
Biological Conservation 144 (2011) 1799–1807
Contents lists available at ScienceDirect

Biological Conservation

journal homepage: www.elsevier .com/ locate /biocon
Brown hyaenas on roads: Estimating carnivore occupancy and abundance
using spatially auto-correlated sign survey replicates

Michelle Thorn a,b,⇑, Matthew Green b, Philip W. Bateman b, Stephen Waite c, Dawn M. Scott a,1

a University of Brighton, Biology Division, Huxley Building, Lewes Road, Moulsecoomb, Brighton BN2 4GJ, UK
b Mammal Research Institute & Centre for Wildlife Management, University of Pretoria, Private Bag 0002, Pretoria, South Africa
c Hartpury College, UWE, Hartpury, GL19 3BE, UK

a r t i c l e i n f o a b s t r a c t
Article history:
Received 18 October 2010
Received in revised form 18 February 2011
Accepted 12 March 2011
Available online 13 April 2011

Keywords:
Attitude
Detection probability
Hyaena brunnea
Interview
Wildlife monitoring
South Africa
0006-3207/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.biocon.2011.03.009

⇑ Corresponding author at: University of Brighto
Building, Lewes Road, Moulsecoomb, Brighton BN2 4G

E-mail addresses: Thorn_Green@Hotmail.com (M. T
up.ac.za (P.W. Bateman), Stephen.waite@hartpury.ac
Brighton.ac.uk (D.M. Scott).

1 Tel.: +44 (0)1273 642071; fax: +44 (0)1273 64267
Carnivore survey protocols that properly address spatial sampling and detectability issues are seldom
feasible at a landscape-scale. This limits knowledge of large-scale patterns in distribution, abundance
and their underlying determinants, hindering conservation of globally threatened carnivore populations.
Occupancy analysis of data from logistically efficient sign surveys along consecutive road segments (spa-
tially auto-correlated replicates) offers a potential solution. We adapted and applied this newly-developed
method over 62,979 km2 of human-modified land in South Africa. Our aims were to (1) generate unbiased
estimates of brown hyaena occupancy and abundance (2) investigate two suspected determinants of occu-
pancy using a combination of biological and socio-economic sampling techniques, and (3) use simulations
to evaluate the effort required for abundance and occupancy estimates with acceptable bias, precision and
power. Brown hyaena occupancy was estimated at 0.748 (±SE 0.1), and estimated overall density in agri-
cultural land (0.15/100 km2, ±SE 0.08) was an order of magnitude lower than in protected areas. Positive
attitudes to carnivores and presence of wildlife farms exerted strong positive effects on occupancy, so
changes in these factors may well exert monotonic impacts on local metapopulation status. Producing reli-
able occupancy and abundance estimates would require P6 replicates and P12 replicates per site respec-
tively. Detecting 50% and 30% declines in brown hyaena occupancy with adequate power would require
five annual surveys at P65 sites and P125 sites respectively. Our results suggest that protocols based
on spatially auto-correlated sign survey replicates could be used to monitor carnivore populations at large,
and possibly even country-wide spatial scales.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Finding efficient and practical ways to survey carnivores
throughout their ranges is of increasing urgency in view of global
population declines and mounting threats (Inskip and
Zimmermann, 2009; Treves and Karanth, 2003). However,
carnivores are inherently elusive, so failure to detect them when
present is a common source of survey bias (Karanth and Nichols,
2002; Linkie et al., 2007). Furthermore, heterogeneous detectability
confounds inference of spatial and temporal patterns unless prop-
erly accounted for (Karanth and Nichols, 2002; MacKenzie et al.,
2002, 2006). The cost, effort and complex logistics needed to
overcome these problems frequently restrict the extent of carnivore
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surveys, so there are few examples of practical, unbiased protocols
for use across large, heterogeneous areas.

One possible solution is the use of occupancy surveys: an
increasingly popular method of assessing patterns and determi-
nants of occurrence for a broad range of animal taxa. Examples in-
clude amphibians (MacKenzie et al., 2002; Mattfeldt et al., 2009;
Sewell et al., 2010), birds (e.g. Watson et al., 2008) and mammals
(Linkie et al., 2007; Thorn et al., 2009). Occupancy surveys have
been implemented world-wide, at scales ranging from small habi-
tat patches to the whole of India (Karanth et al., 2009). They re-
quire collection of detection/non-detection data, which can often
be achieved with low cost and effort compared to demographic
data (Thorn et al., 2010). Information theoretic modelling is typi-
cally used to correct for imperfect detection (false absence or pres-
ence) and temporal or spatial variations in detection probability
(MacKenzie et al., 2002, 2006). This produces unbiased maximum
likelihood estimates of numerous variables relevant to a wide
variety of research, conservation and management applications
(MacKenzie et al., 2006). Metric or categorical covariates can also
be modelled to infer relationships between observed patterns
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and the underlying processes that cause them, and thereby project
patterns in un-surveyed areas (MacKenzie et al., 2006).

