W/kg) of birds and bats flying at or near their
maximum range speeds are approximately 57(body mass, kg)−0.17 (Rayner
1995). Figure 11.3 shows that this expression also works reasonably well
for flying bumblebees. Alexander (1998b) showed that maximum range
speeds (m/s) for birds are expected to be about 16(body mass, kg)0.14. By
dividing the expression for metabolic rate per unit mass by the one for
speed, we can estimate that the gross cost of transport for flying animals
(J/kg m) is about 3.6(body mass, kg)−0.31.

Notice that the exponents in the three expressions for cost of transport
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are very similar: −0.32 for running, −0.38 for swimming, and −0.31 for
flight. However, the factors (10.7, 1.1 and 3.6, respectively) are very dif-
ferent. This seems to point to a general conclusion that costs of transport
are high for running, moderate for flight, and low for swimming (Tucker
1970). However, our conclusion should not be as simple as that.

First, we should note that the expression for flight refers to flapping
flight. Many of the larger birds travel by soaring, at much lower energy
cost (Section 10.6). Secondly, the expression for swimming applies only
to fish. Videler’s (1993) data show that penguins and marine mammals,
swimming submerged at their maximum range speeds, have costs of trans-
port about ten times as high as for fish of equal mass. I explained in Section
15.1 that this results from higher maximum range speeds, a consequence
of higher resting metabolic rates. Thirdly, animals that swim at the surface
have costs of transport several times higher than similar animals that swim
well below the surface (Section 13.3).

The comparison of metabolic and mechanical costs of transport in
Fig. 7.12 shows that in running, the muscles of small animals work more
efficiently than those of large ones. Figure 12.3C shows the same thing
for swimming. This is why costs of transport are lower for large animals
in both cases. The question, why the muscles of smaller animals should be
less efficient, has not been satisfactorily answered.

19.2. SPEEDS

Figure 7.1A shows (unsurprisingly) that large mammals can generally
sprint faster than small ones. A line drawn by eye through the cloud of
points shows that mammal sprinting speeds (m/s) tend to be approxi-
mately 6.0(body mass, kg)0.23. A 0.8-g cockroach had a maximum sprinting
speed of 1.5 m/s (Full and Tu 1991), approximately as might be predicted
by extrapolation of the relationship for mammals. Figure 7.1B shows that
maximum aerobic speeds, like sprinting speeds, tend to be higher for larger
mammals. However, the data points are so scattered that it does not seem
useful to fit a line to them. Mammals of different sizes change from trot-
ting to galloping at speeds (m/s) of about 1.5(body mass, kg)0.24 (Heglund
et al., 1974). These data suggest that mammalian running speeds are ap-
proximately proportional to (mass)0.24, but if we were to plot the speeds at
which mammals do most of their traveling against body mass we would
probably find a lower exponent; large mammals usually travel at a walk,
but small mammals generally use running gaits.

Videler (1993) found that the maximum range speeds (m/s) of fish tend
to be approximately 0.47(body mass, kg)0.17. The maximum range speeds
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that he found for swimming penguins, seals, and whales average 1.8 times
the predicted speed for a fish of the same mass. These data suggest that
swimming animals should generally travel at speeds proportional to
(mass)0.17, but we do not know whether they do so. Maximum sprinting
speeds of fishes (m/s) are generally about [0.4 + 7.4(body length, m)]
(Videler 1993).

Alexander (1998b) argued that the maximum range speeds of birds
(m/s) could be expected to be around 16 (body mass, kg)0.14. However,
the speeds at which birds generally travel show no clear relationship with
body mass; small birds may travel at speeds close to their maximum range
speeds, but large ones fly at speeds well below their (higher) maximum
range speeds (Pennycuick 1997). When traveling distances of a few hun-
dred meters or more, most birds fly at speeds between 9 and 19 m/s.
Insects fly more slowly. Only a few large insects seem to be capable of
flying faster than 5 m/s, and it is doubtful whether any can exceed 10
m/s in still air (Dudley 2000).

