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ABSTRACT 
The ground beetles form the speciose beetle family Carabidae and, since their 
emergence in the Tertiary, have populated all habitats except deserts. Our knowl­
edge about carabids is biased toward species living in north-temperate regions. 
Most carabids are predatory, consume a wide range of food types, and experience 
food shortages in the field. Feeding on both plant and animal material and 
scavenging are probably more significant than currently acknowledged. The most 
important mortality sources are abiotic factors and predators; pathogens and 
parasites can be important for some developmental stages. Although competition 
among larvae and adults does occur, the importance of competition as a com­
munity organization is not proven. Carabids are abundant in agricultural fields 
all over the world and may be important natural enemies of agricultural pests. 

----·----

INTRODUCTION 

The family Carabidae, the ground beetles, contains more than 40,000 described 
species classified into some 86 tribes (66). It is the largest adephagan family 
and one of the most speciose of beetle families. The suborder Adephaga is a 
relatively large group of specialized beetles that is morphologically defined 
by the presence of six abdominal ventrites, pygidial defense glands in the adult, 
and liquid-feeding mouthparts in the larvae (112). They are well-proportioned 
cursorial beetles with prominent mandibles and palps, long slender legs, striate 
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232 LOVE! & SUNDERLAND 

elytra, and sets of punctures with tactile setae. Most have an antenna-cleaning 
organ and largely pubescent antennae. The adults are dark colored, shiny or 
matte. Some have bright or metallic colors, and some are pubescent. The larvae 
are campodeiform, have well-developed legs, antennae, and mandibles, and 
bear fixed urogomphi (34, 112). Major taxonomic problems remain to be 
solved (8), despite cladograms with new phylogenetic hypotheses that have 
emerged from significant comparative anatomical studies on the adult feeding 
apparatus (71), antenna cleaner (96), thorax and locomotory adaptations (69, 
70), hind-wing structure (89, 197), pygidial glands (77), ovipositor (15, 25), 
and the chemistry of defensive secretions (134). Different authors divide the 
family into different subfamilies; except for the tiger beetles (see 149), our 
ecological knowledge is scant concerning subfamilies outside the Carabinae 
[sensu Lawrence & Britton (112)]. 

The abundance, species richness, and attractive coloration of many species 
have made carabids popular objects of study for both professional and amateur 
entomologists. The last attempted synthesis on carabid biology was the de­
scriptive monograph by Thiele (182); only certain aspects of the field have 
been reviewed since (2, 111, 126, 142). Proceedings of triennial meetings, 
started in 1969 by Dutch and German carabidologists, provide a series of useful 
snapshots of the state of the art in this field (19, 48, 50-53, 57, 68, 173). A 
quarterly journal, Carabologia, serves as a forum for both amateur and pro­
fessional carabidologists. 

In this review, we intend to summarize some of the significant achievements 
in carabid ecology and behavior since Thiele's (182) book was published. 
Carabids are present worldwide, with species richness highest in the tropical 
regions (66). However, our knowledge mainly stems from research done in 
the temperate regions of the Northern Hemisphere. The resulting bias in this 
review is inevitable. Our examples are illustrative, not exhaustive, and are 
intended to support generalizations that can serve as guidelines or hypotheses 
for the study of carabids in other regions. 

CARABID EVOLUTION AND ADAPT A TIO NS 

Carabids emerged in the early Tertiary as wet-biotope generalists in tropical 
habitats, where they remain the dominant predatory invertebrate group (67). 
Through a series of taxon pulses, they have radiated to drier environments as 
well as higher latitudes and altitudes (64). By the late Pennian/early Triassic, 
several lineages developed a cosmopolitan distribution pattern, as demon­
strated by the fossil record (155). Although this group has retained an easy­
to-recognize generalist body plan, their body shape and leg morphology are 
characteristically modified for running, digging, burrowing, climbing, and 
swimming (69, 70). Different parts of the morphological apparatus and physi-
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GROUND BEETLE BIOLOGY 233 

ological mechanisms can evolve at different rates. Thus, a species can remain 
a generalist structurally and still become a specialist physiologically in order 
to, for example, live at glacier edges (Nebria spp.) (66). Several other struc­
tural, physiological, and behavioral adaptations enabled carabids to invade all 
major habitats, where at least some lineages have attained dominance; the only 
exception is deserts, where carabids are limited to streams and oases (66). This 
distribution pattern suggests that humidity is a general limiting factor. The 
main structural patterns in carabid evolution are flightlessness and arboreal, 
fossorial, and troglobitic adaptations (66). Flightlessness has repeatedly 
evolved in many groups (35). In the tropics, >30% of species are arboreal, 
exhibiting special morphological and behavioral adaptations (172). A few 
groups are adapted to life in self-made tunnels (mainly in sand or finely 
textured soil in the tropics), and even fewer groups, of cosmopolitan distribu­
tion, reside in caves (66). 

CARABID STUDY METHODS 

The combination of cryptic lifestyles and polyphagous feeding habits means 
that many aspects of carabid natural history and ecology are not easy to study. 
Techniques used include different trapping and marking methods for collecting 
beetles and estimating density (176); labor-intensive dissections or sophisti­
cated immunological methods to study feeding (180); the use of video equip­
ment to record walking (88), searching, and feeding (30) behavior; and the use 
of harmonic radar to study within-habitat movements (130). The most popular 
method is pitfall trapping. 