Unfortunately, despite their versatility these methods are not
without drawbacks. Occupancy modelling requires moderate to
large sample sizes to achieve precise occupancy estimates
(MacKenzie et al., 2002, 2006). Some form of replication at site le-
vel is also required to estimate detection probability (MacKenzie
et al., 2002, 2006). The optimum number of sites and replicates de-
pend on sampling strategy, as well as the occupancy and detect-
ability of the focal species (Mackenzie and Royle, 2005). In some
situations, >50 replicates per site may be necessary to achieve ro-
bust occupancy estimates with standard error <0.05 (Mackenzie
and Royle, 2005). This can be achieved with multiple, independent
observers or methods, but temporal replication is more common. It
entails repeatedly surveying sites within an overall period short
enough to minimise the likelihood of changes in occupancy during
sampling (Hines et al., 2010; MacKenzie et al., 2002, 2006). Spatial
replication is possible, but requires the same effort using indepen-
dent replicates (e.g. transects), selected randomly, with replace-
ment (Hines et al., 2010). However, newly-developed methods
estimate detection probability from consecutive, spatially auto-
correlated replicates (trail segments), that do not need to be ran-
domly selected (see Hines et al., 2010). Only one visit to a site is
required with no need for multiple independent spatial replicates,
observers or methods. This may alleviate cost, effort and logistical
limitations of replication by other means (Hines et al., 2010), espe-
cially in remote study areas, where difficult conditions hinder
travel.

The Hines et al. (2010) method was developed for tigers (Panthera
tigris), but should be readily transferrable to studies of other mobile
species (Hines et al., 2010). We adapted it for use in a survey of
brown hyaenas (Hyaena brunnea). The species is classified as near
threatened, partly due to habitat loss and because although predom-
inantly scavengers, they are frequently persecuted for suspected
livestock predation (Wiesel et al., 2008). With estimated global pop-
ulation numbers <10,000 mature individuals, a 10% population
decline over three generations would cause brown hyaenas to be
re-classified as vulnerable (Wiesel et al., 2008). The species occurs
within a restricted distribution range in the South West Arid Zone
of Southern Africa (Wiesel et al., 2008). Hence, climate change also
poses a potential threat. On-going assessment of remaining popula-
tions is therefore essential to informed management and conserva-
tion. Field surveys are needed to quantify abundance and
distribution (Friedmann and Daly, 2004), monitor trends and iden-
tify causal factors (Mattfeldt et al., 2009). There have been no recent
estimates of the number of individuals in South Africa. However, the
latest conservation assessment indicates that numbers may be
increasing where people are better educated about the species (pre-
sumably engendering more tolerant attitudes toward them), and
where land use has shifted from intensive agriculture to wildlife
farming (Friedmann and Daly, 2004).

The Hines et al. (2010) tiger protocol involves sign surveys
(counts of scats, tracks, feeding signs, etc.) that should be generally
suitable for species that leave visible signs of their presence when
they use roads and trails. Such surveys have been successfully used
to study a broad spectrum of mammals, including our focal species
(Thorn et al., 2010). The tiger survey covered 22,000 km2 and pop-
ulation size was not estimated, although the authors suggest a
technique for doing so. Our aim was to extend the ‘tigers on trails’
approach to a larger spatial scale and asses its utility for estimating
African carnivore abundance and distribution. We employed a ran-
dom sampling design with the objective of estimating brown hyae-
na occupancy and population size at landscape-scale. We also
investigated our a priori hypothesis that attitude to carnivores
and land area used for wildlife farming are important determinants
of brown hyaena occupancy. We expected both factors to
positively influence occupancy, but were unsure of the relative
importance and magnitude of those effects. We analysed our data
using new occupancy models that account for spatial auto-correla-
tion (Hines et al., 2010). Finally, we used simulated data to assess
the bias, precision and occupancy monitoring power of protocols
based on the same survey design, but with differing levels of effort.
2. Materials and methods

2.1. Study area

The North West Province of South Africa covers 116,320 km2, is
located between 25–28�S and 22–28�E and is bordered by
Botswana to the north (Fig. 1). It is one of the most environmen-
tally stressed areas of South Africa, where widespread land conver-
sion and degradation (Hoffman and Ashwell, 2001) have caused
deterioration and fragmentation of natural brown hyaena habitat.
Most of the province is privately owned, approximately 10% is
state-owned or tribal land and protected areas comprise just
2833 km2 (Tladi et al., 2002). 62,979 km2 of the province is used
for crop production, irrigation, domestic livestock or wildlife farm-
ing (mainly non-domesticated ungulates often referred to as
game). Our surveys focussed on these extensive, heterogeneous
agricultural areas, where brown hyaenas and several other med-
ium and large-sized carnivore species co-exist with people.
2.2. Sampling design and field methods

The largest home range for resident brown hyaenas in an area of
Botswana that is ecologically similar to the North West Province
was 221 km2 (Maude, 2005). However, �8% of individuals are no-
madic (Mills, 1982) and in the Botswana study the largest home
range for a non-resident male was 505 km2 (Maude, 2005). This
equates to a range diameter of 22.47 km so we set our grid-based
sampling frame to the nearest interval of the decimal degree coor-
dinate system (1 grid cell = 20.39 km � 20.39 km). Grid cell dimen-
sions therefore slightly exceeded expected maximum home range
size (Hines et al., 2010) of P92% of brown hyaenas.

