ORIGINAL PAPER

Aaron J. M. Russell · Ilse Storch

Summer food of sympatric red fox and pine marten in the German Alps

Received: 26 May 2003 / Accepted: 3 November 2003 / Published online: 12 March 2004 © Springer-Verlag 2004

Abstract Based on fecal analyses, we compared summer diet composition and trophic niche breadth for the sympatric red fox *Vulpes vulpes* (n = 55 scats) and pine marten Martes martes (n = 64) in the foothills of the German Alps. Mammals accounted for 41 and 51% of the consumed biomass by pine martens and red foxes, respectively, and no single mammal species exceeded 8% of the diet. The larger red fox consumed a wider range of prey sizes than the smaller pine marten, and both consumed large amounts of plants and also insects. Whereas the Levins index suggested that both predators have specialist feeding niches, the Shannon-Wiener index showed that both predators were relatively generalist. Despite its preliminary nature, our study suggests that a strict distinction between generalist and specialist trophic niches is not justified for medium-sized carnivores in the Alps, particularly as results greatly depend on the indices used.

Keywords Alps · Diet · *Martes martes* · Trophic niche breadth · *Vulpes vulpes*

Introduction

Based on the breadth and variability of their diets, or their trophic niches, carnivorous mammals are often characterized within a spectrum ranging from specialist to generalist feeders (e.g. Jedrzejewski et al. 1989; Jedrzejewska and Jedrzejewski 1998). In Europe, the red fox (*Vulpes vulpes*) (e.g. Englund 1965; Goszcynski 1974) and the pine marten (*Martes martes*) (Moors 1980; De

A. J. M. Russell
Department of Fisheries and Wildlife,
Michigan State University,
16 Natural Resources Building,
East Lansing, MI 48823, USA

I. Storch (⊠) Linderhof Research Station, Technische Universität München, 82488 Ettal, Germany E-mail: ilse.storch@t-online.de

Marinis and Masseti 1991) have both been described as opportunistic feeding generalists. Still, distinct feeding habits are well described: red foxes show a preference for Microtus voles (e.g. Macdonald 1977; Storch et al. 1990), while pine martens take Clethrionomys voles more frequently (e.g., Pulliainen 1981; Storch et al. 1990). Also, because of the larger size of the red fox and the broader range of habitats used, a wider feeding niche may be expected in the red fox than in the smaller pine marten, a specialist of mature forest habitats (Storch et al. 1990). In general, the mean size of prey in the diet is positively correlated with the size of the predator (Jaksic and Braker 1983; Jedrzejewski et al. 1989), and we expected a similar relationship for the predators studied. In this paper, we describe summer food composition and trophic niche breadth based on fecal analyses for the sympatric red fox and pine marten in the foothills of the Bavarian Alps, Germany. Because our study was restricted to one summer in a single area, results should be considered preliminary.

Methods

The study was conducted in the foothills of the Bavarian Alps on the Teisenberg mountain (47°48'N, 12°47'E), with elevation ranging from 700 to 1300 m above sea level. Except for a 30-ha pasture at its summit, the mountain was covered by Norway spruce (*Picea abies*) forest. Among the larger herbivores, roe deer (*Capreolus capreolus*), red deer (*Cervus elaphus*), mountain hare (*Lepus timidus*), and capercaillie (*Tetrao urogallus*) were common. European hares (*L. europaeus*) and chamois (*Rupicapra rupicapra*) were more rare. The larger carnivorous mammal species recorded on Teisenberg were red fox, European badger (*Meles meles*), pine marten, weasel (*Mustela nivalis*), and stoat (*M. erminea*); stone martens (*Martes foina*) were common in the farmland valleys surrounding the study area.

A network of gravel roads was maintained throughout the ca. 29-km^2 study area, amounting to a density of 2.7 km roads/km². During June–August 1999, three censuses of the whole network of forest roads (length = 79 km) were carried out to detect red fox and pine marten scats. Because stone martens had not been recorded in the study area since fieldwork began in 1988 (I. Storch, unpublished), we labeled all marten scats found as pine marten.

Table 1 Keys used foridentification of undigestedremains in the feces of red foxesand pine martens

Taxon	Undigested remains	Identification keys		
Insects	Exoskeletons–abdominal, thoracic, testicular	Chinery (1986); Freude et al. (1965); Harz (1975); Müller (1986); Seifert (1996); Steinmann and Zombori (1985); Zahradnik (1985)		
Mammals	Hairs-cuticular-scale castings, medullar patterns, cross sections	Brunner (1974); Day (1966); Debrot (1982)		
Mammals	Teeth	Brohmer (1984); Corbet (1980); März (1987)		
Birds	Feathers	Day (1966)		
Plants	Berries, seeds, stalks	Garcke (1972); Rothmaler (1994); Schmeil and Fitschen (1968)		

 Table 2
 Taxonomic groupings

 used in determining niche
 breadth

Insects	Plants	Mammals	Birds	Others
Coleoptera Hymenoptera Dermoptera Diptera Saltatoria Odonata Lepidoptera Insect larvae	Ericaceae Rosaceae Gramineae Selaginellaceae	Murinae Gliridae Sciuridae Arvicolinae Soricidae Talpidae Leporidae Cervidae	Passeriformes Falconiformes	Arachnida Mollusca Isopoda

