
874

Special Section: The Value and Utility of Presence–Absence Data 
to Wildlife Monitoring and Research
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Abstract: Knowledge of factors influencing animal distribution and abundance is essential in many areas of ecologi-
cal research, management, and policy-making. Because common methods for modeling and estimating abundance
(e.g., capture–recapture, distance sampling) are sometimes not practical for large areas or elusive species, indices
are sometimes used as surrogate measures of abundance. We present an extension of the Royle and Nichols (2003)
generalization of the MacKenzie et al. (2002) site-occupancy model that incorporates length of the sampling inter-
val into the model for detection probability. As a result, we obtain a modeling framework that shows how useful
information can be extracted from a class of index methods we call indirect detection indices (IDIs). Examples of
IDIs include scent station, tracking tube, snow track, tracking plate, and hair snare surveys. Our model is maximum
likelihood, and it can be used to estimate site occupancy and model factors influencing patterns of occupancy and
abundance in space. Under certain circumstances, it can also be used to estimate abundance. We evaluated model
properties using Monte Carlo simulations and illustrate the method with tracking tube and scent station data. We
believe this model will be a useful tool for determining factors that influence animal distribution and abundance. 
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Knowledge of animal abundance and the factors
influencing abundance is essential in many areas
of ecological research (e.g., demography, habitat
or treatment effects), management (e.g., pest
control, harvest quotas), and policy-making (e.g.,
species listings). Because it is seldom possible to
census populations of interest, abundance is usu-
ally estimated by laying forth a set of assumptions
and then constructing a statistical model linking
data and parameters, so an estimator can be
derived. Indeed, the importance of abundance
estimators in ecological research and manage-
ment is affected by the vast array of methods and
models available for estimating population size
(e.g., Seber 1982, Williams et al. 2002). Most
approaches for estimating abundance are based
on counts (C) of animals, the expectation (E) of
which can be related to population size (N)
through the detection probability (p), such that
E[C] = pN (Williams et al. 2002). Because C is
observable and N is the quantity to be estimated,
the problem of estimating animal abundance
comes down to estimating p, so we can compute
the population size estimate using the natural esti-
mator N̂ = C/p̂ . Numerous models exist for esti-
mating p, the most common of which are based on
capture–recapture sampling using marked indi-

viduals (Seber 1982, Pollock et al. 1990, Williams et
al. 2002) and distance sampling (Buckland et al.
2001). Such models are likelihood-based, allow
abundance and other parameters to be modeled
as functions covariates (e.g., habitat), and soft-
ware for estimating parameters is readily available
(White and Burnham 1999, Thomas et al. 2002).

Common criticisms of capture–recapture and
distance sampling methods are that they are
time-consuming, expensive, and difficult to
implement. Therefore, they are sometimes not
practical when large areas or many populations
need to be sampled or when species are elusive
or difficult to mark. Consequently, indices that do
not require capturing or marking individuals and
that can be easily implemented over large areas
are often used as surrogate measures of popula-
tion size (in spite of the loss of strong inference).
Indices can be classified as direct, where the index
is based on counts of individuals that are present,
or indirect, where the index is based on evidence
left by an animal (e.g., tracks, hair). For both
classes of indices, the underlying premise is that
the index (I ) is proportional to abundance (N),
such that I = β(N)N. In this expression, β(N) may
represent a detection probability (p) or per capi-
ta rate of cue production, and it might vary as a
function of N. In particular, β(N) may be monot-
onic or nonmonotonic, or linear or nonlinear—1 E-mail: tom_stanley@usgs.gov
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each of which has certain implications for how
the index should be interpreted (Williams et al.
2002). Because valid interpretation of indices
requires that β(N) be known and unchanging,
and because this is almost never true in practice,
indices are generally of only limited value. In
many applications of indices where β(N) is
unknown, it is tacitly assumed β(N) is constant for
all N (i.e., β(N) = β) and that it is homogenous
such that βi = βj (i =/ j), where the subscript
denotes points in time or space (or some arbi-
trary category). Given these assumptions are
true, indices can be used to estimate relative
abundance among points: E[I1/I2] ∼∼ E[I1]/E[I2]
= β1N1/β2N2 = βN1/βN2 = N1/N2 (Williams et al.
2002). However, without validation of these
assumptions, or if there is error in the indices,
estimated relative abundance likely will be biased
(Barker and Sauer 1992), and conclusions based
on the estimate will be unfounded.