We overlaid our grid on the study area using ArcView GIS 3.3
and excluded protected areas and grid cells used solely for non-
agricultural purposes. We then randomly selected 25 grid cells,
henceforth termed ‘sites’. The total area of the 25 survey sites
was 10,390 km2, equating to 16.9% of agricultural land in the prov-
ince. Selection criteria included a separation of P1 grid cell to min-
imise the likelihood of individuals moving between sites during
sampling. For the same reason, sites close to one another were sur-
veyed successively. Survey duration was limited to 5 months to
minimise the likelihood of changes in brown hyaena distribution
and occupancy during sampling (Hines et al., 2010).

Sign surveys followed roads within each site chosen to maxi-
mise detection probability, thereby minimising the likelihood of
‘false absences’ (MacKenzie et al., 2006). Hines et al. (2010) divided
survey routes into spatially auto-correlated replicates consisting of
1 km trail segments. Thorn et al. (2010) gave naive occupancy esti-
mates of 0.64 from sign surveys. We assumed moderate detection
probability (0.4–0.6) because brown hyaena sign is conspicuous
and easily differentiated from that of other carnivores inhabiting
the study area. Applying those values to Mackenzie and Royle’s
(2005) findings, we determined that 25 1 km segments per site
should provide sufficient detections for precise occupancy esti-
mates, even if it were necessary to amalgamate segments during
analysis. Following Hines et al. (2010), the number of segments
surveyed at each site was proportionate to the area of agricultural
land it contained, resulting in actual effort of 11 km to 25 km. If
this sampling effort could not be achieved in one property, we
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Fig. 1. Location of the study area (1a), main land cover classes, and position of sample units (1b) where brown hyaenas were detected (occupied) and not detected
(unoccupied).
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surveyed another property within the site and pooled the data. On
rare occasions when land owners in the randomly selected site
were un-contactable or unwilling to allow access, we surveyed
the closest alternative site.

We surveyed during the dry season, when sign persists longest
because of decreased weathering and coprophage abundance. Two
experienced observers conducted all surveys from a vehicle travel-
ling 10–15 km/h, using the odometer to measure consecutive 1 km
replicates. We searched for brown hyaena sign on and within a 2 m
strip either side of un-tarred farm roads (Thorn et al., 2010). The
primary observer was seated in a spotter’s chair fixed above the
front bumper and the secondary observer looked for sign from
within the vehicle. We identified sign to species based on colour,
dimensions, position and presence of accompanying signs (Stuart
and Stuart, 2000).

We collected site-specific covariate data during standardised,
semi-structured interviews with the manager or owner of each
property where we completed sign surveys (i.e. up to two
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interviews per site). Respondents estimated the land area (km2)
within their property used for wildlife farming. We assessed atti-
tudes to carnivores using nine statements (e.g. ‘this site cannot tol-
erate any predators’ and ‘it does not matter if predators kill a few of
my animals’), which respondents rated on a five point Likert scale
(Zimmermann et al., 2005). Answers were coded from one
(strongly negative) to five (strongly positive) and summed to give
an attitude score per respondent. We tested internal consistency
using Chronbach’s alpha (0.78), confirming that the summed score
was truly additive and reflected overall attitude (Zimmermann
et al., 2005). If two properties were surveyed within the site, mean
covariate values were used in occupancy modelling. We also in-
cluded a survey-specific covariate for substrate quality to minimise
un-modelled sources of heterogeneity (MacKenzie et al., 2006).
Replicates with substrate that favoured detection of sign (e.g. fine,
shallow soil) were coded ‘1’ and those where scat and particularly
tracks were hard to detect (e.g. deep sand or rocky areas) were
coded ‘0’.

2.3. Analysis

We constructed standard detection histories for each site
(MacKenzie et al., 2006) and converted site-specific covariates
(km2 used for wildlife farming and summed attitude score) to
standard normalised scores (Donovan and Hines, 2007). We then
imported detection histories and corresponding covariate values
into PRESENCE v.3.0 (Hines, 2006).

The new spatial auto-correlation models estimate four parame-
ters, even without covariates (Hines et al., 2010), and in view of our
sample size, we considered it likely that models containing covar-
iates might fail to converge. We overcame this problem using the
approach recommended by Hines et al. (2010) for abundance esti-
mation. We fitted the spatial auto-correlation model without
covariates and used the results to determine the cumulative seg-
ment length at which detection of the focal species ceased to be
dependent on detection in the preceding segment. At that length,
we would expect h � h0, where h = probability of the species being
present at a replicate (i.e. segment) given the previous replicate
(i.e. segment) was not occupied by the species, and h0 = probability
of the species being present at a replicate (i.e. segment) given the
previous replicate (i.e. segment) was occupied by the species.
Detection histories were collapsed to that segment length, generat-
ing approximately independent replicates suitable for use with
standard PRESENCE models. We aggregated substrate quality val-
ues using the mode of values in the collapsed segments.