A pitfall trap [or Barber-trap (9)] is a container-any one of many different 
designs-sunk into the ground so that its opening is at surface level. Many 
surface-dwelling arthropods fall in and cannot escape. The trap is a passive 
catching device; capture results from the activity of the target organism. The 
quantity and composition of the catch will vary depending on the size, shape, 
construction material, and distribution in space and time of the trap, as well 
as the preservative used and all the factors governing activity and behavior. 

Pitfall trapping is the most frequently used field method for studying 
carabids. Although this method is surrounded by controversy and several 
critical papers (176 and references therein) have been published, general prac­
tice has changed little because no similarly convenient method has been rec­
ommended. Pitfall trapping remains suitable for studying several population 
parameters and certain community measurements such as species presence. 
Pitfall traps should probably not be used to study community patterns such as 
relative species composition or diversity. After detailed methodological and 
behavioral studies have been completed and validation techniques developed, 
pitfall trapping might be reinstated as an efficient method of studying carabid 
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234 LOVEI & SUNDERLAND 

adults. However, this method cannot be expected to fill the profound gap in 
our knowledge of larval ecology. 

ONTOGENY AND LONGEVITY 

Carabids are holometabolous insects that usually lay their eggs singly. Some 
species lay eggs in small or larger batches in crevices or in the soil after a 
varying degree of preparatory work by the female (126, 182). The female 
carefully chooses the ovipositing site, sometimes excavating a chamber for the 
eggs. Some Pterostichini prepare a cocoon for a batch of eggs (20). Parental 
care, at its most developed, consists of no more than egg guarding or caching 
seeds in the egg chamber for the emerging larvae (20, 97). 

The typical carabid larva is free moving and campodeiform (34) and usually 
undergoes three stages before pupating in a specially constructed pupal cham­
ber in the soil. Some species (for example, Harpalus and Amara spp.) have 
only two larval stages. Seven tribes, plus a hypothesized ten more, have 
specialized larvae with more larval stages that, in at least the later stages, 
exhibit reduced mobility. These species, which are ant or termite symbionts 
or specialized ectoparasites or predators (65), total 24% of all carabid tribes 
[in Erwin's classification (64)]. However, as not all members of these tribes 
exhibit these traits, these specialized larval bionomics characterize only a small 
minority of all species. 

The larvae (second or third stage) of many species undergo diapause, either 
hibernation or aestivation. The weakly sclerotized and whitish pupa lays on 
its back, supported by dorsal setae. Sclerotization and coloration of the adult 
takes place after eclosion; teneral beetles can be recognized for various lengths 
of time, usually weeks. 

In general, ground beetles develop from egg to adult in less than one year, 
reproduce once, and then perish. However, individual development can last 
up to four years under harsh climates or adverse food conditions. Carabus 
glabratus, a species with larval hibernation and autumn reproduction in central 
and western Europe, has a biennial life cycle with spring breeding in upland 
areas of northern England (99) and in Norway (158). In northern England, 
Carabus problematicus has an annual life cycle at altitudes below 800 m and 
a biennial one above that (26). The European Carabus auronitens has a flexible 
life-history strategy ( opportunistic oviposition, asynchronous development, 
partial survival of the old generation, fat body reserves, and long-term dor­
mancy), which reduces the risk of the whole population being affected by bad 
weather during the postecdysial ripening (200). 

Adult longevity can also exceed one season. Individuals from several species 
have been kept in the laboratory for up to four years. Many species (from the 
tribes Agonini, Harpalini, Pterostichini, Carabini) have life spans over one year 
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GROUND BEETLE BIOLOGY 235 

( 182). Individuals from field populations of several species from different parts 
of the world, for example, Europe (83, 99, 125, 186, 194), Japan (166), and 
the sub-Antarctic (36), can live up to four years and reproduce more than once. 
Cave-inhabiting species often live long lives; Laemostenus schreibersi can live 
for up to 6.5 years (161). Generally, long adult life span is more common in 
large species and species with winter larvae [also called autumn breeders (see 
49)] than in ones with summer larvae (spring breeders). 

Several species show plasticity of individual development, whereas others 
seem to have a stable life cycle. The originally botanical term polyvariance 
was suggested to describe the former (129). Obligatory univoltism is appar­
ently rare and occurs mainly in species of short longevity. Bi- and multiannual 
cycles are usually found in species living in harsh environments (sub-Arctic, 
highland, or xeroterm habitats), and dynamic polyvariance is common. 

HABITATS, HABITAT FINDING, AND MICROHABITATS 

Persistence in a habitat should depend mostly on the life stage that is most 
vulnerable, as determined by the longest duration, narrowest tolerance limits, 
and most limited escape repertoire. All these factors point to the larval stage 
as the key to understanding occupation of a habitat by a given carabid species. 
The egg is superficially the most vulnerable of the life stages, but ovipositing 
females can deliver eggs into microhabitats where their survival can be maxi­
mized. Moreover, the egg stage is usually short, and the egg sacs contain the 
resources necessary for the completion of this life stage. The pupal stage is 
similarly sensitive. It lacks mobility and often lasts for long periods, but it is 
often better defended than the egg or larva. The larva has limited mobility, 
weak chitinization, and therefore feeble tolerance of extremes, and it must also 
find sufficient food to develop. Larval feeding conditions often determine adult 
fertility as well (139). For reasons mentioned above, larvae are notoriously 
difficult to study. However, because larvae usually cannot migrate long dis­
tances, they have to survive in the environment where the egg-laying female 
left them. Therefore, the following discussion on adult habitat choice is justi­
fied. Habitat choice is so specific that carabids are often used to characterize 
habitats (see below). 