Within 3 days of collection, samples were autoclayed for 60 min at \sim 70 °C and 1.5 bar to arrest enzymatic and fungal degradation of the samples. The scats were mapped and 55 red fox and 64 pine marten scats were selected for analysis, equally from all 100-m altitude intervals. For the fecal analysis, the samples were washed through sieves, dried for 12 h at 70 °C, and broken up in petri dishes. Dietary components were identified to the extent permitted with the aid of identification guides and reference collections (Table 1). Samples were identified under a 4-40× magnification binocular microscope and were overlaid on a 5-mm grid to allow the estimation of their volume as a percentage of the scat in 5% increments (<5, 5, 10, ..., 95, 100%) (Lockie 1959; Kruuk and Parish 1981). For each food item, this percentage was multiplied by the dry mass of the scat to approximate the dry mass of the individual dietary component and then multiplied by a digestibility correction factor in order to estimate the percentage of the biomass this item represented in the diet (Lockie 1959, 1961; Goszczynski 1974). Food items composing < 5% of a scat were recorded as an occurrence, but were not used in the calculation of consumed biomass.

I

Results were expressed in terms of relative frequency of occurrence, defined as the number of times a specific item occurred as a proportion of the total number of recorded items (Prigioni and Tacchi 1991), and in terms of consumed biomass. Prey items were grouped taxonomically (Table 2) and trophic niche breadth was calculated using the Levins index (Levins 1968) and the Shannon-Wiener index (Pielou 1975) based on both frequency of occurrence and consumed biomass. In both indices, scores range from a minimum niche breadth near 0 to a maximum of 1. To assess the relationship between predator and prey size, we estimated the average weights for all predator and mammal prey species according to a guide book (Corbet and Ovenden 1980).

Results

Diet composition

The most frequently occurring food categories in the red fox feces were insects and plants (Fig. 1). In terms of consumed biomass, however, insects made up only 3%,

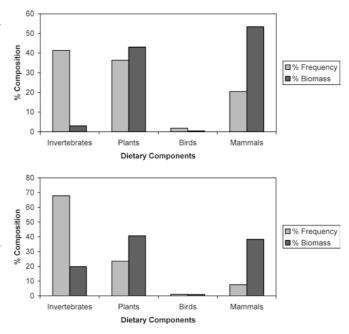


Fig. 1 Food composition of red foxes (*above*) and pine martens (*below*) as frequency of occurrence (%) and consumed biomass

while plants and mammals made up 46 and 51%, respectively. Roe deer, field vole (*Microtus agrestis*), and red squirrel (*Sciurus vulgaris*) made up the largest proportion of the mammalian prey, but no single species accounted for more than 8% of the diet. The largest contributors of plants and insects were the order Graminaceae and family Carabidae. Birds played a negligible role in the diet of red foxes (see Fig. 1, Table 3).

Close to two thirds of food items encountered in the pine marten scats were from insects, most notably from **Table 3** Diet composition^a ofred fox and pine marten asrevealed through fecal analysis