We began by fitting candidate single-season models, where
occupancy (w) was first assumed constant, and then allowed to
vary with individual or additively combined site-specific covari-
ates. For each permutation of w, detection probability (q) was first
assumed constant and then held in a general model (see MacKenzie
et al., 2006, pp. 113–116). We ranked candidate models in order of
parsimony using Akaike Information Criterion (AIC) (Burnham and
Anderson, 2002). The small sample correction AICc was not used
because effective sample size could not be identified (Hines et al.,
2010; MacKenzie et al., 2006). We used Akaike model weight to
determine relative evidence in favour of each model, and summed
weights to determine the relative influence of site-specific covari-
ates (Burnham and Anderson, 2002; MacKenzie et al., 2006). We
model averaged maximum likelihood parameter estimates (w and
q̂) from all models with >0.01 Akaike weight (Linkie et al., 2007).
Parameter estimates from models with site or survey-specific
parameter values, were calculated as an average of the values,
weighted by the number of sites or surveys in which they occurred
(MacKenzie et al., 2006). The fit of the global model was assessed
using the parametric bootstrap procedure implemented in
PRESENCE (MacKenzie and Bailey, 2004).
We used the same modelling approach to estimate brown hyae-
na population size from the Royle–Nichols abundance induced het-
erogeneity model (henceforth the Royle–Nichols model) in
PRESENCE. Like the single-season model, this model also assumes
data from independent survey replicates, so we again used the
collapsed detection history and covariates. However, it was not
possible to assess goodness of fit for the Royle–Nichols or spatial
auto-correlation models. Goodness of fit statistics are not currently
reported by PRESENCE and further research is needed to develop
appropriate tests (Linkie et al., 2010).

The Royle–Nichols model provides estimates of the parameters
k and r, representing average abundance per site and innate species
detectability respectively (Royle and Nichols, 2003). The parameter
k can be interpreted as an index of abundance. However, if detec-
tion of individuals is independent and site-specific abundance of
individuals follows a Poisson distribution (which is the mixture
distribution used in PRESENCE models), k may also be interpreted
as the expected number of individuals per sample unit (MacKenzie
et al., 2006). We took this approach and divided k by the sampling
unit area (415.75 km2) to estimate average brown hyaena density
in the sites we surveyed. Our sampling design made it unlikely that
the same individuals were detected in two survey sites, but we
considered it likely that individuals detected in survey sites might
also use adjacent grid cells. Thus, overall density would depend on
the number of grid cells used by individuals (J. Nichols, personal
communication). We therefore divided k by the average number
of grid cells used by brown hyaenas, to estimate overall density
across surveyed and un-surveyed sites.

To determine the optimum combination of site and replicate
numbers, we used our parameter estimates as ‘true’ values and
simulated data under various sampling permutations (1000 itera-
tions each). We capped effort at 75 sites (50% of total sites in agri-
cultural land) and 12 segments (48 km) per site because survey
designs requiring greater effort would increasingly counteract
methodological benefits. For each sampling permutation we
approximated bias (E[/̂ � /]), relative bias (bias ½/̂�=/), coefficient
of variation (CV = SE ð/̂Þ=/̂), and root mean square error

(RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE½/̂� � /Þ2

q
), where /, and /̂ denote the true parameter

value used to generate the data and the simulated estimator
respectively, and E/̂ and CV are calculated from the mean of
1000 estimates in each simulated data set (Bailey et al., 2007).
RMSE incorporates the sum of variance and squared bias, thus
offering a combined measure of bias and precision (Bailey et al.,
2007).

We investigated how sample size (number of sites) affected sta-
tistical power to detect 30% higher, or 30% and 50% lower occu-
pancy, under Type I (false positive) error probabilities (a) of 0.05,
0.1 and 0.2. Power is defined as 1-b, where b is the probability of
Type II error (false negative). We selected 30% as an effect size that
was probably large enough to be detectable with realistic sample
sizes, but small enough to be reversible through management
intervention (Barlow et al., 2008). We modelled the 50% decline
largely to explore the trade off between effect size and sample size.
To generate occupancy declines, we used multi-season models and
numeric analytic large-sample approximations (Bailey et al., 2007).
Initial occupancy was 0.748, detection probability was constant at
0.477 for all models, and for simplicity, two replicates per site were
assumed. As we are not aware of relevant estimates from carnivore
survey data we chose arbitrary values of extinction and colonisa-
tion probability to generate changes in occupancy. These values re-
flect hypothetical scenarios in which the probability that sites will
become unoccupied (extinction) and the probability that unoccu-
pied sites will be re-colonised produces a net gain or loss in the
number of sites occupied. Extinction probabilities of 0.02, 0.19
and 0.33 and corresponding colonisation probabilities of 0.7, 0.18
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and 0.17 produced +30%, �30% and �50% changes respectively. We
used a likelihood ratio test (LRT) to compare each change model
(the alternative hypothesis, Ha) with a nested model that assumed
no change in occupancy over time (the null model, Ho) (Mattfeldt
et al., 2009). The Royle–Nichols model has not been extended to
multi-season estimation, so it was not possible to use a similar ap-
proach for abundance.

Simulated data and numeric-analytic approximations were gen-
erated using the program GENPRES (Bailey et al., 2007) and LRT
tests were conducted in program MARK (White and Burnham,
1999).
3. Results

We completed 577 km of sign surveys between 13th May and
10th October 2008 and detected brown hyaena sign in 85 segments
at 18 of the 25 sites, giving a naive occupancy estimate of 0.72.

