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Abstract

Few studies link habitat to grizzly bear Ursus arctos abundance and these have not

accounted for the variation in detection or spatial autocorrelation. We collected and

genotyped bear hair in and around Glacier National Park in northwestern Montana

during the summer of 2000.We developed a hierarchical Markov chainMonte Carlo

model that extends the existing occupancy and count models by accounting for

(1) spatially explicit variables that we hypothesized might influence abundance;

(2) separate sub-models of detection probability for two distinct sampling methods

(hair traps and rub trees) targeting different segments of the population; (3)

covariates to explain variation in each sub-model of detection; (4) a conditional

autoregressive term to account for spatial autocorrelation; (5) weights to identify

most important variables. Road density and per cent mesic habitat best explained

variation in female grizzly bear abundance; spatial autocorrelation was not sup-

ported. More female bears were predicted in places with lower road density and with

more mesic habitat. Detection rates of females increased with rub tree sampling

effort. Road density best explained variation in male grizzly bear abundance and

spatial autocorrelation was supported. More male bears were predicted in areas of

low road density. Detection rates of males increased with rub tree and hair

trap sampling effort and decreased over the sampling period. We provide a new

method to (1) incorporate multiple detection methods into hierarchical models of

abundance; (2) determine whether spatial autocorrelation should be included in final

models. Our results suggest that the influence of landscape variables is consistent

between habitat selection and abundance in this system.

Introduction

Wildlife managers from Leopold (1949) have attempted to

understand how habitat influences wildlife populations. For

rare and wide-ranging animals, research on this has been

extremely difficult and costly to conduct at appropriate scales

for reliable inference to population-level metrics. Recent

advances in technology, such as non-invasive genetic and

remote camera sampling, now make sampling across popula-

tions more feasible. Statistical techniques to take advantage of

these improved data sources and to link habitat with abun-

dance and other population metrics (review in Williams,

Nichols & Conroy, 2002, e.g. Holmes & Miller, 2010; Kery &

Royle, 2010) are still under intense development.

Our goal was to understand which landscape character-

istics influence relative grizzly bear abundance. Identifying

variables that best explain local variation in bear abundance

can help prioritize conservation actions to promote recovery

of threatened populations. These habitat characteristics can

be monitored for an early warning of a potential population

decline. Habitat monitoring is one requirement for delisting

this population (US Fish and Wildlife Service, 1993).

Habitat management designed to support grizzly bear

population recovery has relied primarily on habitat selection

studies of radio-collared individuals (e.g. Servheen 1983; Wal-

ler & Mace, 1997; Mace et al., 1999; McLellan & Hovey, 2001;

Nielsen et al., 2004a; Ciarniello et al., 2007; Nielsen et al. 2010).

These studies sampled a small proportion of populations

and covered relatively small, homogeneous areas. Only two

grizzly bear studies have linked habitat with abundance

within a population. Apps et al. (2004) modeled abundance

patterns of grizzlies in southeastern British Columbia,

with animals considered either (1) present and detected; or

(2) not detected. Their approach conflates non-presence and
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non-detection of animals and does not permit assessment of

whether habitat or effort influenced detection. This could

result in biased estimates of relative abundance if detection

probability varies by environment or sampling effort (Gu &

Swihart, 2004; Mazerolle et al., 2005; MacKenzie, 2006).

Nielsen et al. (2010) used a zero-inflated Poisson model to

estimate occupancy abundance. Their model does not dis-

tinguish between non-presence and non-detection of ani-

mals that were present, nor permit inclusion of covariates

that could account for spatial or temporal heterogeneity in

non-detection of present animals.

Our analysis separates the two causes of non-detection to

reduce bias that could result if detection probability varies

by habitat, effort or time (Royle & Dorazio, 2008), while

directly estimating the influence of habitat covariates on

abundance. We use anN-mixture model, which includes two

levels, abundance and detection, and permits incorporation

of covariates for each process. This mark–recapture model

uses sites as the sampling unit, and produces estimates of

abundance at each site. Royle (2004a) developed the model

to estimate local abundance for birds with avian point count

data. As then variations of the model have been used for

many animals including amphibians (e.g. Mazerolle et al.,

2007), fish (Webster & Pollock, 2008), invasive species

(Hooten et al., 2007), wild turkeys (Rioux, Belisle & Giroux,

2009) and shrubland birds (e.g. Chandler, King &DeStefano,

2009; Riddle et al., 2010).

We collected hair from the northern third of a grizzly bear

population in northwestMontana and used genetic analysis to

identify individuals. Our 7933km2 study included areas where

bear density varied widely. We used two forms of genetic

sampling to increase the number of individuals detected in a

cost efficient manner and target the trap-shy individuals

(Kendall et al., 2008). The use of multiple detection methods

can improve abundance estimates by decreasing issues of

individual heterogeneity resulting from sensitivity to a single

method (Williams et al., 2002; e.g. Conway & Gibbs, 2005;

Dreher et al., 2007). Boulanger et al. (2008) used this dataset

to estimate overall abundance and found that precision

increased with the use of multiple detection methods. Based

on those findings, we extended the N-mixture model to

incorporate multiple detection methods.