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Red fox		Pine marten		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c} \hline Sample data \\ Carabus violaceus \\ Carabus violaceus \\ 1.36 \\ Carabus violaceus \\ 1.36 \\ Carabus violaceus \\ 1.36 \\ Carabus grandutta \\ 0.91 \\ 0.12 \\ Carabus grandutta \\ Carabus violaceus \\ 1.36 \\ Carabus violaceus \\ 0.91 \\ 0.12 \\ Carabus violaceus \\ 0.91 \\ 0.17 \\ Carabus violaceus \\ 0.91 \\ 0.17 \\ Carabus violaceus \\ 0.91 \\ 0.17 \\ Carabus violaceus \\ 0.91 \\ 0.11 \\ 0.72 \\ 0.23$	INSECTA	40.45	3.02	65.34	8.38	
$\begin{array}{c} Cardbas values auronitens & 7.27 & 0.72 & 2.17 & 0.49 \\ Carabas synalatus & 0.91 & 0.12 & 0.72 & 0.06 \\ Carabas synalatus & 0.91 & 0.12 & 0.72 & 0.06 \\ Loricera pilicomis & & & & & & & & & & & & & & & & & & &$	Coleoptera	29.55	2.54	36.46	4.42	
$\begin{array}{ccc} Carabus violaceus 1.36 0.91 0.12 0.72 0.06 \\ Carboss grandatus 0.91 0.12 0.72 0.06 \\ Calossona spp. 0.45 0.01 \\ Loricera piliconis 1 0.8 0.01 \\ lensotichinae 14.55 0.67 4.33 0.69 \\ Pterostichinae cupreus 0.91 0.04 2.89 0.41 \\ Misc. Carabidae 3.18 0.17 4.33 0.41 \\ Curculionidae 3.18 0.17 4.33 0.41 \\ Curculionidae 3.18 0.27 13.36 1.51 \\ Hylobhinae 0.91 0.11 0.72 0.22 \\ Liparus glabiostris 0.72 0.22 \\ Liparus sphotes 1.82 0.15 9.75 0.91 \\ Scarabaeidae 0.45 0.01 1.81 0.30 \\ Misc. Curculionidae 0.45 0.01 0.36 0.00 \\ Liparus sphotes 1.82 0.15 9.75 0.91 \\ Scarabaeidae 0.45 0.01 0.36 0.01 \\ Geotrupidae 0.45 0.01 0.36 0.01 \\ Misc. Curculionidae 1.82 0.05 1.81 0.21 \\ Misc. Coleoptera 0.45 0.00 \\ Misc. Curculionidae 1.36 0.05 1.81 0.21 \\ Misc. Coleoptera 1.40 0.06 22.02 3.35 \\ Formicidae 2.73 0.01 17.69 3.00 \\ Formicidae 1.36 0.01 3.97 0.54 \\ Formicidae 1.36 0.01 3.97 0.66 \\ Misc. Curculionidae 1.36 0.01 3.97 0.54 \\ Formicidae 0.45 0.01 3.97 0.66 \\ Formicidae 1.36 0.01 3.97 0.64 \\ Techoceria app. 0.91 0.05 3.61 0.25 \\ Formicidae 1.36 0.01 3.97 0.64 \\ Techoceria app. 0.91 0.05 3.61 0.25 \\ Solutia 0.36 0.00 \\ Treinoceria and 0.45 0.01 \\ Treinoceria and 0.45 0.01 \\ Treinoceria and 0.45 0.01 \\ Dermaptera 0.45 0.01 0.72 0.11 \\ Misc. Hymenoptera 1.36 0.05 3.61 0.25 \\ Solutiar 0.36 0.03 \\ Sultatoria 1.38 0.45 0.01 \\ Dermaptera 0.45 0.01 \\ Dermaptera 0.45 0.01 \\ Dermaptera 0.45 0.01 \\ Dermaptera 0.36 0.00 \\ SOPODA 0.45 0.01 \\ Dermaptera 0.36 0.00 \\ SOPODA 0.45 0.01 \\ Dermaptera 0.36 0.00 \\ Solutarra 0.45 0.01 \\ Dermaptera 0.45 0.01 \\ Dermaptera 0.36 0.00 \\ Solutarra 0.36 0.00 \\ $	Carabidae	18.64	1.94	17.33	2.35	
Carabase spp. 0.41 0.12 0.72 0.06 Loricera pilicornis 1.08 0.01 Pterostichnac upreus 0.51 0.67 4.33 0.69 Pterostichnac upreus 0.91 0.04 2.89 0.41 Misc. Carabidae 3.18 0.17 4.33 0.41 Curculionidae 3.18 0.27 1.3.36 1.51 Hylobius abietis 0.72 0.08 Hylobius abietis 0.72 0.22 Liparus spp. 0.45 0.01 1.81 0.30 Misc. Carculionidae 1.82 0.15 9.75 0.91 Scarabacidae 0.36 0.01 21 Geotrupidae 0.21 Geotrupidae 0.21 Geotrupidae 0.21 Misc. Coloptera 0.36 0.01 Scaphylinidae 0.45 <0.01	Carabus auronitens	7.27		2.17		
				0.72	0.06	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.45	0.01			
Misc. Carabidae 3.18 0.17 4.33 0.41 Curculionidae 3.18 0.27 13.36 1.51 Hylobinae 0.91 0.11 0.72 0.02 Liparus glabirostris 0.36 0.00 Liparus glabirostris 0.36 0.01 Scarabacidae 0.36 0.01 Scarabacidae 0.36 0.01 Scarabacidae 0.36 0.01 Scolytidae 0.36 0.01 Geotrupidae 0.45 < 0.01						