The directed random walk, followed by a frequently turning walk in the 
presence of favorable conditions, would eventually lead carabids to their pre­
ferred habitats, but several different mechanisms help beetles find or remain 
in suitable habitats. These mechanisms include internal clocks, sun-compass 
orientation (33, 182), and orientation either toward or away from silhouettes 
(33, 159, 182). Some riparian ground beetles find their habitat by sensing 
volatile chemicals emitted by blue algae living in the same habitat (72). 
Agonum quadripunctatum, a forest species in Europe and North America 
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236 LOVE! & SUNDERLAND 

associated with burnt areas, is a good flyer and is probably attracted to the 
smell of smoke (23). Carabids continuously sample their surroundings. For 
example, Carabus nemoralis walked around in different habitats before settling 
in seminatural habitats in preference to set-aside to arable areas (107). 

Habitat and microhabitat distribution can be influenced by several factors: 

1. Temperature or humidity extremes (several examples in 182). Favorite 
wintering sites are well aerated, and winter minimum temperatures are 
relatively high (58, 183). 

2. Food conditions. For example, exclusively spermophagous Ophonus spp. 
are present in open habitats where seeds of Umbelliferae are available, 
whereas polyphagous Harpalus spp. aggregate in crops (209). Marked 
Poecilus cupreus and Pterostichus melanarius moved from winter wheat 
to a weed strip within the wheat field (where feeding conditions were better) 
much more frequently than they moved the reverse direction (128). 

3. Presence and distribution of competitors. For example, forest carabids in 
Finland were influenced by the distribution of Fonnica ant species (141). 

4. Life history and season. Amara plebeja, for instance, has different hiber­
nation (woodland) and reproduction (grassland) habitats. The beetles fly 
between habitats in spring and autumn. Flight muscles are temporarily 
autolysed between flights, then completely reconstructed for the return 
flight. In the autumn, they fly toward woodland silhouette shapes (190). 

DENSITY AND DISPERSAL 

Carabids are often numerically dominant in collections of soil-active arthro­
pods. However, for reasons mentioned above, this result cannot equate with 
high density. Data, especially in the older literature (including 182), are con­
fusing because of the frequent acceptance of pitfall trap catches as density 
data. Data obtained by true density measurement methods indicate that densi­
ties fluctuate in space and time from <1 (in many habitats) to >1000 individuals 
per square meter (at suitable overwintering sites, see Table 1). 

As a group, carabids originally used fully functional wings as the primary 
dispersal mode. However, flight is very costly and is subject to intense selection 
(160). Once the benefits of flight do not match its costs, as on, for example, 
islands and mountain tops, it is quickly lost (35, but see 145). Flightlessness 
and flight dimorphism (some individuals in a given species possess wings, 
others do not) has repeatedly evolved in carabids. For example, of the carabid 
fauna of Newfoundland (157 species), 12.7% are dimorphic and 21.0% flight­
less, a condition reached through nine or more independent evolutionary tran­
sitions (160). Wing dimorphism seems to be inherited in a simple Mendelian 
fashion through a dominant gene for short-wingedness (5, 117); in some 
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GROUND BEETLE BIOLOGY 237 

Table 1 Maximal densities (individuals per square meter) of ground beetle adults and larvae in different 
habitats• 

Arable fields 
Biennial/ 
perennial 

Species category Annual crops crops Field boundary Forest, heath 

Species size <5 mm 5.96 3.61 66.62 
(0.2- 77; 72) (0.3-2.4; 7) (0.6-923; 23) 

Species size >5 mm 1.83 4.82 14.32 2.54 
(0.02-33; 47) (0.7-22; 7) (0.03-87; 18) (0.04-22.5; 19) 

Adult total 31.73 233.27 2b 

(1.2-96.1; 12) (14.5-1113; 9) 
Larvae, individual species 5.46 6b 14.5 7.8b 

(0.07-33; 10) (4-42; 6) 
Larvae, total 29.4, 49, 7?b 49, 87b 

• Data are given as mean (minimum-maximum; N). Only data giving true density values (obtained by soil samples, soil 
flooding, mark-recapture, fenced pitfalls, quadrat sampling, and vaccuum sampling) were considered and include data on 71 
adult plus 13 larval taxa, obtained between 1970- 1994 in 14 countries in Europe and North America. From KO Sunderland 
& GL Lovei, unpublished manuscript. A full list of references obtainable by request. 

b Fewer than five observations; individual values given. 

species, the trait is polymorphic (56). Environmental conditions may influence 
expression of the dimorphism (6). Flight ability varies little between the sexes 
(160). 

The proportion of flightless individuals in dimorphic species increases with 
increasing habitat persistency and time since colonization (54). The proportion 
of macropterous P. melanarius can be as low as 2% in stable habitats ( e.g. old 
forest patches) (42) or as high as 24-45% in less stable ones (e.g. newly 
reclaimed polders of The Netherlands) (87). In Edmonton, Canada, this species 
was first reported in 1959. Currently, 60--70% of the frontier population, -70 
km from the city, has wings; in the source population in the city, only 20% of 
the beetles are now macropterous (143). 

Flight is greatly influenced by temperature, rain, and wind (191). In some 
species (such as the Palearctic A. plebeja), the flight muscles are broken down 
during egg production and then resynthesized; in others, flight capability 
during reproduction is not impaired, and up to 80% of dispersing females carry 
fertilized eggs (192). This percentage characterized species from both persist­
ent and ephemeral habitats. However, females of more species from ephemeral 
habitats than from persistent ones carried ripe eggs (192), which increased the 
probability of (re)colonizing empty habitat patches. 