This approach can be used by other researchers to identify

the most important habitat variables influencing abundance.

Our approach will be particularly useful where (1) detection

varies within the study area and is related to sampling effort,

time or habitat; (2) multiple detection techniques detect

different segments of the population. Our approach will also

be useful when researchers want to determine the strength of

spatial autocorrelation in their study area and to understand

the relationship between spatial autocorrelation and habitat

variables in their study area.

Materials and methods

Our 7933 km2 greater Glacier National Park (GNP) study

area was centered over the park (4079 km2) and spanned the

east–west range of grizzlies in the Rocky Mountains of

western Montana, USA (Fig. 1). Our study covered over

30% of grizzly bear habitat in the Northern Continental

Divide Ecosystem (US Fish and Wildlife Service, 1993).

Vegetation transitioned with climate from Pacific maritime-

influenced coniferous forests west of the Continental Divide,

to drier prairie grasslands and agricultural fields along the

eastern boundary. Elevations ranged from 960 to 3190m.

Our study included areas with both the highest and lowest

grizzly bear densities in the ecosystem. Human density was

generally low andmostly concentrated along road corridors,

Figure 1 Hair trap and rub tree sample locations in the Greater Glacier National Park study area in northwestern Montana in 2000.
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but several large towns exist. Although grizzlies, designated

at a threatened species, were protected throughout the study

area, protective measures varied by landowner. GNP re-

quired and strictly enforced secure storage of bear attrac-

tants and prohibited firearm use. National forests enforced

attractant storage guidelines as funding permitted, but much

less control existed on other lands. Firearm possession was

legal on all lands outside GNP.

We sampled grizzly bears in the year 2000 using two

sampling methods: hair traps and rub trees (Kendall et al.,

2008). Hair traps consisted of a single strand of barbed wire

stretched around several trees with scent lure poured on

forest debris in the center. We attempted to install one hair

trap in each of one hundred and twenty-six 8� 8 km grid

cells for each of five 14-day sample sessions May 22–August

9. However, due to logistical constraints such as high

avalanche danger, 43 traps were placed in neighboring cells

or during adjacent sessions, resulting in 633 (�x=126.2/

session� 5.8) hair trap sites. Traps were moved to different

locations where we expected high bear use within each cell

for each session. Our second sampling method involved

collecting hair periodically from trees on which bears

naturally rubbed, using short pieces of barbed wire to

facilitate hair collection. We surveyed 907 rub trees for bear

hair during May 22–October 27 along 1185 km trails, cover-

ing 5161 km2, primarily in GNP (Kendall et al., 2008). We

visited rub trees 5.26 times on average, with median time

between surveys=15days. Rub tree sample collections were

assigned to 10 sessions based on collection date. The first

five rub tree sessions corresponded to hair trap sessions.

These were followed by four more 14-day sampling sessions

and a final session lasting 21 days.

We genetically analyzed hair samples to determine spe-

cies, sex and individual identity of bears. Species was

determined with the G10J microsatellite (Mowat et al.,

2005; Kendall et al., 2009). We determined sex using the

SRYmarker (Taberlet et al., 1993) and a size polymorphism

in the amelogenin marker (Ennis & Gallagher, 1994; Pilgrim

et al., 2005). We used six microsatellite loci to determine

individual identity: G1A, G10B, G10C, G10L, G10M and

G10P (Paetkau et al., 1995). Up to 10 additional loci were

analyzed for Z1 sample from each individual to confirm

differences between individuals with similar six-locus geno-

types. We detected and reduced errors following recommen-

dations in Paetkau (2003), Roon, Waits & Kendall (2005)

and McKelvey & Schwartz (2005). For a complete descrip-

tion of genotyping error in our dataset, see Kendall et al.

(2008 and 2009).

We hypothesized that variables influencing habitat selec-

tion would also influence bear abundance. We evaluated the

importance of habitat descriptors like vegetation and topo-

graphy, as well as measures of human disturbance, such as

road and human activity density. We examined several

indices of the amount and quality of plant food available to

bears. The importance of greenness (an index to leaf-area;

Crist & Cicone, 1984; Manley et al., 1992), elevation and

avalanche chutes (rich in preferred bear foods) have been

supported in previous habitat selection and abundance

research (e.g. Mace et al., 1996; Apps et al., 2004). We

created the avalanche chute variable by assigning each grid

cell with Z3 chutes visible on remote imagery a 1 and cells

with o3 chutes 0. Examination of the study area indicated

that the cutoff of three provided a good discrimination of

areas with many versus almost no avalanche chutes. We also

included two new indices of vegetation. We examined per

cent mesic habitat, derived from a remote sensing-based

LANDFIRE cover type classification (USDOI, 2007). The

cover type map was created from 2001 images, incorporates

terrain and climate data (indirect indices of the vegetative

component of habitat), describes sub-canopy vegetation,

uses most vegetative bear foods as indicator species for the

ecological classifications and should be available at 10-year

intervals and thus easily available for use in monitoring. To

calculate per cent mesic habitat, we extracted all riparian

and mesic existing cover types, all of which contained bear

foods. We also included precipitation (based on DAYMET

climate models; http://www.daymet.org) because it will be

directly influenced by climate change, and is monitored.