These data about speeds cannot be summarized as easily as the data for
costs of transport. However, it is clear that flying is generally much faster
than running or swimming. The maximum aerobic running speeds of
most animals fall well below the range of speeds (9–19 m/s) at which
birds generally fly, and only the most remarkable endurance athletes, such
as dogs and pronghorn antelope (Antilocapra), can sustain speeds in this
range. Bees fly much faster than cockroaches can run. Dolphins and tunas
seem to be the only swimming animals capable of exceeding 10 m/s, even
in a short burst (Section 14.4).

We saw in the previous section that costs of transport for flight are mod-
erate. However, moderate cost of transport with high speed implies a high
power requirement. We saw in the previous section that the metabolic rate
(W/kg) required for flight is approximately 57(body mass, kg)−0.17. Taylor
et al. (1981) found that the metabolic rates of mammals running at their
maximum aerobic speeds were about 38(body mass, kg)−0.19. Most mam-
mals other than bats are incapable of the aerobic metabolic rates that en-
able birds of similar size to fly.

Alexander (1998b) argued that the advantages of long migrations for
animals depend on their speeds and costs of transport. The potential bene-
fit of migration may be a better supply of food energy in winter, but if too
much time and/or energy are used on the journey, there may be no net
benefit. My very rough calculations seemed to show that only flying ani-
mals, seals, and whales could be expected to benefit from very long migra-
tions (round trips of 10,000 kg). All the animals known to make very long
migrations belong to these groups.
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19.3 GAITS

Gait change is a feature of the locomotion of many different groups of
animals. Whether they run, swim, or fly, these animals use distinctly differ-
ent patterns of movement at different speeds of locomotion. Quadrupedal
mammals walk at low speeds, trot at moderate speeds, and gallop to travel
fast (Section 7.2). Birds and people walk at low speeds and run or hop to
go faster. In flight, many birds and bats use the vortex ring gait at low
speeds and the continuous vortex gait at higher speeds (Section 12.2).
Some birds use undulating flight at low speeds and bounding flight at
high speeds. Fisher spiders row over the surface of water at low speeds
and “gallop” when they move fast (Section 13.1). Many teleosts propel
themselves at low speeds by fin movements and at high speeds by undula-
tion of the body, and perform burst and coast swimming at some interme-
diate speeds (Section 15.3). Squids and cuttlefishes swim by fin undula-
tion at low speeds and by jet propulsion when they go fast.

We saw in Section 1.10 that a gait change can be expected if a small
change in speed results in an abrupt change in the optimum pattern of
movement. It seems possible to explain the gait changes of mammals in
this way. Measurements of the oxygen consumption of horses show that
each gait (walk, trot, and gallop) requires less energy than either of the
others in the range of speeds in which it is used (Fig. 7.11A). Similar
measurements on humans have led to a similar conclusion, and a mathe-
matical model seems to explain why this should be (Fig. 7.13). Similarly
for flying birds, aerodynamic calculations seem to explain why the balance
of advantage, in terms of energy cost, may shift abruptly from one gait
to the other at a critical speed (Fig. 12.4). This needs confirmation by
measurements of oxygen consumption. In the case of fish, swimming by
fin movements alone may be more economical of energy than undulation
at low speeds, because of the effects of boundary layer thinning and recoil
movements (Section 15.1). However, the small fin muscles cannot supply
enough power for fast swimming, so undulation has to be used at high
speeds.

An argument based on the concept of dynamic similarity led to the
prediction that legged animals of different sizes should make correspond-
ing gait changes at equal Froude numbers (Section 4.2). This implies
that they should change gaits at speeds proportional to the square roots
of their leg lengths. The prediction is reasonably successful. We might
reasonably hope that some similar rule would predict the speeds at
which birds change from the vortex ring gait to the continuous vortex
gait, but no such rule has yet been established. We also have no established
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means of predicting the speeds at which different fish change gaits. Our
understanding of gait change in flying and swimming animals is still very
imperfect.