$\begin{array}{c} {\rm Curculonidae} & 3.18 & 0.27 & 13.36 & 1.51 \\ \underline{Hylobina} & 0.91 & 0.11 & 0.72 & 0.08 \\ \underline{Hylobina} & objects & 0.72 & 0.22 \\ \underline{Liparus glabirostris} & 0.36 & 0.00 \\ \underline{Liparus glabirostris} & 0.36 & 0.01 \\ Scarabacidae & 0.36 & 0.01 \\ Scolytidae & 0.36 & 0.01 \\ \hline Britlontus spp. & 0.45 & 0.01 \\ Geotrups spp. & 0.45 & 0.01 \\ Misc. Coleoptera & 1.82 & 0.05 & 1.81 & 0.21 \\ Misc. Coleoptera & 1.36 & 0.05 & 1.81 & 0.21 \\ Misc. Coleoptera & 1.36 & 0.05 & 1.81 & 0.21 \\ Misc. Coleoptera & 4.09 & 0.06 & 22.02 & 3.35 \\ Formicidae & 1.36 & 0.01 & 3.97 & 0.54 \\ Formicidae & 1.36 & 0.01 & 3.97 & 0.54 \\ Formicidae & 1.36 & 0.01 & 3.97 & 0.54 \\ Formicidae & 1.36 & 0.01 & 3.97 & 0.64 \\ Trichoceridae & 0.36 & 0.01 & 3.97 & 0.45 \\ Tertamorium spp. & 0.91 & < 0.01 & 3.97 & 0.45 \\ Trichoceridae & 0.36 & < 0.01 \\ Trichoceridae & 0.45 & 0.01 \\ Trichoceridae & 0.36 & < 0.01 \\ Trichoceridae & 0.45 & 0.01 \\ Diptera & 0.45 & 0.01 \\ Diptera & 0.45 & 0.01 \\ Diptera & 0.36 & < 0.01 \\ Trichoceridae & 0.36 & < 0.01 \\ Diptera & 0.45 & 0.01 \\ Dermaptera & 0.45 & < 0.01 \\ Diptera & 0.36 & < 0.01 \\ Diptera & 0.36 & 0.05 \\ Saltatoria & 0.36 & < 0.01 \\ MOLLUSCA & 0.45 & < 0.01 \\ Trichoceridae & 0.36 & < 0.01 \\ RAACHNIDAE & 0.36 & 0.36 \\ Diptera & 0.36 & 0.05 \\ Misc. Trasets & 5.00 & 13.83 & 2.89 & 10.02 \\ Racaceae & 5.00 & 13.83 & 2.89 & 10.02 \\ Roscaceae & 5.00 & 13.83 & 2.89 & 10.02 \\ Roscaceae & 5.00 & 13.83 & 2.89 & 10.02 \\ Roscaceae & 5.00 & 13.83 & 2.89 & 10.02 \\ Roscaceae & 5.00 & 13.83 & 2.89 & 10.02 \\ Roscaceae & 5.00 & 13.83 & 2.89 & 10.02 \\ Roscaceae & 5.00 & 13.83 & 2.89 & 10.02 \\ Roscaceae & 5.00 & 13.83 & 2.89 & 10.02 \\ Roscaceae & 5.00$	1					
		0.91	0.11			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
Misc. Curculionidae 1.82 0.15 9.75 0.91 Scarabacidae 0.36 0.01 Scolytidae 0.36 <0.01		0.45	0.01			
Scarabacidae 0.36 0.01 Scolytidae 0.36 <0.01						
Scolytidae 0.36 < 0.01 Staphylinidae 0.45 < 0.01		1.82	0.15			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.45	< 0.01	0.30	< 0.01	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1.01	0.21	
Misc. Geotrupidae 1.36 0.05 1.81 0.21 Misc. Coleoptera 5.45 0.28 3.25 0.34 Hymenoptera 2.49 0.06 22.02 3.35 Formicidae 2.73 0.01 17.69 3.00 Camponotus spp. 0.45 <0.01				1.01	0.21	
Misc. Coleoptera 5.45 0.28 3.25 0.34 Hymenoptera 4.09 0.06 22.02 3.35 Formicidae 2.73 0.01 17.69 3.00 Camponotus spp. 0.45 <0.01				1.01	0.21	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
Misc. Fornicidae 1.36 0.01 3.97 0.43 Tetramorium spp. 0.91 <0.01		0.45	< 0.01			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 36	0.01			
Misc. Vespidae 0.72 0.11 Misc. Hymenoptera 1.36 0.05 3.61 0.25 Diptera 1.81 0.04 Trichoceri anulata 0.36 <0.01 Misc. Diptera 1.44 0.04 Calliphoridae larvae 0.45 0.01 Dermaptera 0.45 0.01 Dermaptera 0.45 0.27 0.36 Calliphoridae larvae 0.45 0.27 0.36 0.36 Lepidoptera 0.36 0.05 0.61 0.5 0.01 Misc. insects 5.00 0.16 3.25 0.19 Insect larvae 0.91 <0.01 0.36 <0.01 MOLLUSCA 0.45 <0.01 0.36 0.00 ISOPODA 0.45 <0.01 2.17 0.39 PLANTAE 36.36 45.59 23.47 46.02 Erricaceae 5.00 13.83 2.89 10.02 Vaccinium myrtillus 5.00 13.83 2.89						
Misc. Hymenoptera1.360.053.610.25Diptera1.810.04Trichoceridae0.36<0.01		0.91	- 0.01			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1 36	0.05			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1.50	0.05			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
Misc. Diptera1.440.04Calliphoridae larvae0.450.01Dermaptera0.450.450.270.36Saltatoria0.450.270.36Colonata0.36Odonata0.36Odonata0.36Odonata0.36Misc. insects5.000.16ARACHNIDAE0.36ISOPODA0.45<0.01						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.45	0.01			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.72	0.03	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.45	0.27	0.36	0.36	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lepidoptera			0.36	< 0.01	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Odonata			0.36	0.05	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Misc. insects	5.00	0.16	3.25	0.19	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Insect larvae	0.91	< 0.01	0.36	< 0.01	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.36	0.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ISOPODA		< 0.01			