Three-dimensional area and terrain ruggedness (Apps et al.,

2004) describe the space sampled better than 2-D area and

should have a positive relationship with abundance if they

greatly increase the quantity or variety of foods at various

phenological stages.

Measures of human disturbance that we hypothesized

might affect bear abundance by indirectly elevating mortal-

ity included: road density (weighted so that roads with

higher traffic volumes had higher values) and building

density (primarily buildings, but also outfitter camps, mines

and other point sources of activity from 1998; USFS, 2005).

Bears select against areas of high road density and building

density (e.g. Mace et al., 1996; Wielgus, Vernier & Schi-

vatcheva, 2002; Roever, Boyce & Stenhouse, 2010). The

negative impact of human presence was also supported by

Apps et al.’s (2004) study of bear abundance in British

Columbia and Nielsen et al.’s (2004b) study of bear mortal-

ity in Alberta. We hypothesized two additional variables

could influence bear abundance: bear protection level and

historic mortality. We defined bear protection level based on

the strength of regulations enacted to prevent bears from

obtaining human food and garbage, enforcement of those

regulations and other management efforts designed to mini-

mize human impacts on bears. Bears that associate humans

with food often require management removal to ensure

human safety and are more vulnerable to illegal killing, so

more stringent food storage regulations and greater enforce-

ment of them should reduce grizzly bear mortality. Levels

were assigned to ownership types based on expert opinion of

bear managers: GNP=10 (highest level of protection), US

Forest Service land=7, other state and federal agencies and

Plum Creek land=3 and private land=0. We calculated

an index of historic mortality from locations of known

human-caused grizzly bear mortalities between 1970 (when

consistent records began) and 1999. Bear populations have

relatively slow reproductive rates. Thus historic human-

caused mortality levels may affect population abundance

for an extended period of time.
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We summarized all landscape variables within each 8� 8km

grid cell except mortality density, which we calculated within a

14km-wide moving window because we thought this direct

effect on abundance might have a broader area of influence

(supporting information I). We used the best available data

layers, but all maps are imperfect and as detailed above, some

maps reflect the variable 1–2years apart from our data collec-

tion. Our aggregation of cover types over large spatial extents

and multiple categories should reduce any misclassification

effects. Because we are examining relative abundance, mapping

errors would only influence our results if errors are unevenly

distributed across the study area, so that the values of summa-

ries across grid cells change relative to each other.

To model spatial variation in bear abundance, we used an

N-mixture model (Royle 2004a). We recorded the number

of unique bears, yi,t, captured in each grid cell, i (rows) in

each session, t (columns) for each sample type: hair trap (h)

or rub tree (r). We analyzed these spatial mark–recapture

histories with a hierarchical model (Fig. 2) with two levels.

The upper level represents true local abundance, Ni for grid

cell i. Because we cannot count the true number of bears in

the cell, we modeled Ni as random effects, and assumed they

were realizations of a Poisson random variable with mean

local abundance li.

Abundance : Nt � Poisson ðljÞ

The lower level represents detection of bears with either

hair traps or rub trees and links our counts to true local

abundance. We assumed counts were binomial random

variables (detected or not) based on true local abundance

and detection probability of either hair traps, ph,i,t, or rub

trees, pr,i,t, for grid cell i at session t. Counts are linked to

abundance because Ni is in both distributions.

DetectionHair Trap : yh;i;t � Binomial ðNi; ph;i;tÞ

DetectionTreeRub : yr;i;t � Binomial ðNi; pr;i;tÞ
At each level we evaluated whether covariates could

explain the response (abundance or detection). The hier-

archical approach permits estimation of both levels simulta-

neously. This approach is analogous to occupancy models,

but in the N-mixture model variation in counts between

rows (grid cells) informs the estimates of abundance rather

than occupancy, while variation in counts between sessions

is used to estimate detection. To account for systematic

spatial variation of abundance not explained by other

covariates, we also included a spatial random effect modeled

by a correlated autoregressive (CAR) process. The CAR

term, bi, accounts for correlation in abundance given abun-

dance in adjacent grid cells (Keitt et al., 2002; Webster et al.,

2008).