19.4. ELASTIC MECHANISMS

We have discussed the possibility of energy being saved by elastic mecha-
nisms in the contexts of running (Section 7.4), flight (Sections 11.3 and
12.2), and swimming (Sections 14.4 and 16.2). The possibility of such
savings arises in any mode of locomotion involving large fluctuations of
kinetic energy, as explained in a general theory of oscillatory movements
in Section 3.6. The role of elastic mechanisms in running is firmly estab-
lished and seems well understood.

Many attempts have been made to discover whether energy is saved by
elastic mechanisms in flight by calculating muscle efficiencies, assuming
perfect or no elastic storage. The results have been inconclusive, but Dick-
inson and Lighton’s (1995) ingenious experiment indicates modest sav-
ings in Drosophila. The elastic properties of the cuticle of the thorax, and
especially of resilin structures, may be important. It seems likely that the
muscles themselves are the important springs in the advanced insects that
have fibrillar flight muscles. The possible role of the elastic compliance of
the tendons of the flight muscles in bats and small birds does not seem to
have been investigated. Thus, our understanding of elastic mechanisms in
flight is very incomplete.

Our discussion in Section 16.2 concluded that any savings made by
elastic mechanisms were trivial in the jet-propelled swimming of scallops
and squids. However, the elastic compliance of the mesoglea may give
useful savings in medusae. It seems likely that the long tendons of the tail
muscles of dolphins may serve as energy-saving springs (Section 14.4).
Tunas have similar tendons, but their possible role does not seem to have
been investigated. As for flight, there is scope for more research on elastic
mechanisms in swimming.

19.5. PRIORITIES FOR FURTHER RESEARCH

In this short concluding chapter, I have made some comparisons between
running, swimming, and flight, and highlighted some of the issues that
have arisen repeatedly in this book. In doing this, I have pointed to several
topics that I regard as priorities for further research. We do not understand
why the apparent efficiencies of running and flight are lower for small
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animals than for large ones. We would like to know more about why flying
birds and bats and swimming fishes change gaits at particular speeds. We
know regrettably little about the possible roles of elastic mechanisms in
flight and swimming.

I would like to make two more points that apply to locomotion on land,
in the air, and in water. First, research has concentrated on locomotion at
constant velocity. We are relatively ignorant of the mechanics and energy
costs of acceleration, deceleration, turning, and the maintenance of stabil-
ity. Secondly, the great majority of investigations of locomotion have used
captive animals in laboratories. Excellent use has been made of the tele-
metric techniques described in Section 5.7, especially in recent research
on free-ranging birds and marine mammals. However, there are still rather
few species for which we have good knowledge of their movements,
speeds, and energy use for locomotion, during normal activity in their
natural environments.

I have made many other suggestions for future research at the ends of
earlier chapters, but the most informative research of the next few years
may take quite different directions. We thought for many years that we
understood snail crawling, until Denny destroyed the old theory and pre-
sented a new one (Section 9.3). Similarly, many of the current explana-
tions of animal movement that are given in this book may soon be shown
to be wrong. Unfortunately, we do not know which they will be.
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Nachtigall, W. (1960) Über Kinematik, Dynamik und Energetik des Schwimmens
einheimischer Dytisciden. Zeitschrift für Vergleichende Physiologie 43, 48–118.

Nachtigall, W. (1965) Locomotion: Swimming (hydrodynamics) of aquatic in-
sects. In M. Rockstein (editor), The Physiology of Insecta, 2, 255–281. Academic
Press, New York.