Many carabids have been transported intercontinentally, e.g. from Europe 
to North America (115, 171). Studies in Canada of the effects of invasion by 
P. melanarius showed them to be negligible (143). 
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238 LOVE! & SUNDERLAND 

ACTIVITY: DIEL AND SEASONAL 

Diel Activity Cycles 
More carabids are nocturnal than diurnal. For example, in the United Kingdom, 
60% of species are nocturnal and 20% diurnal (124). The diurnal activity 
dendrogram for carabids in UK woodlands revealed groupings for diurnal, 
nocturnal, and crepuscular species, plus species that overlapped some of these 
categories (55). Overall, nocturnal species are larger than diurnal ones. Also, 
their coloration often differs: Night-active species are dark and dull, and diurnal 
species display iridescent colors. Diel periodicity can vary with habitat (forest 
species tend to be nocturnal whereas grassland species are diurnal) (84) and 
time of year (P. melanarius is nocturnal until August and is mainly diurnal 
later) (59). Changes in temperature (102), light intensity, and humidity (182) 
also influence activity. In hot countries, nocturnalism becomes more common; 
conversely, species that are nocturnal in central Europe become diurnal in the 
arctic ( 182). Specialist feeders may synchronize their activity with that of their 
prey (1). Desert carabids exhibit peak activity at temperature minima (62). 
Cave-dwelling species often are active in short bursts between periods of 
inactivity (182); they sometimes exhibit die! activity cycles despite constant, 
very low illumination and air humidity. Such circadian clocks may serve to 
synchronize the activity of males and females (199). Individuals within a 
population can undergo different activity cycles; for example, some individuals 
of Carabus auratus are diurnal, some nocturnal, and others indifferent to diel 
periods (182). In some species, larvae and adults undergo different cycles 
(106). 

Sublethal dosages of insecticides can cause marked increases in carabid 
activity ( 135) and may also indirectly cause activity increases by reducing food 
supplies (29). 

Seasonal Rhythms 

Seasonal rhythms involving dormant periods during winter and/or summer 
(aestivation) are an integral part of the life history of temperate-region ground 
beetles. The activity of the two most typical groups peaks in either spring or 
autumn. This peak usually coincides with the reproductive period, although 
the connection between activity and reproductive rhythms is flexible in many 
species (129). Such rhythms are inseparable from individual, especially larval, 
development. 

Facultative diapause of summer larvae can synchronize the life cycle (126). 
Because of the variability in activity and reproductive seasons and the growing 
body of evidence on adult longevity, some authors have suggested rejecting 
the traditional concepts of spring-reproducing vs autumn-reproducing species 
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GROUND BEETLE BIOLOGY 239 

and adult overwinterers vs larval overwinterers in favor of categories contain­
ing species with summer larvae vs winter larvae ( 49) or species with vs without 
diapausing larvae (100). In extratropical regions, the cues regulating these 
cycles involve temperature and photo period ( 182). Seasonal activity and re­
productive rhythms in tropical species are regulated by seasonal changes in 
soil moisture and flooding (146). 

FEEDING 

Searching Behavior 

Whereas many carabids presumably find their food via random search, several 
diurnal species hunt by sight (80). Other species use chemical cues from aphids 
(30), springtails (55a), or snails (202) to find prey. The use of chemical 
information is probably more common than the few reported cases would 
suggest. 

Carabids exhibit the search pattern common to invertebrate predators (140). 
After the beetle encounters a prey item in a patch, its search behavior charac­
teristically intensifies for a specified "give-up" time period. In some species 
that search two-dimensionally, finding a prey triggers a three-dimensional 
search behavior [e.g. Pterostichus cupreus climbs the plant when it senses an 
aphid at the base (30)]. The general walking pattern often alternates between 
frequently turning and rarely turning walking phases ( 132, 195), but this pattern 
is not necessarily nor always connected to feeding behavior. 

Once prey is located, species typically switch to a well-defined prey-catch­
ing behavior. Many morphological and behavioral adaptations are at work in 
this stage of feeding, mostly in specialized species. Prey catching, studied in 
fine detail for several European species that hunt springtails, has revealed a 
fascinating array of adaptations involving sight, behavior, and morphology in 
both adults and larvae (11-13). 

Most carabid adults use their well-developed mandibles to kill and fragment 
prey into pieces. Specialist species attacking snails seem to paralyze their prey 
by biting ( 14 7), thus preventing the mucus production that is the slugs' defense 
reaction. Many large species eject a fluid rich in digestive enzymes; sub­
sequently, they consume the liquid portion of their partially digested prey, 
sometimes with undigested prey fragments. Larvae only consume extraorally 
digested food (for a more detailed discussion of preoral digestion, see 32). The 
alimentary canal is tripartite. The foregut, including the crop, is the main site 
of digestion (80); enzymes synthesized in the midgut are passed forward to 
the foregut. The enzyme set contains proteases, carboxylases, amylases (131), 
and oligo- and polysaccharidases; this composition is thought to be a primitive 
character (101). Absorption takes place in the hindgut. The speed of digestion 
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depends on temperature and the size of a food item (164) as well as on 
subsequent feeding (122). Traces of a meal could be detected for up to 14 days 
(122, 164). 

Food Choice 

Early data on several species indicated varying extents of polyphagy (37, 76, 
163). The accumulated results have been extensively reviewed by Thiele (182) 
and, for agricultural species, by Allen (2) and Luff (126). 