log ðliÞ ¼b0 þ b1 � Covariate 1þ . . .þ b11

� Covariate 11þ bi

Because sampling methods have different detection prob-

abilities, we modeled detection probabilities (and covariates

relating to them) for each sampling method separately, but

simultaneously (Fig. 2). We used a logistic function for the

detection components of the model. We evaluated whether

hair trap effort (traps/cell) influenced detection probability

Hair traps:

Observed counts (y )

Hair Traps:
Detection (p)

Abundance (N )

Rubs:

Rubs:

rub detection covariates

Figure 2 Diagram of the hierarchical model we used to model the influence of landscape characteristics on local grizzly bear Ursus arctos

abundance in the Greater Glacier National Park study area in northwestern Montana in 2000. Moving from bottom to top, our data consist of

observed counts of animals in cell i, session t, yh,i,t or yr,i,t (depending on sample type; h: hair trap, r: rub tree). Detection probability, pr,i,t or ph,i,t , is

modeled as a binomial distribution with the number of trials equal to the estimated number of animals in a grid cell, Ni. A detection probability is

estimated for each cell for each session. We assumed the true number of animals in a grid cell followed a Poisson distribution, commonly used to

model count data with equal mean and variance. We modeled N as the log of covariates plus a conditional autoregressive term, bi, to account for

spatial autocorrelation with neighbors. Detection is modeled using a logit link to detect covariates and is multiplied by an indicator, I r,i,t or I h,i,t , of

whether any sampling effort occurred that session, which constrains detection probability to 0 when no sampling occurred. Weights to determine

variable importance are not shown here.
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for hair trap sessions. We examined two detection covariates

for rub tree sessions: rub tree effort (cumulative days all rub

trees within a cell could collect hair), and Julian day.

Hair trap : logit ðph;i;tÞ ¼ ah0 þ ah1 �Hair trap effort

Rub tree : logit ðpr;i;tÞ ¼ ar0 þ ar1 �Rub tree effort

þ ar2 � Julian day

We predicted higher sampling effort would positively

influence detection probability. We used mean Julian day of

sampling in each rub tree session to model trend in detection

through time (Boulanger et al., 2008). Preliminary analysis

with this dataset indicated that Julian day was not important

for hair trap detection. Because detection probability should

equal zero when no sampling occurs, we multiplied the cell-

session detection probability by an indicator (sampled or not)

to force detection probability to equal 0 when no rub tree or

hair trap effort occurred (supporting information II).

ph;i;t ¼ expðlogit ðph;i;tÞÞ=ð1þ expðlogit ðph;i;tÞÞÞ � Ih;i;t

pr;i;t ¼ expðlogit ðpr;i;tÞÞ=ð1þ expðlogit ðpr;i;tÞÞÞ � Ir;i;t

We used a variable identification rather than a model

selection approach because we were most interested in

selecting appropriate variables for long-term monitoring

and management. In addition, in many hierarchical models

it is unclear how to count the number of effective para-

meters, and thus calculate information criteria (Link &

Barker, 2010). We identified the most important variables

and estimated effects of those variables on detection

and abundance using a Bayesian model fitted by Markov

chain Monte Carlo (MCMC) in the software package Win-

BUGS (Lunn et al., 2000). MCMC generates a sample of

values from the posterior distribution of each parameter

which can be used to obtain point estimates or credible

intervals (McCarthy, 2007). When identifying the most

important variables using likelihood-based estimation,

Burnham & Anderson (2002) recommend comparing all

nested sub-sets of the most complex model. In the Bayesian

analog, the covariate terms, j, are multiplied by an indicator

term, wj (Kuo & Mallick, 1998; Royle & Dorazio 2008:

section 2; O’Hara & Sillanpää, 2009) with a prior Bernoulli

distribution (P=0.5). When wj=1 the covariate was in-

cluded in the model, when wj=0 the covariate was excluded

from the model. Indicators are kept in the model more often

when the likelihood of the variable being in the model is

higher. We used a similar indicator, wCAR, to compare

models with and without spatial autocorrelation.

log ðliÞ ¼b0 þ w1 � b1�RoadDensity

þ . . .þ w11 � b11 �MesicHabitat 11þ wCAR � bi

If spatial autocorrelation is ignored, sample sizes appear

overly large, statistical significance may change, model and

variable selection may change and estimates of effect size of

a variable may be biased. These problems are most severe

when both the response and explanatory variables have high

levels of spatial autocorrelation and results in underestima-

tion of the variance of the sampling distribution of correlation

(Richardson & Hemon, 1981). CAR models partition var-

iance due to unmodeled environmental variables that influ-

ence abundance (Keitt et al., 2002). In this system, we knew

autocorrelation likely existed; bear home ranges, especially for

males, extend over areas greater than the size of a grid cell.

The MCMC algorithm explores most nested sub-sets of

the variables. The proportion of posterior samples that

included the variable in the model, that is, the posterior

mean of wj, can thus be interpreted as the posterior prob-

ability that the variable is a component of the model.