Using 1 km segments, the spatial auto-correlation model w(.),
h(.), h0(.), q(.) provided estimates of ĥ = 0.175 (±SE 0.022) and
Table 1
Estimated occupancy (ŵ) and detection probability (q̂) for brown hyaenas from sign surve
Information Criterion (AIC) for a particular model compared with the top ranked model, wi i
of variation (CV) was calculated as standard error (SE)/parameter estimate. ‘.’ denotes that
the covariates landowner attitude to carnivores, land area used for wildlife farming and s

Model DAIC wi K

w (attitude + km2 wildlife), p(substrate) 0.00 0.452 5
w(attitude), p(substrate) 1.24 0.243 4
w(km2 wildlife), p(substrate) 2.38 0.137 4
w(attitude + km2 wildlife), p(.) 3.98 0.067 4
w(km2 wildlife), p(.) 4.49 0.048 3
w(attitude), p(.) 5.12 0.035 3
w(.), p(substrate) 6.51 0.017 3
w(.), p(.) 8.53 0.006 2
Model Averaged Estimates

Table 2
Simulation results for 1000 sets of detection history data generated using true values of w
Royle–Nichols abundance models, and varying numbers of sites and spatial replicates (k
estimates ( �SE) and root mean squared error (RMSE) from all 1000 simulated data sets a
permutation.

Sites k �̂w �SE ŵ Bias �̂w Relative bias �̂w CV �̂w RM

25 3 0.784 0.127 3.6% 1.9% 16.2% 0.12
25 6 0.761 0.088 1.3% 0.7% 11.6% 0.09
25 9 0.758 0.084 1.0% 0.6% 11.1% 0.08
25 12 0.757 0.084 0.9% 0.5% 11.0% 0.08
35 3 0.763 0.111 1.5% 0.8% 14.6% 0.11
35 6 0.760 0.075 1.2% 0.6% 9.8% 0.07
35 9 0.750 0.072 0.2% 0.1% 9.6% 0.07
35 12 0.754 0.071 0.6% 0.3% 9.5% 0.07
45 3 0.765 0.099 1.7% 0.9% 12.9% 0.09
45 6 0.753 0.067 0.5% 0.3% 8.9% 0.06
45 9 0.753 0.064 0.5% 0.2% 8.5% 0.06
45 12 0.754 0.063 0.6% 0.3% 8.4% 0.06
55 3 0.755 0.089 0.7% 0.4% 11.8% 0.09
55 6 0.754 0.060 0.6% 0.3% 8.0% 0.06
55 9 0.750 0.058 0.2% 0.1% 7.7% 0.06
55 12 0.753 0.058 0.5% 0.2% 7.6% 0.06
65 3 0.765 0.082 1.7% 0.9% 10.7% 0.08
65 6 0.752 0.056 0.4% 0.2% 7.4% 0.05
65 9 0.754 0.053 0.6% 0.3% 7.1% 0.05
65 12 0.753 0.053 0.5% 0.3% 7.0% 0.05
75 3 0.761 0.077 1.3% 0.7% 10.1% 0.07
75 6 0.753 0.052 0.5% 0.2% 6.9% 0.05
75 9 0.751 0.050 0.3% 0.1% 6.6% 0.05
75 12 0.752 0.049 0.4% 0.2% 6.6% 0.05
ĥ0 = 0.333 (±SE 0.052), indicating strong between-segment depen-
dence. We collapsed brown hyaena detection histories to 4 km seg-
ments because this came closest to h � h0, producing estimates of
ĥ = 0.447 (±SE 0.070) and ĥ0 = 0.529 (±SE 0.070). Hines et al.
(2010) found that standard models considerably under-estimated
occupancy when spatial auto-correlation was not properly ac-
counted for. We compared the occupancy estimate from our top
ranked single-season model, based on 4 km segments (Table 1),
with single season and spatial auto-correlation models, based on
1 km segments. As expected, the 1 km standard single-season
model produced a lower estimate (ŵ = 0.733). The 1 km spatial
auto-correlation model produced an estimate matching our result
(ŵ = 0.761), confirming that 4 km segments provided a reasonable
approximation of independence. Hence, although our results were
generated from standard PRESENCE models, we would expect sim-
ilar results from spatial-autocorrelation models.

There was no evidence of a lack of fit in the global 4 km segment
single-season model (average v2 = 11.49, P = 0.30) and we did not
adjust standard errors as there was no evidence of over-dispersion
(ĉ = 1.05). With614% coefficient of variation (CV), precision of both
ys (n = 25) in the North West Province, South Africa. DAIC is the difference in Akaike
s the AIC model weight, K is the number of parameters in the model and the coefficient
a model parameter was held constant instead of being allowed to vary as a function of
ubstrate suitability for sign surveys.