Carabids are mostly polyphagous feeders that consume animal (live prey 
and carrion) and plant material; several species are phytophagous (126, 182). 
A worldwide survey of the literature (111) reporting on 1054 species of 
carabids and cicindelids showed that 775 species (73.5%) were exclusively 
carnivorous, 85 species (8.1 %) phytophagous, and 206 species (19.5%) om­
nivorous. These data, although they may indicate the general feeding habit of 
the family, are often based on laboratory data and are heavily biased toward 
northern hemisphere species. On a smaller scale, another survey showed that 
27% of the 362 species in Fennoscandia were predators, 13% omnivores, and 
24% herbivores; at the time of study, the food of 36% of the species was not 
known (114). More detailed analysis of the restricted range of species (see 
below) also indicates that the degree of predatory habit in the family has 
generally been overestimated, especially as the degree of plant and carrion 
feeding is not well known. In general, larvae are more carnivorous and re­
stricted in food range while adults exhibit very catholic feeding habits, with 
some groups (Cychrini, Notiophilini, Loricerini, Nebriini) demonstrating vary­
ing degrees of specialization. The following paragraphs summarize the feeding 
of adult beetles. 

Catholic feeding habits, frequent nocturnal activity, and extraintestinal di­
gestion, among other factors, present problems for the study of feeding (140, 
175). Methods applied to investigate feeding in carabids include casual or 
regular direct observation, exclusion techniques, forced feeding in the labora­
tory, density manipulation of prey and predator, the use of radioactive tracers, 
isotope-labeled prey techniques, gut dissection, various serological techniques, 
and electrophoresis. These methods and their limitations have been repeatedly 
reviewed (e.g. 175, 180). 

Dissection of several thousand individuals of 24 European species (95) 
revealed the remains of aphids, spiders, lepidopteran larvae and adults, fly 
larvae, mites, heteropterans, opilionids, beetles, and springtails. Similar stud­
ies, conducted in Belgium (154) and New Zealand (177), also found 
enchytraeid worms, lumbricid worms, nematodes, hymenopterans, beetle lar­
vae, eggs, centipedes, millipedes, mollusks, spores, fungal hyphae, seeds, and 
pollen. Cannibalism has also been reported. 
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AU species in Hengeveld' s study (95) were polyphagous and consumed plant 
material in addition to the other food items. A multivariate analysis (94) 
identified one group with a diet containing a high proportion of springtails and 
a restricted variety of other arthropods (some Notiophilus, Leistus, and Agonum 
species). Members of another group in the study, which eat what they can 
swallow, were species of Amara, Harpalus, and Pterostichus (94). 

While the results mentioned above show the wide range of prey taken by 
ground beetles, most of these studies did not consider prey availability. Where 
it has been considered, opportunistic feeding habits are found. For example, 
ten abundant grassland species in Belgium fed mainly on springtails, the most 
abundant prey group (154). 

Food Consumption 

Carabids are voracious feeders, consuming close to their own body mass of 
food daily {182). Food is used to build fat reserves, especially before repro­
duction and hibernation {182). Feeding conditions during larval development 
determine adult size, which is a major determinant of potential fecundity {138). 
Realized fecundity depends on adult feeding conditions (see below). 

Although potential food consumption can be assessed straightforwardly in 
the laboratory, quantification of feeding rates in the field is difficult for reasons 
mentioned earlier. One possible solution is to monitor egg production and/or 
body-mass changes by regularly sampling field populations and compare these 
data to calibration measurements taken on beetles kept in the laboratory under 
known conditions. Such measurements, performed on Carabus yaconinus in 
Japan {167), indicated that field prey consumption by females allowed them 
to realize 59% of their possible maximum egg production in May and 45% in 
June. Field consumption was similarly below the potential maximum in other 
species in The Netherlands {139, 189) and North America (201). 

Carabids, like other animals, forage for nutrients and energy, which are 
packaged in food items. Feeding in the context of optimality of food compo­
sition has been little studied in carabids. Nutritional requirements for carabids 
have not been specifically identified nor has the observation that certain species 
are more specific than others been addressed from a nutritional point of view. 
The dietary advantages of mixed food over a single food type are well known 
for polyphagous invertebrate herbivores (14, 162). In carabids, females often 
have more prey types than males (154). Moreover, Wallin et al {196) found 
that egg number and size were influenced by food composition. Signs of 
optimal digestion were found in two carabid species {122). These data suggest 
that food composition is not irrelevant for foraging ground beetles, and beetles 
may have the ability to select a diet that matches their particular needs. 

The feeding studies to date have left us with some notable gaps: {a) Although 
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the range of methods applied is very wide, the degree of distortion obtained 
is not possible to assess. (b) Adult feeding is generally overemphasized, and 
detailed information on larval feeding is lacking. (c) Most studies have a 
narrow focus; they were done in agricultural fields and/or considered a single 
prey group (aphids, slugs, etc). (d) The degree of true carnivory vs carrion 
feeding is not adequately determined. (e) The degree of mixed feeding (plant 
and animal material) is probably underestimated. (j) The literature has a heavy 
geographical bias toward the Northern Hemisphere. (.g) Physiological studies 
are scarce, and consequently, food-choice criteria are poorly understood in 
terms of diet composition. 

REPRODUCTION 

Fecundity can range from five to ten eggs per female in species with egg­
guarding behavior to several hundred per female in species that do not guard 
eggs (208). Eggs can be laid in one batch, several batches in one season, or 
over several seasons. As many as 30-60% of individuals in a population can 
reproduce in more than one year (168, 186, 193). The dependence of fecundity 
on age is not well understood. For several species, young females have a higher 
reproductive output than old ones (e.g. 186), whereas the reverse is true in 
other species (24, 36, 83, 166). 