Nachtigall, W. and Bilo, D. (1980) Strömungsanpassung des Pinguins beim
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efficiency, 32; of hovering, 222; of jet pro- 330; of fisher spider, 243; in flight, 228;

pulsion, 288; of oscillatory movement, optimal, 133; quadrupedal, 110; in swim-
49; of rowing, 253; in walking and run- ming, 282; symmetrical and asymmetri-
ning, 130 cal, 110; in walking and running, 109

elasticity, 40 Galago, 147
elastic similarity, 60 galloping, 127
elastic storage of energy: in different modes gastropods, 171

of locomotion, 331; in flight, 222; in run- gazelle, acceleration of, 3
ning, 99, 122; in swimming, 262, 296 geckoes, 162

electromyography, 80 geometric similarity, 53
Encarsia, 220 Gerris, 240
endurance, 4 gibbon, 156
energy: and buoyancy, 307; economy of, 7; gliding, 192; and performance of animals,

elastic strain, 40; gravitational potential, 195
39; kinetic, 38; in walking and running, global optimum, 12
120, 125 gondola, 322

Enhydra, 247 Gossamer Albatross, 326
extensometer, 84 gravitational potential energy, 39

gravity, effect of on walking, 110
Falco, 200, 202, 227

grebe, 255
fast starts, 276

ground effect, 308film analysis, 69
guillemots, 259fin undulation, 283
Gymnarchus, 283fisher spider, 240
Gyps, 204fish swimming, 266
gyrfalcon, 200fitness, 1

flap-gliding, 233
Halobates, 240flatfish, 304
hang gliders, 324flea, 148
hawkmoth, 212, 213, 224flies, adhesion by, 163
heart beat frequency, 74flight, forward flapping, 224; power require-
heat output, 74ments for, 228
heterocercal tail, 304flowmeter, 75
hills, 137flow visualisation, 74
Hill’s equation, 22flume, 72
Hippocampus, 283flying squirrel, 199
Hooke’s law, 40force plate, 76
hopping, 91, 115, 122forces in walking and running, 114
horses: gaits of, 128; tendons of, 123force transducer, 76

Fregata, 206 house martin, 7
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hovering: in air, 209; power requirements metabolic rate: comparisons between
modes of locomotion and, 327; in flight,of, 221, 307; in water, 307

hull speed, 247 222, 229; measurement of, 73; of mus-
cle, 31; resting, 57; in swimming, 259,hummingbirds, 209

hydrofoil swimming, 255 274; in walking and running, 131
metabolism, aerobic and anaerobic, 32hydroplaning, 248

Hylobates, 156 migration, 238
mitochondrion, 16
mole rats, 179induced drag, 188

inertial power, 222, 234 moles, 179
monarch butterflies, 205insects, running by, 112

intermittent gaits, 232 mucus, 172
muscle, 15; activity in swimming fish, 277;intermittent running, 133

internal kinetic energy, 39, 125 aerobic and anaerobic, 32, 279; efficiency
of, 32; fiber arrangement in fish, 281; fi-intervertebral discs, 128
brillar flight, 34; force-length relation-
ship of, 20; metabolic rate of, 31;jellyfish, 302

jet propulsion, 288 obliquely striated, 34; power output of,
26; rate of shortening of, 22; red andjumping, 146; by animals of different sizes,

153; from branches, 155 white, 279; work capability of, 21; work
required from, 46

muscles: composition of, 18; isometrickangaroo rat, 115, 125
kangaroos, 93, 122 stresses in, 19; moment arms of, 28, 63;

pennate, 28; two-joint, 47kestrel, 202, 227
kinetic energy, 38 Myctophidae, 314

myomeres, 282knife fishes, 283
myosin, 15

lantern fishes, 314
Latimeria, 302 Nautilus, 301, 311

nematode worms: crawling by, 169; swim-leeches, 167
lemurs, 155 ming by, 284

nemertean worms, 169Lepomis, 257
lift, 183
lion, acceleration of, 3 Oceanites, 206

optical tweezers, 19lizards: gaits of, 112; limbless, 179; speed
of, 101 optimization of flight, 236

optimization theory, 10loads, cost of carrying, 138
local optimum, 12 oscillatory movement, 48

Ostracion, 283logarithmic coordinates, 55
lubrication, 43 oxygen consumption, measurement of, 73

particle image velocimetry, 75Macropus, 122
maggots, 88, 171 penguins, 247, 257

pennate muscles, 28magpie, 231
mandarin fish, 307, 308 peristalsis, 88, 167

Petaurista, 199Manduca, 212, 213, 224
maneuverability, 2; in running, 143 pigeon: gliding by, 197; wake of, 226