Variables with weights 450% are considered important

because this resulting median probability model has optimal

predictive properties (Barbieri & Berger, 2004; supporting

information II). Similarly, each model is characterized by a

binary vector comprised of w1, w2, . . . w11, and wCAR. The

frequency of each unique binary vector was tabulated from

the posterior simulations which yielded direct estimates of

posterior model probabilities (Link & Barker, 2007).

We conducted separate, parallel analyses for male and

female bears. We used program R to set up our model and

data, and WinBUGS to run the MCMC simulation (sup-

porting information II). WinBUGS was executed from

program R (R Development Core Team 2010) with the

package, R2WinBUGS (Gelman et al., 2008). We ran three

MCMC chains with: (1) randomized starting values; (2)

diffuse normal priors with mean=0 and variance=10 or

100 (Fig. 3); (3) 10 000 burn-in iterations; (4) Z120 000

subsequent iterations. We thinned by 20 to reduce correla-

tion within chains. After identifying the most important

variables for the model, we re-ran the best model for each

sex to estimate parameters and confirm convergence.

Results

Genetic analysis of the samples from hair traps and rub trees

identified 222 unique grizzly bears: 108 males and 114 females.

Seventy-one per cent (n=809) of the grizzly bear samples

were genotyped to individual. After error checking, all indi-

vidual bears differed at Z4 loci including the gender locus.

The probability of failing to separate two random or closely

related individuals was extremely low (PID=0.000006,

PSIB=0.007, respectively; Kendall et al. 2008).

For female bear abundance, per cent mesic habitat and

road density had posterior probabilities 450%, while the

spatial autocorrelation component had low posterior prob-

ability (34.6%; Table 1). In the detection component of the

model, rub tree effort was in all iterations after the burn-in.

The top model was consistent with these rankings, but had

only 21% of the weight (Table 2). As predicted, we found a

negative relationship between road density and abundance

and a positive relationship for mesic habitat and abundance

(Table 3). All 95% credible intervals exclude 0.

For males, road density was the most important variable

influencing bear abundance (Table 4). All iterations in-

cluded rub tree effort and Julian day, with hair trap effort

included in 80% of models. The spatial autocorrelation
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component was included in 63% of the models, supporting

its incorporation in final models (Table 2). When priors

had less variance (Table 4), precipitation emerged as an

important variable, and autocorrelation dropped out.

Because we were uncertain of the influence of these variables

on abundance, we chose to use important variables identi-

fied using the most uninformative priors in the best model.

More bears were present where road densities were lower

and precipitation was higher (Table 5). All 95% credible

intervals exclude 0.

We examined relative abundance of males and females

across the study by mapping the posterior medians of

abundance, Ni in each grid cell (Fig. 4a and b). Patterns of

abundance were similar to the total number of individual

bears detected in each cell across the entire summer (r=0.72

and 0.78 for females and males respectively) even though

raw counts did not account for detection probabilities (Fig.

4 and d). Precision of abundance estimates was lowest in

cells with highest predicted abundances (females: r=0.988,

males: r=0.964). For males, positive spatial autocorrela-

tion was highest along the eastern side of the study area (Fig.

4e). West-central GNP had high predicted abundance and

high autocorrelation indicating a cluster of bears beyond the

level predicted by our habitat covariates.

(a) (b)

Figure 3 Prior and posterior density estimates of road density coefficient for (a) female and (b) male grizzlies Ursus arctos in the Greater Glacier National

Park study area in northwestern Montana in 2000. The dashed line represents the prior when variance=10. Densities for variance=100 and are

represented with dotted lines. Note that both are essentially flat, so the posterior density is based almost entirely on the data. Based on this analysis,

Bayesian P-values are o0.01, so we are essentially 100% confident that the true coefficient for road density is o0 for both females and males.

Table 1 Importance (weight) of variables influencing female grizzly bear Ursus arctos abundance and detection probability at hair traps and bear

rub trees in and around Glacier National Park, MT in 2000 based on hierarchical Markov chain Monte Carlo (MCMC) models

Variance=100 Variance=10

Model Parameter Mean SD MC error Mean SD MC error

Abundance Road density 0.879 0.326 0.018 0.755 0.430 0.021

Mesic habitat 0.775 0.418 0.021 0.750 0.433 0.019

Spatial autocorrelation 0.346 0.476 0.029 0.216 0.411 0.025

Structure density 0.171 0.377 0.018 0.357 0.479 0.018

Avalanche chute presence 0.158 0.364 0.016 0.385 0.487 0.021

Terrain ruggedness 0.083 0.275 0.014 0.400 0.490 0.026

Solar radiation 0.073 0.260 0.014 0.356 0.479 0.026

Bear protection level 0.059 0.236 0.009 0.212 0.408 0.017

Precipitation 0.039 0.193 0.006 0.073 0.260 0.005

Greenness 0.030 0.171 0.006 0.129 0.335 0.012

Area 3D 0.016 0.125 0.002 0.067 0.250 0.005

Historical mortality 0.010 0.102 0.001 0.046 0.209 0.003

Detection: Rub trees Rub tree effort 1.000 0.000 0.000 1.000 0.000 0.000

Julian day 0.384 0.486 0.009 0.662 0.473 0.007

Detection: Hair traps Hair trap effort 0.102 0.302 0.004 0.205 0.404 0.006

As each weight can be either 1 or 0 at each iteration, the mean represents the proportion of iterations in which the variable was included in the

model. Shading highlights variables present in 450% of models. All parameters have normal priors with variances of either 100 or 10. The

precision of the prior for the spatial autocorrelation parameter (t) is 10 in all cases.
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Discussion