Many carabids are apparently iteroparous rather than semelparous reproduc­
ers; such behavior results in less fluctuation in numbers over the years (125). 
Murdoch (136) hypothesized that the stabilizing mechanism worked so that 
female survival was inversely related to the amount of reproduction during the 
previous season, reporting that observations of Agonum species in England 
confirmed this assertion. His suggestion generally did not find support (7, 113, 
166, 189, 198, but see 63). Increased mortality during reproduction may result 
from ecological rather than physiological factors (27), such as exposure of 
reproducing individuals to higher levels of external hazards such as predators 
or disease. 

In all carabid species examined, as well as in several other predators, the 
variable egg production is related to the amount of food. The first priority of 
the adults is to meet energy demands for survival and use the surplus for 
reproduction. This makes sense in that under conditions of limited food supply, 
the survive-but-not-reproduce option enables predators to survive until better 
food conditions allow reproduction (133, 203). Data from Europe (187, 189), 
Japan (166), and North America (113) indicate that carabids in the field 
regularly experience food shortage and rarely realize their full reproductive 
potential. 

In searching for an explanation of carabid fecundity, Grum (86) found that 
egg numbers tended to decrease as body mass increased. Autumn breeders had 
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higher egg numbers than spring breeders, and egg-laying rates were inversely 
correlated with female mobility (86). These results, along with observations 
of low egg numbers in cave-inhabiting species ( 41) and of species demonstrat­
ing parental care in Europe and New Zealand (20; GL Lovei, unpublished 
data), conform to some predictions of the r- and K-strategies theory. Also, 
ground beetle species living in unstable habitats have higher egg numbers than 
relatives living under less variable conditions. Similar differences are observed 
in adult life spans and egg numbers among the Polish and Dutch populations 
of several species (86). However, the r-K theory is only one of the hypotheses 
suggested to explain life-history features. The application of alternative theo­
ries such as Grime's C-S-R model (85) is promising (73). 

MORTALITY AND POPULATION DYNAMICS 

Although abiotic influences on survivorship are inevitable, constituting the 
principal mortality factors for all life-cycle stages of ground beetles (45), other 
factors play an important role in carabid population dynamics. 

Mortality of the Different Stages 

EGG MORTALITY The traditional assumption that egg mortality is not signifi­
cant (182) is probably not correct. Eggs of Pterostichus oblongopunctatus 
suffered 83% mortality in fresh litter but only 7% in sterilized soil (91). One 
potential advantage of brood watching could be protection from pathogens, 
although females have not been observed cleaning, surface sterilizing, or even 
doing anything with their eggs in the egg chamber. However, when abandoned 
by females, eggs quickly become moldy (20). 

LARVAL MORTALITY Larval mortality is probably a key factor in overall 
mortality of ground beetles, but because of the lack of appropriate methodology 
to study larvae, evidence for the importance of larval mortality is scant. 
Because larvae have weak chitinization and limited mobility, they are sensitive 
to desiccation, starvation, parasites, and diseases. Larvae are also cannibalistic. 
In laboratory and field experiments with surface-active larvae of Nebria bre­
vicollis, mortality varied between 25 and 97%, depending on food conditions; 
parasitism caused up to 25% mortality (138, 139). The results of similar 
experiments with larvae of P. oblongopunctatus, combined with computer 
simulations, indicated a cumulative mortality rate for larvae and pupae of 96% 
(22, 92). These authors concluded that events during larval life are the most 
important for population regulation. 

Parasitism is recognized as a very important factor in host population biol­
ogy, both on ecological and evolutionary time scales (81, 157). Although 
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predators, parasites, and pathogens affect all ground beetle developmental 
stages (126, 182), quantitative data remain scarce. 

ADULT MORTALITY Up to 41 % parasitism by nematodes and ectoparasitic 
fungi was found on 14 species of Bembidion in Norway (3). Nematode infec­
tion in insects may cause sterility (153), resulting in obvious fitness effects. 
The benefit of living in exposed habitats could be freedom from parasites; the 
cost would be higher risks of predation and/or more frequent catastrophic 
events, such as flooding (3). 

Most observational evidence indicates that predation is an important mor­
tality factor for adults. Hundreds of vertebrate species prey on carabids ( 108-
110). The ecological significance of predation pressure by small mammals was 
demonstrated in exclosure experiments in North America (148) and England 
(31), where excluding small mammals resulted in an increase in both species 
richness and density of carabids. 

Antipredator Defenses 

The evolution of terrestrial fauna! groups that prey on carabids, such as am­
phibians, reptiles, birds, and mammals, has probably constituted a major driv­
ing force of carabid evolution (66). The large suite of antipredator defenses 
includes morphological, biochemical, and behavioral components. For exam­
ple, morphological traits in arboreal carabids include cryptic or warning col­
oration, mimicry, narrow body shape, dorso-ventral flattening, large eyes, and 
long legs ( 172). Inactive beetles rest at safe sites, under stones, in crevices, in 
the soil, or on undersides of leaves; night activity is also thought to be an 
antipredator defense. Attacked beetles run to safety and hide (172), take to 
water (4, 174), demonstrate catalepsy (17), regurgitate crop contents and/or 
digestive fluid (79), and bite their attacker (61). Stridulation is also a wide­
spread and effective deterrent (78, 82). Conspicuous elytral spots, which are 
present in many carabid species, may deflect attack from the vital anterior 
body parts (103). Batesian mimicry has been reported in carabids (116), and 
Milllerian mimicry was reported in tiger beetles (149). The hardened cuticle 
and fused elytra of large species (75) also provide structural protection from 
predators. The most effective defense is the excretion of compounds from 
pygidial glands that are universally present in carabids. The anatomy, chem­
istry, and effectiveness of these glands and their products has been extensively 
studied and reviewed (18, 105, 134). 