Pleuronectiformes, 304mantle, 299
Mars, walking on, 109 Podiceps, 255

polychaete worms, 169, 286mechanical properties, measurement of, 84
medusa, 291, 298 Polyphysia, 169

porpoising, 264mesogloea, 299, 302
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pressure transducer, 78 Spirula, 301
springs: in different modes of locomotion,priorities for future research, 331

pronghorn, 106 331; in insects, 223; in running, 99,
122; in swimming, 263, 296Pterophyllum, 255

squalene, 302, 311
squid, 293, 299; ammoniacal, 302, 311rays, 283

resilin, 149 squirrel, 159; flying, 199
stability, 8; of gliding, 200; of walking, 139Reynolds number, 59, 191

rowing, 250 stag hunting, 34
stalling, 189rowing boats, 323

running, 95, 99; in circles, 144; forces in, step length, 107
storm petrel, 206114; internal kinetic energy in, 125

running shoes, 316 strain gauge, 76
streamline, 184running track, 317
stress similarity, 62
stride length, 86; in walking and running,sailplanes, 324

Salmo: drag on, 273; speed of, 4 107
Strouhal number, 60, 212, 228, 268sarcomere, 16

sarcoplasmic reticulum, 16, 35 surface tension, 240
surf clams, 176scallops, 295

scuba diving, 321 Synchropus, 307, 308
synthetic wheel model of walking, 97scyphozoa, 302

sea anchor soaring, 206 swerving, 4
swimbladder, 301, 306, 310, 312sea horse, 283

sea lion, 257
sea otters, 247 takeoff, 221, 236

Talpa, 179Sepia, 301, 311
serpentine crawling, 90, 176 telemetry, 83

tendons: of dolphins, 262; elastic proper-shape factor, 119
sharks, 302, 305 ties of, 40; role of in running and hop-

ping, 122; strength of, 31; of tunas, 263shoes, 316
similarity: dynamic, 58; elastic, 60; geomet- thermals, 202

tortoises, 2, 8ric, 53; stress, 62
siphonophores, 248, 301 treadmill, 70

tree frog, gliding by, 201size differences, 53
skipping, 110 trout: drag on, 273; speed of, 4

tube feet, 164slope soaring, 202
slug, 172 tunas, 261, 263, 279, 306

turkeys, tendons of, 123snails, 171
snakes, 176 turtles: stability of, 140; swimming of, 259
soaring, 201
soft ground, 136 undulating flight, 233

undulatory swimming, 266sonomicrography, 81
span, 182 unsteady effects, 216, 258

Uria, 259speed, 2; comparisons of different modes of
locomotion and, 328; of crawling and
running, 101; of dolphins and tunas, V-formation, 239

vmax of muscle, 22263; of falcon, 200; of fishes, 279; of
flight, 237; of gait change, 128; maxi- van der Waals forces, 161

Velella, 248mum range of, 194; minimum sink of,
194; of running, 103; of surface swim- video recording, 68

viscometer, 172mers, 247
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viscosity, 44 wind tunnel, 70
wing area, 182; allometry of, 55vortices, 187; in flight, 212, 225, 228; in

swimming, 259, 268 wing beat frequency, allometry of, 56
wing loading, 194, 199, 207vulture, 197, 204
wing muscles, activity of in flight, 81
wings, 189wake: of flying animals, 185, 210, 225,

228; of swimming animals, 251, 268 work: positive and negative, 46, 278; re-
quired from muscles, 46, 117, 276wake capture, 220

walking, 95; forces in, 118; up and down work loop, 27; in bird flight, 231; of bum-
blebee muscle, 35hills, 137

wallabies, 122 worms, 166, 284
wrasse, 256water beetles, 250

water striders, 240
water tunnel, 72 X-ray cinematography, 69
waves, 242, 247
wax esters, 302, 311, 314 Young’s modulus, 41
whales: allometry of, 54; swimming of, 261
wind-gradient soaring, 206 Zalophus, 257
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