ŵ (±SE) CV ŵ q̂ (±SE) CV q̂

0.761 (0.093) 0.12 0.477 (0.063) 0.13
0.761 (0.093) 0.12 0.477 (0.064) 0.13
0.729 (0.105) 0.14 0.491 (0.066) 0.14
0.735 (0.133) 0.18 0.486 (0.051) 0.11
0.727 (0.105) 0.15 0.491 (0.048) 0.10
0.750 (0.155) 0.21 0.476 (0.055) 0.11
0.733 (0.092) 0.13 0.488 (0.067) 0.14
0.732 (0.092) 0.13 0.488 (0.049) 0.10
0.748 (0.100) 0.13 0.477 (0.062) 0.13

= 0.748 and p = 0.477 for single-season occupancy models, k = 1.87 and p = 0.438 for
). Presented are the mean parameter estimates ( �̂wand�̂k), mean standard error of the
s well as bias, relative bias, and coefficient of variation (CV) under each sampling

SE ŵ �̂k �SE k̂ Bias �̂k Relative bias �̂k CV �̂k RMSE k̂

8 1.970 0.668 10.0% 5.4% 33.9% 0.673
5 1.874 0.355 0.4% 0.2% 19.0% 0.226
4 1.858 0.312 �1.2% �0.6% 16.8% 0.148
3 1.852 0.294 �1.8% �0.9% 15.9% 0.112
2 1.965 0.521 9.5% 5.1% 26.5% 0.502
6 1.888 0.300 1.8% 1.0% 15.9% 0.184
2 1.877 0.264 0.7% 0.4% 14.1% 0.121
2 1.859 0.250 �1.1% �0.6% 13.5% 0.101
9 1.947 0.422 7.7% 4.1% 21.7% 0.369
8 1.892 0.263 2.2% 1.2% 13.9% 0.165
7 1.872 0.232 0.2% 0.1% 12.4% 0.107
4 1.868 0.220 �0.2% �0.1% 11.8% 0.088
3 1.916 0.367 4.6% 2.5% 19.2% 0.317
1 1.876 0.235 0.6% 0.3% 12.5% 0.147
2 1.860 0.208 �1.0% �0.5% 11.2% 0.097
2 1.863 0.199 �0.7% �0.4% 10.7% 0.073
6 1.915 0.336 4.5% 2.4% 17.5% 0.291
5 1.882 0.216 1.2% 0.7% 11.5% 0.129
6 1.875 0.193 0.5% 0.3% 10.3% 0.090
2 1.867 0.183 �0.3% �0.2% 9.8% 0.064
7 1.919 0.308 4.9% 2.6% 16.1% 0.273
2 1.879 0.200 0.9% 0.5% 10.6% 0.118
0 1.870 0.178 0.0% 0.0% 9.5% 0.081
0 1.871 0.170 0.1% 0.1% 9.1% 0.063
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ŵ and q̂ was good (Table 1). The model averaged estimate of brown
hyaena occupancy was slightly higher than the naive estimate, so
we may have failed to detect the species in one site where it was
present (Table 1). Summed Akaike weights for site covariates were
similar with 0.79 for attitude score (b = 2.663 ± SE 1.718) and 0.70
for wildlife farm area (b = 8.628 ± SE 6.587), indicating that both
have a strong positive influence on occupancy. In the top ranked
model, sites with above average attitude scores had 89% higher
mean estimated occupancy than sites where attitude was below
average ( �̂w = 0.991 ± SE 0.019 compared with �̂w = 0.523 ± SE
0.160). It seems that presence of wildlife farms is more important
than their land area, although area exerts a lesser positive influ-
ence on occupancy. Mean estimated occupancy was 57% higher
in sites that had wildlife farms than in sites that had none
( �̂w = 0.906 ± SE 0.057 compared with �̂w = 0.577 ± SE 0.138). Of the
sites that did have wildlife farms, those with P average area used
for wildlife farming had 15% higher mean estimated occupancy
than those with < average wildlife farming area ( �̂w = 0.979 ± SE
0.052 compared with �̂w = 0.851 ± SE 0.060). The odds of finding
brown hyaena sign in segments with good substrate were 2.5
times higher than in segments with poor substrate
(b = 0.924 ± SE0.378).
(a) Occupancy 

(b) Abundance 

Fig. 2. The relationship between sampling effort and root mean square error (RMSE)
simulations of each sampling permutation (Table 2).
The DAIC between the top and bottom ranked Royle–Nichols
abundance induced heterogeneity models was 1.04 and all eight
candidate models achieved similar Akaike weight, indicating that
all were equally well supported. It seems our sample size was
insufficient to differentiate covariate effects in this model (Royle
and Nichols, 2003). We therefore took our parameter estimates
from the constant model k̂ð:Þ; r̂ð:Þ This gave k̂ = 1.867 (±SE 0.507,
CV = 27%), r̂ = 0.438 (±SE 0.088, CV = 20%), and average expected
density in our 25 grid cells of 0.45/100 km2 (i.e. k̂/4.16 km2). When
we overlaid our sampling frame on home range figures in Maude
(2005) the mean number of grid cells used by individual brown
hyaenas was 3. This gives an overall density estimate across sur-
veyed and un-surveyed grid cells of 0.45/3 = 0.15/100 km2 (95%
confidence interval, 0.07–0.23/100 km2).

Low RMSE indicates low bias and high precision. Unsurprisingly,
simulations (Table 2) showed that greater effort is required to ob-
tain low RMSE for abundance estimates compared with occupancy
estimates. The largest decrease in RMSE of both parameters oc-
curred when effort increased from three to six replicates per site
(Fig. 2). Further increases in the number of replicates conferred
diminishing incremental benefit. However, at effort of six replicates
per site, RMSE of abundance estimates was up to 139% greater than
of occupancy estimates (a), and abundance estimates (b) generated from 1000



Table 3
The effect of sample size (number of sites) on power to detect changes in brown hyaena occupancy, with annual monitoring over a 5 year period. Initial occupancy probability was
0.748 in all cases, extinction and colonisation parameters used to generate increases or decreases in occupancy are stated in the text. Power is approximated using noncentral chi-
square statistics from likelihood ratio tests (Burnham et al., 1987).