Population Dynamics 

Most of the available field data on carabids come from results of pitfall-trap 
catches. Catches of the same species in the same habitat from different years 
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correlate well with changes in density (43, 125), and this comparison is gen­
erally accepted as a valid method for estimating density fluctuations and 
effective rates of reproduction. 

Population variability in carabids (125) seems to be at the lower end of 
values for insects (204). Although environmental fluctuations in caves are 
smaller than in other terrestrial habitats, population fluctuations of the cave­
inhabiting Neaphaenops tellkampfi in Mammoth Caves, Kentucky, were be­
tween those of Ca/athus melanocephalus and Pterostichus versicolor, two 
common species living on heath in Drenthe, The Netherlands (104). Different 
intrinsic and extrinsic factors-life span, fecundity, reproductive patterns, and 
rate of development-are thought to contribute to this relative stability (125). 

Population Survival and Metapopulation Dynamics 

The study of carabids has contributed significantly to the appreciation of 
landscape-scale dynamics. Particularly important are studies started in the late 
1950s in The Netherlands (43). den Boer (46) synthesized the regional popu­
lation fluctuation patterns of carabids collected over 23 years in the Dutch 
province of Drenthe. Using a distribution of population sizes (43), he distin­
guished several population fluctuation types. Species with high dispersal power 
(e.g. Pterostichus niger) exhibit population fluctuation patterns different from 
those of species with limited dispersal ability (e.g. Pterostichus Lepidus). Spe­
cies in Drenthe show a continuum between these two extremes. Based on this 
pattern, the frequency of extinction and the mean survival times of populations 
of the different species were simulated. This technique indicated that local 
populations of poorly dispersing species survive, on average, for 40-50 years. 
If changes in the locations of suitable habitat patches are faster, the species 
cannot recolonize new habitat patches fast enough and become regionally 
extinct. For most of Europe, these changes occur faster than required by the 
poorly dispersing species. 

de Vries & den Boer (59a) compared the regional distribution of Agonum 
ericeti, a species found in moist heath, in 1959-1962 with its distribution in 
1988-1989. This species cannot travel more than 200 meters between habitat 
fragments and showed an average survival time of 7-44 years in different­
sized, small habitat fragments. In larger fragments, population fluctuation is 
asynchronous and the multipartite population can survive longer. These authors 
concluded that A ericeti needs a habitat fragment of 50-70 ha for continuous 
population survival. 

With the intensification of agriculture, fragmentation of natural habitats has 
occurred worldwide during the twentieth century. Turin & den Boer (184) and 
Turin & Peters (185) have examined the effects of these changes in The 
Netherlands since 1850. Poorly dispersing species (for example Abax para/-
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lelepipedus, Calathus erratus, and P. oblongopunctatus) generally decreased; 
well-dispersing species (Amara lunicollis, Dicheirotrichus gustavi, Stenolo­
phus mixtus) were stable or increasing; and species tolerating agricultural 
habitats (C. melanocephalus, Dyschirius globosus, P. melanarius) increased 
during this period. Whether these changes were caused by habitat fragmenta­
tion or habitat destruction was not clear. 

ASSEMBLAGES AND COMMUNITIES 

Patterns in Carabid Assemblages 
Carabid assemblages are moderately species rich. Usually, no more than 10-40 
species are active in a habitat in the same season; regional assemblages are 
correspondingly richer (98, 126, 182, 188). Generalizations are difficult as the 
extension of an assemblage in space or time is usually not defined; the number 
also depends on the method and intensity of the sampling. With the advent of 
more accessible and more powerful data handling, the regional and continental 
distribution patterns can be described and evaluated (144, 151). Future evalu­
ations of the nestedness of ground beetle faunas is another promising endeavor. 

Southwood (169) described the species packing of ground beetles at Silwood 
Park in southern England, a site containing 28 species. The report made no 
mention of the presence, abundance, or species richness of potential competitor 
groups (ants, spiders). More than 50 pair-wise interactions were considered 
significant. During the growing season, from March to November, the activity 
periods of the most common species filled the available time; for large species, 
this species packing was tighter during the summer than in spring or autumn. 
Species body sizes were regularly arranged between 5 and 25 mm, with an 
obvious gap between 12 and 14 mm, bordered by the two most common 
species. Habitat specialization occurred but complete lack of spatial overlap 
was found in only 8 of the potential 57 species-pair interactions. 

The mean body size of carabid assemblages in woodlands, moors, and 
grasslands in northeastern England was related to several environmental factors 
(16). The outstanding factor was the level of disturbance that eliminated large 
species from the assemblage. Species body-size distribution within carabid 
assemblages was sitnilarly displaced toward smaller values as disturbance from 
urbanization increased (179). 