Mesic habitat likely does a better job describing female bear

abundance than greenness or precipitation because factors

such as precipitation, elevation, slope and aspect that create

high greenness values (an index to presence and density of

green vegetation) were included in the process that created

our vegetation class layer. Managers have little ability

to expand the amount of mesic habitat, but could manage

for vegetative bear foods. Mesic habitat may be affected

by climate change and disturbances such as fires. If large

changes occur, the carrying capacity of the area could

change, thus monitoring mesic habitat may provide early

insight into causes of changes in population abundance.

Road density explained much of the variation in male and

female abundance in our study area. This is consistent with

earlier nearby habitat selection studies, which found that bears

selected against areas with high road density (Mace et al.,

1996) or used areas near roads less than expected (Waller &

Servheen, 2005). In recent years, land managers such as the

Flathead National Forest have closed roads to reduce road

density to decrease the risk of grizzly bear mortality and

bolster recovery. This study supports the assumption that

closing and removing roads may increase the number of bears

when mesic habitat and low road density habitat are nearby.

Our results also suggest that habitat selection analyses provide

a good index of grizzly bear habitat quality in this ecosystem.

Most habitat selection studies assume equal detection

rates across habitat types and equal sampling effort (MacK-

enzie, 2006). Because overall capture rates at hair traps are

typically low, most DNA-based studies select sample sites

believed to increase the probability of capture (Apps et al.,

2004; Kendall et al., 2008; Kendall et al., 2009). However, if

detection probability varies by habitat or effort is not equal

across the study area, results will likely be biased. In our

study, the number of hair samples in hair traps did not

correlate well with the number of bears caught in hair traps

(r=0.459) and our efforts varied spatially across the study

area so it was important to model variability in detection.

Inclusion of a second detection method increased our

sample size with respect to both sessions and detections of

individual bears, likely decreasing the effect of individual

heterogeneity on our estimates (Boulanger et al., 2008).

Apps et al.’s (2004) examination of the influence of land-

scape on abundance did not evaluate variation in detection

Table 2 Support (weights) for models of the effect of human and

habitat factors potentially influencing grizzly bear Ursus arctos

abundance in and around Glacier National Park, MT in 2000

Abundance CARa Detection Weights

Females: variance=100

Road density, mesic habitat No Rub effortb 0.212

Road density, mesic habitat No Rub effort, timec 0.163

Road density, mesic habitat Yes Rub effort 0.073

Road density, mesic habitat Yes Rub effort, time 0.038

Road density Yes Rub effort 0.037

Females: variance=10

Road density, mesic habitat No Rub effort, time 0.124

Road density, mesic habitat No Rub effort 0.044

Road density, mesic habitat No Rub effort, time,

HTrap effortd

0.034

Road density, mesic habitat,

structure density

No Rub effort, time 0.031

Road density, mesic habitat,

avalanche chutes

No Rub effort, time 0.028

Males: variance=100

Road density Yes Rub effort, time,

HTrap effort

0.353

Road density No Rub effort, time,

HTrap effort

0.112

Road density Yes Rub effort, time 0.101

Males: Variance=10

Road density Yes Rub effort, time,

HTrap effort

0.184

Road density, Precipitation No Rub effort, time,

HTrap effort

0.131

Road density No Rub effort, time,

HTrap effort

0.073

Precipitation No Rub effort, time,

HTrap effort

0.042

Road density, Precipitation Yes Rub effort, time,

HTrap effort

0.039

Road density, precipitation,

solar radiation

No Rub effort, time,

HTrap effort

0.032

We report models up to cumulative weight=0.5 or top five models. All

parameters have normal priors with variances of either 100 or 10.
aCAR, spatial autocorrelation supported.
bRub effort, cumulative days all rub trees could detect bears in a

grid cell.
cTime, Julian day.
dHTrap effort, number of traps in a grid cell.