$\begin{array}{c cccc} Ericaceae & 5.00 & 13.83 & 2.89 & 10.02 \\ \hline Vaccinium myrtillus & 5.00 & 13.83 & 2.89 & 10.02 \\ \hline Rosaceae & 6.36 & 9.78 & 4.69 & 23.89 \\ \hline Prunus spinosa & 2.27 & 3.65 & 1.44 & 11.43 \\ \hline Prunus cerasus & & 0.36 & 2.98 \\ \hline Rubus spp. & 2.73 & 5.23 & 1.44 & 7.29 \\ \hline Sorbus spp. & & 0.36 & 0.81 \\ \hline Misc. Rosaceae seeds & 0.91 & 0.37 & 0.72 & 0.08 \\ \hline Misc. Rosaceae seeds & 0.91 & 0.65 & 2.53 & 1.96 \\ \hline Selaginellaceae & 1.82 & 0.01 \\ \hline Misc. Plants & 12.27 & 5.91 & 13.36 & 10.16 \\ \hline AVES & 1.82 & 0.43 & 1.08 & 4.37 \\ \hline Passeriformes & 1.36 & <0.01 & 1.08 & 4.37 \\ \hline Falconiformes & 0.45 & 0.43 \\ \hline MAMMALIA & 20.45 & 50.96 & 7.58 & 40.83 \\ \hline \end{array}$						
$\begin{array}{c cccc} Vaccinium myrtillus & 5.00 & 13.83 & 2.89 & 10.02 \\ \mbox{Rosaceae} & 6.36 & 9.78 & 4.69 & 23.89 \\ Prunus spinosa & 2.27 & 3.65 & 1.44 & 11.43 \\ Prunus cerasus & & 0.36 & 2.98 \\ Rubus spp. & 2.73 & 5.23 & 1.44 & 7.29 \\ Sorbus spp. & & 0.36 & 0.81 \\ \mbox{Misc. Rosaceae seeds} & 0.91 & 0.37 & 0.72 & 0.08 \\ \mbox{Misc. Rosaceae seeds} & 0.91 & 0.37 & 0.72 & 0.08 \\ \mbox{Misc. Rosaceae skins} & 0.45 & 0.53 & 0.36 & 1.30 \\ \mbox{Graminaceae} & 10.91 & 16.05 & 2.53 & 1.96 \\ \mbox{Selaginellaceae} & 1.82 & 0.01 \\ \mbox{Misc. Plants} & 12.27 & 5.91 & 13.36 & 10.16 \\ \mbox{AVES} & 1.82 & 0.43 & 1.08 & 4.37 \\ \mbox{Passeriformes} & 1.36 & <0.01 & 1.08 & 4.37 \\ \mbox{Falconiformes} & 0.45 & 0.43 \\ \mbox{MAMMALIA} & 20.45 & 50.96 & 7.58 & 40.83 \\ \end{array}$	PLANTAE					
Rosaceae 6.36 9.78 4.69 23.89 Prunus spinosa 2.27 3.65 1.44 11.43 Prunus cerasus 0.36 2.98 Rubus spp. 2.73 5.23 1.44 7.29 Sorbus spp. 0.36 0.81 Misc. Rosaceae seeds 0.91 0.37 0.72 0.08 Misc. Rosaceae skins 0.45 0.53 0.36 1.30 Graminaceae 10.91 16.05 2.53 1.96 Selaginellaceae 1.82 0.01 $Misc.$ Plants 12.27 5.91 13.36 10.16 AVES 1.82 0.43 1.08 4.37 Passeriformes 1.36 <0.01 1.08 4.37 Falconiformes 0.45 0.43 0.43 1.08 4.37						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vaccinium myrtillus			2.89	10.02	
Prunus cerasus 0.36 2.98 Rubus spp. 2.73 5.23 1.44 7.29 Sorbus spp. 0.36 0.81 Misc. Rosaceae seeds 0.91 0.37 0.72 0.08 Misc. Rosaceae skins 0.45 0.53 0.36 1.30 Graminaceae 10.91 16.05 2.53 1.96 Selaginellaceae 1.82 0.01 0.01 0.16 Misc. Plants 12.27 5.91 13.36 10.16 AVES 1.82 0.43 1.08 4.37 Passeriformes 1.36 <0.01 1.08 4.37 Falconiformes 0.45 0.43 0.43 0.81 MAMMALIA 20.45 50.96 7.58 40.83					23.89	
Rubus spp.2.735.231.447.29Sorbus spp.0.360.81Misc. Rosaceae seeds0.910.370.720.08Misc. Rosaceae skins0.450.530.361.30Graminaceae10.9116.052.531.96Selaginellaceae1.820.0110.16Misc. Plants12.275.9113.3610.16AVES1.820.431.084.37Passeriformes1.36<0.01	Prunus spinosa	2.27	3.65			
Sorbus spp. 0.36 0.81 Misc. Rosaceae seeds 0.91 0.37 0.72 0.08 Misc. Rosaceae skins 0.45 0.53 0.36 1.30 Graminaceae 10.91 16.05 2.53 1.96 Selaginellaceae 1.82 0.01 0.16 Misc. Plants 12.27 5.91 13.36 10.16 AVES 1.82 0.43 1.08 4.37 Passeriformes 1.36 0.43 1.08 4.37 Falconiformes 0.45 0.43 1.08 4.37						
Misc. Rosaceae seeds 0.91 0.37 0.72 0.08 Misc. Rosaceae skins 0.45 0.53 0.36 1.30 Graminaceae 10.91 16.05 2.53 1.96 Selaginellaceae 1.82 0.01 0.16 Misc. Plants 12.27 5.91 13.36 10.16 AVES 1.82 0.43 1.08 4.37 Passeriformes 1.36 <0.01		2.73	5.23			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Graminaceae10.9116.052.531.96Selaginellaceae1.820.01						
Selaginellaceae 1.82 0.01 Misc. Plants 12.27 5.91 13.36 10.16 AVES 1.82 0.43 1.08 4.37 Passeriformes 1.36 < 0.01 1.08 4.37 Falconiformes 0.45 0.43 $.043$ MAMMALIA 20.45 50.96 7.58 40.83						
Misc. Plants 12.27 5.91 13.36 10.16 AVES 1.82 0.43 1.08 4.37 Passeriformes 1.36 < 0.01				2.53	1.96	
AVES 1.82 0.43 1.08 4.37 Passeriformes 1.36 < 0.01				10.07	10.14	
Passeriformes 1.36 < 0.01 1.08 4.37 Falconiformes 0.45 0.43						
Falconiformes 0.45 0.43 MAMMALIA 20.45 50.96 7.58 40.83						
MAMMALIA 20.45 50.96 7.58 40.83				1.08	4.37	
				7.50	40.92	
Mullinae 1.50 1.48 0.72 1.14						
	wiuimae	1.30	1.40	0.72	1.14	