30% increase: 30% decrease: 50% decrease:

Sites X2
4

Power a 0.05 Power a 0.1 Power a 0.2 X2
4

Power a 0.05 Power a 0.1 Power a 0.2 X2
4

Power a 0.05 Power a 0.1 Power a 0.2

25 0.81 9% 17% 29% 1.31 13% 21% 34% 3.79 30% 43% 58%
35 1.14 11% 19% 33% 1.84 16% 26% 40% 5.30 42% 55% 69%
45 1.46 13% 22% 36% 2.36 20% 30% 45% 6.81 53% 65% 78%
55 1.79 16% 25% 39% 2.89 24% 35% 50% 8.33 62% 74% 85%
65 2.11 18% 28% 43% 3.41 28% 39% 55% 9.84 71% 81% 89%
75 2.43 20% 31% 46% 3.94 32% 44% 59% 11.36 78% 86% 93%
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RMSE of occupancy estimates (Table 2). At effort of 12 replicates per
site, the difference was between 16% and 40% so this level of effort
may be preferable in surveys attempting to estimate both parame-
ters. In addition, although relative bias of occupancy and abundance
estimates was not always optimal at 12 replicates, CV and RMSE
were. Generally, percent decrease (improvement) in RMSE declined
at sample sizes of P55 sites for occupancy and P65 for abundance,
suggesting that lower sample sizes amplify bias and error.

Simulations with 25 sites and six replicates show much better
precision than was achieved with equivalent effort in our field sur-
vey. This is probably due to missing observations in our survey (in-
duced by scaled effort), which adversely affect precision
(MacKenzie et al., 2002). As an example, the standard error esti-
mate from our simulation would reduce the width of the 95% con-
fidence interval for our overall density estimate by 30%.

Power analysis (Table 3) showed that none of the sampling per-
mutations we considered are likely to provide sufficient sensitivity
to detect a 30% change in occupancy with P80% power. Even at
a = 0.2, 145 sites were required to detect a 30% decline and 225
to detect an equivalent increase. By comparison, �80% power to
detect a 50% decline in occupancy could be achieved with sample
sizes P45 sites, although 75 sites would be required to achieve
that level of power with a = 0.05.
4. Discussion

Monitoring programmes are often criticised for a lack of scien-
tific rigour, arising out of poor design or insufficiently robust sta-
tistical analysis (Linkie et al., 2010; Mattfeldt et al., 2009). We
evaluated the efficacy of a new method that addresses these is-
sues in a logistically efficient manner. Our assessment consisted
of a field survey based on a probabilistic sampling design, per-
mitting generalisation of the results. We then used simulations
to extrapolate a protocol suitable for monitoring landscape-scale
population trends. Our findings account for sources of bias (spa-
tial variation, imperfect detection and spatial-autocorrelation)
that give rise to unreliable inferences if overlooked. They also
combine questionnaire and biophysical data in an occupancy
modelling framework. We are aware of only two prior studies
that have used this approach (Karanth et al., 2009; Zeller et al.,
2011), which proved an efficient means of integrating social
and biological factors that affect brown hyaena conservation
status.

We accounted for spatial auto-correlation by aggregating tran-
sects to 4 km, and considered the resulting estimates of ĥ and ĥ0

sufficiently close to conclude that there was no evidence of strong
between-segment dependence. Overlapping confidence intervals
support this assumption. However, a 0.08 discrepancy between ĥ
and ĥ0 indicates some remaining between-segment dependence
and it would be useful to quantify the effect of this residual
auto-correlation. Achieving this would require larger sample sizes
to enable a comparison of results from spatial-autocorrelation
models with those from aggregated data used in standard single-
season models.

We also made a number of assumptions when interpreting the
results from the Royle–Nichols model. We assume that the model
fitted the data well, detection of individuals was independent, indi-
viduals were equally detectable across the whole sampling site,
and site-specific abundance of individuals followed a Poisson dis-
tribution. We also presume that individuals in our study area use
an average of three grid cells and have similar home range sizes
to individuals in Botswana. Although these assumptions are not
inherently unrealistic, they are untested, so our density estimate
should be considered speculative at this point. Nevertheless, it
seems reasonable to infer that brown hyaena density in our agri-
cultural areas was at least an order of magnitude lower than den-
sity in or adjoining many protected areas. Examples of density
estimates from protected areas include 1.8/100 km2 in the south-
ern Kalahari (Mills, 1982), 62.0/100 km2 in Makgadikgadi,
Botswana (Maude, 2005), and 2.8/100 km2 in the North West
Province, South Africa (Thorn et al., 2009).