Table 3 Coefficient estimates for variables in best model for female bears Ursus arctos in and near Glacier National Park Montana in 2000

Parameter Mean SD MC error 0.025 Median 0.975

Intercept (N) 1.598 0.775 0.038 0.689 1.401 4.098

Mesic habitat 0.365 0.090 0.001 0.188 0.365 0.540

Road density �0.806 0.163 0.001 �1.136 �0.801 �0.501

Intercept (pr,i,t) �4.074 0.788 0.038 �6.598 �3.877 �3.142

Rub tree effort 0.617 0.095 0.002 0.456 0.609 0.829

Intercept (ph,i,t) �3.590 0.792 0.039 �6.117 �3.392 �2.660

Estimation used burn-in=10 000, thin=20 and total iterations=120 000. We report estimates where variance of normal priors for all

covariates=100, but parameter estimates were similar when variances equaled 10. The model has three intercepts, one each for abundance

(N), rub tree detection probability (pr,i,t) and hair trap detection probability (ph,i,t).
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probability due to effort or habitat, but did assess habitat

influences on abundance at multiple scales. Their analyses

followed research that investigated the influence of scale on

habitat selection (Mace et al., 1996). Because our mark–

recapture dataset was sparse, we did not examine this. Other

researchers (e.g. Karanth et al., 2004; Garcia & Kittlein,

2005; Mowat et al., 2005) have compared mark–recapture

abundance estimates from multiple study areas to under-

stand the habitat–abundance relationships. However, land-

scape heterogeneity, continuous distribution of bears, large

home ranges and relatively low recapture rates do not make

this a viable approach for assessing variability in density of

grizzly bears within a population or at relatively fine scales.

Model assumptions

Our model assumed that the population of individuals

exposed to capture in each grid cell remained constant from

session to session, that is, the number of animals that ‘used’

the grid cell remained the same (Royle 2004b; MacKenzie

et al., 2006). We assumed that movement in and out of each

grid cell was random. Although the type and location of

grizzly bear foods varied across the summer sampling

period, grid cells were large, bears are omnivorous and all

grid cells contained some food in all sessions. In this context,

estimated abundance for a grid cell represents the relative

total number of bears with home ranges that overlap that

grid cell. In our study area, even the average female typically

occupies multiple grid cells: the average seasonal minimum

convex polygon home range of adult females was 231 km2

(n=40, range: 42–1199 km2; R. Mace, pers. comm.). Be-

cause males have larger home ranges they will be counted in

more cells, which explains why predicted male abundance is

similar to predicted female abundances although the area

has only 40 males for every 60 females overall (Kendall

et al., 2008).

Table 4 Importance (weight) of variables influencing male grizzly bear Ursus arctos abundance and detection probability at hair traps and bear rub

trees in and around Glacier National Park, MT in 2000 based on hierarchical Markov chain Monte Carlo (MCMC) models

Variance=100 Variance=10

Model Parameter Mean SD MC error Mean SD MC error

Abundance Road density 0.830 0.376 0.013 0.853 0.354 0.009

Spatial autocorrelation 0.629 0.483 0.023 0.452 0.498 0.025

Precipitation 0.286 0.452 0.015 0.537 0.499 0.015

Bear protection level 0.050 0.218 0.006 0.101 0.301 0.005

Structure density 0.038 0.191 0.003 0.127 0.333 0.005

Avalanche chute presence 0.025 0.156 0.003 0.081 0.273 0.003

Solar radiation 0.021 0.142 0.002 0.113 0.317 0.005

Historical mortality 0.019 0.136 0.001 0.052 0.223 0.002

Greenness 0.017 0.128 0.001 0.048 0.213 0.002

Terrain ruggedness 0.015 0.120 0.001 0.053 0.224 0.002

Mesic habitat 0.012 0.107 0.001 0.033 0.180 0.001

Area 3D 0.009 0.092 0.001 0.026 0.160 0.001

Detection: Rub trees Rub tree effort 1.000 0.000 0.000 0.932 0.252 0.002

Julian day 1.000 0.000 0.000 1.000 0.000 0.000

Detection: Hair traps Hair trap effort 0.799 0.401 0.006 1.000 0.000 0.000

As each weight can be either a 1 or 0 at each iteration, the mean represents the proportion of iterations in which the variable was included in the

model. Shading indicates variables present in 450% of models. Variance of the prior for the autocorrelation parameter (t) is 10.

Table 5 Coefficient estimates for variables in best model (with prior variance=100) for male bears Ursus arctos in Glacier National Park Montana

in 2000.