56

Table 3 (Contd.)		Red fox		Pine marten	
		Frequency of occurrence (%)	Consumed biomass (%)	Frequency of occurrence (%)	Consumed biomass (%)
	Apodemus flavicollis	0.91	1.33		
	Apodemus spp.			0.36	0.92
	Misc. Murinae	0.45	0.15	0.36	0.22
	Gliridae	1.82	6.19	1.44	8.30
	Eliomys quercinus			0.72	1.15
	Muscardinus avellanarius	0.91	0.87	0.72	7.15
	Glis glis	0.45	0.16	02	,
	Misc. Gliridae	0.45	5.15		
	Sciuridae	1.36	4.55	1.08	7.29
	Sciurus vulgaris	1.36	4.55	1.08	7.29
	Arvicolinae	9.55	24.21	2.17	10.77
	Ondatra zibethicus	0.91	4.31		10177
	Clethrionomys glareolus	1.82	4.61	0.36	5.61
	Arvicola terristris	1.36	3.05	1.08	4.18
	Pitymys subterraneus	0.91	3.13	1000	
	Microtus agrestis	3.18	6.21		
	Microtus arvalis	0.45	1.19		
	Misc. Arvicolinae	0.45	1.71	0.36	0.98
	Soricidae	2.73	2.62	0.36	3.26
	Sorex minutus	0.91	0.31	0.36	3.26
	Sorex araneus	0.45	0.00		
	Crocidura leucodon	0.91	1.52		
	Crocidura russula	0.45	0.79		
	Talpidae	1.36	1.25	0.36	0.31
	Talpa europea	1.36	1.25	0.36	0.31
^a Data structured taxonomically into CLASS, <u>Order</u> , Family, <u>Subfamily</u> , Species ^b Food items comprising < 5% of a scat were recorded as an	Leporidae	0.91	2.63	0.72	8.07
	Lepus timidus	0.91	2.63	0.72	8.07
	Mustelidae			0.36	1.49
	Martes foina			0.36	1.49
	Cervidae	0.91	7.92		
	Capreolus capreolus	0.91	7.92		
	Misc. mammals	0.45	0.09	0.36	0.21
occurrence but not used in the	Number of scats	55		64	
calculation of consumed bio- mass	Number of food items ^b	220	147	277	223

the Carabidae and Formicidae families (Fig. 1, Table 3). Again, in terms of consumed biomass, plants (mostly Rosaceae) and mammals dominated the diet. While the most frequently targeted mammalian species were water vole (Arvicola terrestris) and red squirrel, it was the mountain hare, the red squirrel, the hazel dormouse (Muscardinus avellanarius) and the bank vole (Clethrionomys glareolus) that represented the largest proportions of the consumed biomass. As in foxes, amphibians and reptiles were not found in the marten diet.

Trophic niche breadth

Based on frequency of occurrence of food items, both the Levins and the Shannon-Wiener indices indicated a greater niche breath for the red fox as compared to the pine marten. Based on consumed biomass, however, very similar values were indicated for the two species (Table 4). While mammals accounted for 51 and 41% of the consumed biomass, respectively, the red fox fed on a broader range of mammal prey sizes (n=39 items, 5-21,000 g, median 35.5 g, mean = 1,346 g, SD = 4,676) than did the pine marten (n = 16 items, 5–2,850 g, median 111.3 g, mean = 470 g, SD = 937). Although the fox

Table 4 Niche breadths calculated from taxonomically grouped food items (see Table 2)

Predator species	No. scats analyzed	Levins index		Shannon-Wiener index	
		Frequency	Biomass	Frequency	Biomass
Red fox Pine marten	55 64	0.23 0.15	0.31 0.34	0.69 0.57	0.70 0.73

diet included mammals several times larger than the largest marten prey recorded, there was no significant difference (Mann-Whitney U-Test, U = 258, p = 0.316) in prey sizes between foxes and pine martens.