A number of anthropogenic and natural factors probably influ-
ence this disparity, but we focussed on two anthropogenic deter-
minants that local experts consider particularly influential. It is
not clear by what mechanism they benefit brown hyaenas. We as-
sume that positive attitudes reduce direct persecution and unin-
tentional brown hyaena mortality caused by lethal measures
targeted at other carnivores, thus reducing extinction rates. Con-
verting from intensive agricultural practices to wildlife farming al-
lows natural succession of vegetation (Hejcmanova et al., 2010),
increasing the frequency of good quality habitat patches (and pos-
sibly natural prey availability) in an environmentally stressed
landscape. In addition, carnivores dispersing through a hostile hu-
man-modified matrix typically experience high mortality rates
(Woodroffe and Ginsberg, 1998), and wildlife farms may therefore
provide an important refuge from anthropogenic threats. Further
surveys will be required to test these hypotheses and identify
which additional factors exert the strongest beneficial or threaten-
ing influences. Such data would greatly assist optimal deployment
of conservation effort and resources.

In the meantime, activities like education and outreach initia-
tives that promote positive attitudes are likely to increase the area
occupied by brown hyaenas and may alleviate the threat of
population declines due to persecution. Activities that encourage
wildlife farming are likely to increase connectivity between sub-
populations, facilitating gene flow and rescue effects in the event
of patch level extinction. Thus, increased prevalence of positive
attitudes and wildlife farming should confer greater overall meta-
population resilience to threats in agricultural land. However, if
this results in carnivore population growth, any concomitant in-
crease in livestock depredation would likely prompt rising perse-
cution of suspected culprits (Inskip and Zimmermann, 2009;
Treves and Karanth, 2003). In view of this, programmes that
support farmers in implementing non-lethal anti-predation
methods may also be increasingly relevant.
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Our simulation results provide a good starting point for design-
ing studies that balance precision, bias and power, where the aim
of a survey is to monitor both occupancy and abundance from
detection/non-detection data. We found that six replicates per site
is adequate for estimating brown hyaena occupancy. With >5 rep-
licates, the Royle–Nichols model performs reasonably well at sam-
ple sizes 6100, especially if detection probability is P0.3 (Royle
and Nichols, 2003). This may often be achievable in carnivore sign
surveys. For example, a North American study estimated detection
probability from snow tracking of coyotes (Canis latrans), fishers
(Martes pennanti) and domestic cats (Felis catus) at >0.3, >0.4 and
>0.5 respectively (Gompper et al., 2006). However, Hines et al.
(2010) report tiger detection probability at 60.14 in their sign sur-
vey, and for such rare species, P10 replicates or sample sizes >100
are recommended (Royle and Nichols, 2003).

Increasing effort to 12 replicates improved RMSE and CV, which
would otherwise be unacceptably high for our brown hyaena
abundance estimates. Furthermore, adding replicates is likely to
be relatively efficient in a cluster-sampling context because once
observers have reached a site, the cost of performing additional
sign survey replicates is low (Mackenzie and Royle, 2005). In addi-
tion, other authors have suggested that completing more replicates
rather than increasing sample size is particularly efficient for spe-
cies with high occupancy (Field et al., 2005; Mackenzie and Royle,
2005; Mattfeldt et al., 2009). That being said, power increases with
sample size. Other carnivore studies have used monitoring criteria
of a = b = 0.2 (Barlow et al., 2008), which assumes equal economic,
social, political and environmental costs of Type I and II errors
(Mapstone, 1995). Using these criteria, annual effort of 12 repli-
cates at each of a simple random sample of P65 sites would offer
sufficient power to detect a 50% decline in brown hyaena occu-
pancy in our study area over a 5 year period. It would also produce
abundance estimates with acceptable bias and precision, especially
if the survey can be designed to minimise missing observations
and avoid the associated loss of precision. One way of achieving
this would be to account for variation in the proportion of agricul-
tural land in the site by modelling it as a covariate rather than scal-
ing effort.

A single survey of P65 sites would provide unbiased and rea-
sonably precise brown hyaena population parameter estimates.
However, the aim of many monitoring programmes is to provide
early warning that management or recovery actions are needed
(Field et al., 2005). We cannot yet determine the effort or time-
scale required to detect a 10% decline in brown hyaena abun-
dance, but waiting 5 years to detect a 50% occupancy decline
for a low density species is probably unacceptably risky. Survey-
ing over a longer period may enable detection of smaller trends
but sampling a larger number of sites would be a safer strategy.
Whereas it may be impractical to survey more than 75 sites using
our sampling frame in our study area, it would be appropriate in
surveys with similar extent but smaller grid cell dimensions, or
similar grid cell dimensions and a larger extent. For example,
brown hyaenas have larger home ranges than most sympatric
species, so smaller grid cells could be used for other carnivores,
increasing the practicality of larger samples without increasing
the extent of the survey. For wide-ranging species, it may be rea-
sonable to propose an annual survey of >200 grid cells across a
larger study area, especially if conservation organisations solicit
help from land owners. This approach is illustrated by other
large-scale volunteer wildlife monitoring programs, such as the
UK Breeding Bird Survey (Risely et al., 2010). Thousands of volun-
teers participate nationwide, producing sufficient data to monitor
population trends in many UK bird species. Such surveys might
also enhance public awareness of carnivore ecology, potentially
improving attitudes to carnivores as well as providing sufficient
power to detect small effect sizes.
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