Parameter Mean SD MC error 0.025 Median 0.975

Intercept (N) 1.918 0.438 0.024 1.236 1.854 2.965

Road density �0.515 0.139 0.002 �0.794 �0.513 �0.250

t (CAR) 11.130 264.100 5.540 0.575 1.675 15.400

Intercept (pr,i,t) �2.919 0.476 0.026 �4.059 �2.855 �2.172

Rub tree effort 0.568 0.068 0.002 0.441 0.565 0.706

Julian day �0.436 0.067 0.001 �0.568 �0.436 �0.306

Intercept (ph,i,t ) �3.876 0.470 0.026 �4.997 �3.813 �3.129

Hair trap effort 0.284 0.082 0.002 0.132 0.281 0.452

Estimation used for burn-in=10 000, thin=20 and total iterations=120 000. Parameter estimates were similar among different variances of priors

for coefficients and for t. Prior variance for coefficients=100, prior variance for t=10 and prior variance for detection intercepts=10. The model

has three intercepts, one each for abundance (N), rub tree detection probability (pr,i,t ), and hair trap detection probability (ph,i,t ).
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Analyses describing the effect of habitat on population

abundance assume abundance is correlated with habitat

quality (Van Horne, 1983). From the perspective of provid-

ing useful wildlife management insight, this is an improve-

ment over the typical assumption that habitat selection

is correlated with habitat quality. Given that bears are

typically long-lived and long movements outside of their

home-ranges are rare except during dispersal as sub-adults,

abundance is likely a good index of habitat quality. While

measurement of reproduction, survival, emigration and

immigration rates would detect failure of this assumption

directly (i.e. ecological traps; Battin, 2004), abundance can

be viewed as the net result of these processes (Nichols &

Hines, 2002). Violations of this assumption could occur in

areas of high density where less dominant animals are

relegated to poorer habitat, which would decrease our

(a) (b)

(d)(c)

(e)

Figure 4 Posterior median of abundance in each grid cell for (a) female and (b) male bears Ursus arctos in and near Glacier National Park Montana

in 2000. Actual number of individual (c) females and (d) males observed across the summer. (e) Posterior mean autocorrelation for males.
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ability to differentiate between high and low quality habitat.

Ecological traps could occur around human developments

with poor attractant management or poaching (Pulliam,

1988; Nielsen et al., 2006). If these occur, our predictions

would be wrong, but other research demonstrates that

human presence influences both abundance and mortality

(Apps et al., 2004; Nielsen et al., 2004b; Falcucci et al.,

2009). We included recorded historical mortality and activ-

ity density to address this assumption but we could not

account for unrecorded mortality or variable reproduction

within the study area, which could mask impacts of previous

mortality. If better estimates of mortality, measures of

people’s attitudes toward bears, or better detection covari-

ates were available, they may describe additional variability

in counts, particularly in cells where we observed fewer

bears than expected. Examining population change through

time and across additional seasons, particularly through the

use of an explicit dynamic model may reduce additional

heterogeneity resulting from seasonal habitat selection and

abundance in previous years (Nichols, 2010).

Model performance

With 125 grid cells, low detection probabilities per grid cell

per session, a large number of estimated parameters and 806

of 1250 (64%) rub cell sessions without rub tree sampling

effort, our dataset was relatively sparse, which can contribute

to slow mixing among chains. Despite our sparse data, the

covariates identified as most important and the direction of

coefficient estimates were insensitive to different priors and

starting values except for precipitation/autocorrelation in the

male models as discussed above. Predictions of the relative

number of animals were consistent, though relatively impre-

cise across best models. We believe the slow mixing was

primarily due to a high posterior correlation between the

intercept terms of the abundance and detectionmodel, that is,

insufficient data to separate estimates of abundance and

detection, which means our results solely reflect relative

abundances. In test simulations where we imputed data to

test the effect of missing data, mixing was faster (T. A.

Graves, unpubl. data). Therefore, we recommend sampling

as evenly as possible across sessions and space.

Maximum likelihood estimation could be substituted for

MCMC estimation (Kery, Royle & Schmid, 2005). How-

ever, likelihood methods are impractical when the model

possesses a CAR component (Diggle, Tawn & Moyeed,

1998) while Bayesian analysis using MCMC simulations

have proven effective (Diggle et al., 1998; Royle et al.,

2007; Webster et al., 2008). Our approach provided a way

of determining whether spatial autocorrelation was an

important effect. The degree and nature of spatial autocor-

relation of the explanatory variables could change the

variables identified as most important. This likely occurred

with male model selection using more precise priors. Pre-

cipitation explained some of the variation that had been

absorbed by the spatial autocorrelation term.

Traditional capture–recapture techniques permit inclu-

sion of spatial data only as a summary for an individual and

inclusion of temporal data only as a summary for a single

trapping session. They also typically draw inference from a

small proportion of the population. Occupancy studies

often sample across a larger area and give insight into

distribution, but do not work well where 490% of the area

is occupied (MacKenzie et al., 2006) because little difference

exists in occupancy across the habitat sampled (Royle &

Nichols, 2003; Dorazio, 2007). Occupancy analyses define

the limits of distribution and the mechanisms driving occu-

pancy may differ from those driving abundance (Nielsen

et al., 2005). Using spatially referenced local counts as the

response variable at the population level is analogous to a

resource selection or resource utilization function, which

describe the relationship of habitat and animal use across a

range of values. Therefore, where individual counts can be

obtained, greater understanding of the relationship between

landscape characteristics and abundance can be realized.

This type of information will guide and predict the impact of

management efforts in complex systems.
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