Coexistence and Competition 

The occurrence and importance of competition among carabid beetles has been 
long debated. Generally, the evidence for interspecific competition as a regu­
latory force in populations is inconclusive, because of methodological litnita­
tions, unrealistic densities, noncomparable habitats, the methods used 
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(examples in 142), and a general lack of experimental tests (142). Significant 
interspecific competition exists between adults of the North American Carabus 
limbatus and Carabus sylvosus (113). However, another study showed that 
most species do not compete in a western European beech forest (119). Similar 
conclusions emerge from evaluations of resource-partitioning descriptions; 
competition cannot be proven except in a few cases (44). In the sub-Antarctic, 
Amblystogenium pacificum and Amblystogenium minimum showed character 
displacement expected to result from competition (36). 

These studies focused on the adult stage, but larvae have more restricted 
tolerance limits because of more restricted food range, mobility, and weaker 
chitinization, and are less adapted to evade resource shortages. Consequently, 
the importance of competition among larvae can be greater than that among 
adults (22, 92). 

At the assemblage level, resource-partitioning patterns have been described 
in several studies (reviewed in 142), which have often invoked competition, 
present or past, as an explanation for the observed patterns of size distribution, 
food range, and seasonal or daily activity. These conclusions have generated 
lively but inconclusive debate (e.g. 44, 47 vs 118). Currently, there is no 
convincing evidence that competition has an important role in causing the 
observed patterns in carabid assemblages. A recent study on the invasion of a 
European carabid beetle into a Canadian forest (143) also showed a lack of 
competitive effects on the resident carabids. 

The very concept of carabid communities is fallacious. This concept is based 
on a taxonomic affiliation, and carabids cannot even be considered to constitute 
an ecological guild. Although many carabid species can be classified as gen­
eralist predators, others that coexist with them clearly belong to different 
guilds. Carabids share the generalist, surface-active predator guild with at least 
some spiders and ants. For example, significant competition seems to take 
place between ants and ground beetles (205), so neglecting ants in "carabid 
community studies" leads to misleading conclusions. 

ECONOMIC IMPORTANCE OF GROUND BEETLES 

Occurrence in Agricultural Fields 

Carabids are common in agricultural fields in the Northern Hemisphere. Since 
an early publication by Forbes (76), they have generally been considered 
beneficial natural enemies of agricultural pests, although a few species are 
pests themselves (126, 182). Thiele has synthesized the information on their 
biology, with special reference to their role as natural enemies (182); Allen 
(2) and Luff (126) have provided limited updates. 

The carabid fauna of agricultural fields originates in riparian ( 182) or steppe 
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(121) habitats. Data are few outside those obtained in Europe and North 
America. In Canada, many species in cultivated land are either introduced 
European species (2, 171) or North American representatives of genera com­
mon in European agricultural fields, such as Pterostichus, Harpalus, or Ago­
num. In Japan, the fauna is similar to that of the European cultivated habitats 
at the generic level (126), although species of Chlaenius and Carabus can be 
abundant (207). In arid areas, Tenebrionidae are more prevalent than Carabidae 
(74). In New Zealand, carabids can be significant predators (10), but they are 
not as prevalent there as they are in northern cultivated fields (120). 

Agriculture profoundly influences the composition, abundance, and spatial 
distribution of ground beetles through the use of agrochemicals, changes in 
habitat structure from cultivation methods and crop type, etc (57, 173; see 
reviews in 126, 182). 

The Effectiveness of Carabids as Natural Enemies 

Predator-prey studies have traditionally focused on interactions between spe­
cialist predators and their prey (90). Although Calosoma sycophantha, one of 
the first insects introduced for biological control (24), is such a specialist, most 
carabids do not fall into this category. The exploration of conditions under 
which generalist predators can limit prey has revealed that such predators are 
self-damping and highly polyphagous and that their life cycles are not in 
synchrony with their prey (38, 137). The ground beetles fit these criteria; they 
are self-damping during their larval stage (21), are polyphagous feeders (95), 
and having a long life cycle, are not normally tightly coupled to their prey. 
They can suppress pest outbreaks, but in general, their major beneficial role 
is to prolong the period between pest outbreaks, i.e. when the pest abundance 
is in the so-called natural enemy ravine (170). To increase carabids' effective­
ness, biological control practitioners should consider the general habitat fa­
vorability that will keep carabids near their required site of action. A successful 
application of this technique could use habitat islands to serve as refuges and 
recolonization foci (128, 183). 

The effectiveness of a natural enemy can be established through several 
sequential steps (123,175,206): I. evaluating dynamics and correlating preda­
tor and pest density, 2. obtaining direct evidence of a trophic link between the 
prey and the predator, 3. experimentally manipulating predator density and its 
effect on pest numbers, 4. integrating the above information to quantify the 
effect of predator on prey. 

Most studies of carabids and their prey are of the first and second type; 
fewer authors have considered steps 3 and 4. Well-founded evidence (gathered 
by means of all four steps above) for the significance of carabids as natural 
enemies comes from studies of polyphagous predators (carabids, spiders, 
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staphylinids) in cereals in England (28, 60, 156, 164, 165, 178) showing that 
they can significantly decrease the peak density of aphids. Early-season pre­
dation, when aphid density is low, is the most significant. The relative impor­
tance of these predators varies among years and sites; often the effect cannot 
be attributed to one particular predator group. In some years, carabids are the 
most significant predators. 

Carabids as Environmental Indicators 

Carabids can and have been used as indicator organisms for assessments of 
environmental pollution (93), habitat classification for nature protection (127, 
152), or characterization of soil-nutrient status in forestry (181). They might 
also serve as biodiversity indicators (N Stork, personal communication). How­
ever, most of the groups that are candidates for these purposes have not been 
subjected to a critical assessment using set criteria (150). Once we develop 
these criteria, we can realistically assess the suitability of ground beetles as 
indicator organisms. 
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