Discussion

Diet composition

Red fox diets vary among studies and over time, leading to the description of the red fox as a generalist and opportunistic feeder (Baltrunaite 2003). Our results were in accordance with accounts from other parts of Europe: red foxes on Teisenberg fed on a large variety of items; voles, and especially Microtus (e.g., Macdonald 1977; Storch et al. 1990; Baltrunaite 2003), played a major role in their diet, and plants and insects were also readily taken. As elsewhere in Europe, red foxes consumed primarily grasses and berries when they ate plants, and they ate many beetles (Witt 1976; Cantini 1991; Debernardi et al. 1991; Pandolfi and Bonacoscia 1991; Prigioni 1991; Prigioni and Tacchi 1991; Storch and Kleine 1991). Unlike elsewhere, birds were rare in the red fox diet of our study (Prigioni and Tacchi 1991; Skirnisson 1986). The Falconiformes remains that we found might have originated from carrion. Isopods and mollusks were low in quantity and may have been inadvertently collected with the scat or coincidentally ingested by the red fox. As in other European studies (Clement and Saint Girons 1982; Marchesi and Mermod 1989; Clevenger 1993), we found that the pine martens took more insects than did the red foxes. Overall, however, we found that the greatest biomass in the marten diet was composed of fruits and mammals. The importance of the fruits Prunus spinosa, Vaccinium myrtillus, and Rubus spp. has been repeatedly noted for summer diet in martens (Goszczynski 1976; Skirnsson 1986; Marchesi and Mermod 1989; Cantini 1991; Bertolino and Dore 1995). Mammal remains were low in frequency, but proved important in terms of consumed biomass, with the well-documented emphasis being on Clethrionomys voles and dormice (e.g. Lockie 1961; Marchesi and Mermod 1989). Overall, our evidence concurs with the well-documented feeding-generalist interpretation of the pine marten.

Trophic niche breadth

The two different niche-breadth indices provided us with widely differing interpretations regarding the characterizations of the predators' feeding niches. Whereas the Levins index gave the impression that both the predators studied tended toward specialist-feeding niches, the Shannon-Wiener index presented both predators as relatively generalist. This difference is due to the greater relative importance that the Shannon-Wiener index places on rare items, whereas Levins index puts most importance on the evenness of the distribution of items (Pielou 1969). Similarly, the use of frequency of occurrence can produce different conclusions from the use of consumed biomass. Using the former, the importance of food items that pass through the gastrointestinal tract relatively undigested (i.e., insect exoskeletons, plant lignin/cellulose) is increased. The use of biomass data requires the assumption that the digestibility coefficients measured in controlled experiments are relatively consistent in different habitats. Thus, both measures are based on questionable assumptions. Nevertheless, we consider biomass data a better reflection of dietary composition (Lockie 1959; Kruuk and Parish 1981). Therefore, while the calculations of trophic niche breadth using occurrence data tended to show the predators as being more specialist than those using biomass data, the long-standing representations of the red fox and pine marten as generalists lead us to place greater stake in the results of the Shannon-Wiener index. Despite its preliminary nature, our study suggests that a strict distinction between generalist and specialist trophic niches is not justified for medium-sized carnivores in the Alps, particularly as results greatly depend on the indices used.

To better characterize the ecological relationships between these species we would need a greater sample size based on some years of field collection, and we would need to understand the relative abundance and distributions of the food resources and the relative amount of time and energy that are expended by predators in their feeding activities (Baltrunaite 2003).

Acknowledgments First and foremost, we would like to thank Martin Lauterbach, Christine Pfeifle, and Karin Wojtech for their help with the collection and analysis of samples. Advice and assistance were also provided by Bernhard Gum, Felix Knauer, Ralph Kuehn, Lena Lieckfeld, Evi Tschunko, and A.R.'s new coworkers at Michigan State University. The Bavarian State Ministry of Agriculture provided financial support. Without the help of the local forest administrator, Mr. Huber of Forstamt Siegsdorf, our accommodations on Teisenberg would also have been much less comfortable.

References

- Baltrunaite L (2003) Ecological niches of medium-sized carnivores in Lithuania. Doctoral Thesis, Institute of Ecology, Vilnius University, Lithuania
- Bertolino S, Dore B (1995) Food habits of the stone marten Martes foina in "La Mandria" Regional National Park (Piedmont Region, north-western Italy). Hystrix 7:105–109
- Brohmer P (1984) Fauna von Deutschland. Verlag Quelle und Meyer, Heidelberg
- Brunner H, Coman BJ (1974) The identification of mammalian hair. Inkata Press, Melbourne
- Cantini M (1991) Alimentazione della volpe (*Vulpes vulpes*) in aree boscate delle Alpi Orobie. Hystrix 3:83–89
- Chinery M (1986) Pareys Buch der Insekten. Verlag Paul Parey, Hamburg
- Clement R, Saint Girons MC (1982) Notes sur les mammifères de France. XVIII. Le régime de la fouine, *Martes foina* (Erxleben, 1777), dans l'agglomération nantaise et en milieu rural. Mammalia 46:550–553
- Clevenger AP (1993) Status of martens and genets in the Balearic and Pytiusic Islands, Spain. IUCN, Small Carnivore Conserv 9:18–19
- Corbet G, Ovenden D (1980) Pareys Buch der Säugetiere, alle wildlebenden Säugetiere Europas. Verlag Paul Parey, Hamburg
- Day MG (1966) Identification of hair and feather remains in the gut and faeces of stoats and weasels. J Zool 148:201–217
- De Marinis AM, Masseti M (1991) Feeding habits of the pine marten Martes martes L., 1758, in Europe: a review. Hystrix 7:143–150
- Debernardi P, Durio P, Perrone A (1991) Alimentazione invernale della volpe *Vulpes vulpes* nell'Albese (Provincia di Cuneo). Hystrix 3:99–104
- Debrot S, Fivaz G, Mermod C, Weber JM (1982) Atlas des poils de mammifères d'Europe. Institut de Zoologie de l'Université de Neuchâtel, Neuchâtel
- Englund J (1965) Studies on food ecology of the red fox (*Vulpes* vulpes) in Sweden. Viltrevy 3:375–485

- Freude H, Harde KW, Lohse GA (1965) Die Käfer Mitteleuropas, Bd I, II, V. Verlag Goecke und Evers, Krefeld, Germany
- Garcke A (1972) Illustrierte Flora, Deutschland und angrenzende Gebiete, Gefäßkryptogamen und Blütenpflanzen. Verlag Paul Parey, Berlin
- Goszczynski J (1974) Studies on the food of foxes. Acta Theriol 19:1–18
- Goszczynski J (1976) Composition of the food of martens. Acta Theriol 21:527–534
- Harz K (1975) Die Orthopteren Europas, Bd II, III. Dr. W. Junk, The Hague
- Jaksic FM, Braker HE (1983) Food-niche relationships and guild structure of diurnal birds of prey: competition versus opportunism. Can J Zool 61:2230–2241
- Jedrzejewska B, Jedrzejewski W (1998) Predation in vertebrate communities: the Bialowieza Primeval Forest as a case study. Ecological studies 135. Analysis and synthesis. Springer, Berlin Heidelberg New York
- Jedrzejewski W, Jedrzejewska B, Szymura A (1989) Food niche overlaps in a winter community of predators in the Bialowieza Primeval Forest, Poland. Acta Theriol 34:487–496
- Kruuk H, Parish T (1981) Feeding specialization of the European badger in Scotland. J Anim Ecol 50:773–788
- Levins R (1968) Evolution in changing environments. Princeton University Press, Princeton
- Lockie JD (1959) The estimation of the food of foxes. J Wildl Manage 23:224–227
- Lockie JD (1961) The food of the pine marten *Martes martes* in West Ross-shire, Scotland. Proc Zool Soc Lond 136:187–195
- Macdonald D (1977) On food preferences in the red fox. Mammal Rev 7 :7–23
- Marchesi P, Mermod C (1989) Regimes alimentaire de la martre (*Martes martes* L.) dans le Jura suisse. Rev Suisse Zool 96 :127– 146
- März R (1987) Gewöll- und Rupfungskunde. Akademie-Verlag, Berlin
- Moors PJ (1980) Sexual dimorphism in the body size of mustelids (Carnivora): the roles of food habits and breeding systems. Oikos 34:147–158

- Müller HJ (1986) Bestimmung wirbelloser Tiere im Gelände. Gustav Fischer Verlag, Stuttgart
- Pandolfi M, Bonacoscia M (1991) Analisi della dieta della volpe (Vulpes vulpes) nelle marche Settentrionali. Hystrix 3:77–81
- Pielou EC (1969) An introduction to mathematical ecology. Wiley-Interscience, New York
- Pielou EC (1975) Ecological Diversity. Wiley, New York
- Prigioni C (1991) Lo studio della dieta della volpe *Vulpes vulpes*. Hystrix 3:51–62
- Prigioni C, Tacchi F (1991) Nicchia trofica della volpe Vulpes vulpes nella Valle del Ticino. Hystrix 3:65–75
- Pulliainen E (1981) Food and feeding habits of the pine marten in Finnish forest lapland in winter. In: Chapman JA, Pursley D (eds) Worldwide Furbearer Conf Proc, Frostburg, Maryland, pp 580–598
- Rothmaler W, Bäßler M (1994) Exkursionsflora von Deutschland, Bd II, III. Gustav Fischer Verlag, Stuttgart
- Schmeil O, Fitschen J (1968) Flora von Deutschland und seinen angrenzenden Gebieten. Verlag Quelle und Meyer, Heidelberg
- Seifert B (1996) Ameisen beobachten, bestimmen. Naturbuch Verlag, Augsburg
- Skirnisson K (1986) Untersuchungen zum Raumzeit-System freilebender Steinmarder (*Martes foina* Erxleben 1777). Beitr Wildbiol 6:1–200
- Steinmann H, Zombori L (1985) An atlas of insect morphology, 2nd edn. Akadèmiai Kiadò, Budapest
- Storch I, Lindström E, De Jounge J (1990) Diet and habitat selection of the pine marten in relation to competition with the red fox. Acta Theriol 35:311–320
- Storch I, Kleine C (1991) Zur Nahrungswahl des Fuchses in den Alpen (The diet of the red fox in the Alpine foothills). Z Jagdwiss 37:267–270
- Witt H (1976) Untersuchungen zur Nahrungswahl von Füchsen (Vulpes vulpes Linne, 1758) in Schleswig-Holstein. Zool Anz 197:377–400
- Zahradnik J (1985) Käfer Mittel- und Nordwesteuropas. Verlag Paul Parey, Hamburg