Indirect indices are often implemented by estab-
lishing detection stations that record visits by the
target species over some sampling interval. During
the sampling interval, stations may be visited by
multiple individuals multiple times, and detection
stations do not remove individuals from the popu-
lation. At the end of the sampling interval the
investigator records visits to stations and resets the
stations so they can detect visits over the next sam-
pling interval. By reset we mean all evidence of vis-
itation by the target species is removed, erased,
flagged, or otherwise labeled by the investigator,
so the evidence is not counted as a visit during sub-
sequent checks of the station. Hereafter, we refer
to indirect indices that use detection stations that
can be reset as IDIs. Examples of IDIs abound in
the literature and include scent-station surveys,
where the detection station is an attractant-supple-
mented stake centered in a circle of fine material
used as a tracking substrate (Linhart and Knowl-
ton 1975, Conner et al. 1983, Diefenbach et al.
1994); tracking plate surveys, where the detection
station is a sooted aluminum plate that records
tracks (Barrett 1983, Orloff et al. 1993, Olson and
Werner 1999); tracking tube surveys, where the
detection station is a tunnel (e.g., PVC pipe) that
records tracks on a paper strip lying between
marking sources at the tunnel entrances (Glen-
non et al. 2002, Nams and Gillis 2003); hair snare
surveys, where the detection station consists of a
snare device (e.g., tape, barbed wire) that collects
hair from individuals visiting the station (Mowat
and Strobeck 2000, Belant 2003); and snow track
surveys, where a snow-covered transect represents

the detection station, and visits are recorded by
sets of tracks intersecting the transect (the station
is reset by new snow or marking existing tracks;
Stanley and Bart 1991, Hayward et al. 2002). Indi-
rect indices like scat surveys (Clevenger and
Purroy 1996, Harrison et al. 2004, Webbon et al.
2004) or pellet-group surveys (Freddy and Bow-
den 1983, Mooty et al. 1984, Haerkoenen and
Heikkilae 1999), where the detection station is a
transect, strip, or plot of land, are normally not
considered IDIs because it is usually not possible
to locate all of the scat or every pellet group when
the station is checked (i.e., detectability is <1;
Bulinski and McArthur 2000). Thus, for these
indices the detection stations can not be com-
pletely reset before the next sampling interval. 

Typically, data gathered from IDIs are collapsed
into a binary variable (i.e., station was visited/not
visited over the sampling interval) and are summa-
rized as the proportion of stations visited. Some-
times these proportions are standardized by the
length of the sampling interval (e.g., Nams and
Gillis 2003) and are used directly as an abundance
index (I ) for N, or these proportions are used to
compute relative abundance in time or space. In
either case, the implicit assumption is that β(N) is
constant and homogenous. As noted above, how-
ever, unless this assumption is verified or β(N) is
known, the relationship between I and N will be
unknown, and the validity of the index will be in
question. We present a modeling framework that
shows how useful information can be extracted
from IDIs when the detection station data are bina-
ry. Specifically, we show how IDIs can be used to (1)
estimate site occupancy when detectability of indi-
viduals is <1, (2) model patterns of abundance in
space to identify factors influencing occupancy
and abundance, and (3) estimate animal abun-
dance under certain restrictive assumptions. 

DATA AND MODEL
We consider a sampling situation where an

investigator uses an IDI to gather information
about a population of interest and where it is rea-
sonable to assume the population is demograph-
ically and geographically closed over the period
that sampling occurs. Data collection proceeds by
establishing R detection stations laid out in a
grid, transect, or some other pattern, that record
visits by the species over some sampling interval.
At the end of a sampling interval, the investigator
checks each station and records the length of the
sampling interval and whether it was visited by
the target species, and the investigator resets the
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station for the next sampling interval (hereafter
we assume stations are reset when they are
checked). More formally, let i index detection
stations (i = 1,…, R) and j index sampling occa-
sions (i.e., checks of stations at the end of a sam-
pling interval; j = 1,…, Ji ; the index on J allows the
number of occasions to vary among stations),
then the data recorded are wij, where wij = 1 if the
ith station was visited between sampling occa-
sions j and j – 1 (wij = 0 otherwise), and tij, where
tij = the time (e.g., days) elapsing between sam-
pling occasions j and j – 1 (we define j = 0 to be
the occasion on which stations are established).
We assume visits recorded at a station during a
sampling interval do not vanish before the investi-
gator checks the station (e.g., under windy con-
ditions, snow tracks at a station may disappear
before the station is checked). If this assumption is
violated, the value recorded for tij will be incorrect,
and this will bias estimated detection probabilities.

Data from IDIs have much in common with data
from site-occupancy studies, where a population
of sites are surveyed, and presence–absence of
the species of interest at each site is determined.
In most site-occupancy studies, interest is in the
proportion of sites that are occupied, and it is
often implicitly assumed that presence-absence
can be determined without error. For this to be
true, however, it is necessary that the conditional-
on-occupancy detection probability equal 1. Rec-
ognizing that this is often not the case and that
some sites will appear to be unoccupied because
animals that were present went undetected,
MacKenzie et al. (2002) developed a model for
estimating conditional-on-occupancy detection
probabilities (p) and occupancy probabilities (ψ)
using data from multiple visits to sites. This
model was later generalized by Royle and Nichols
(2003) to allow abundance at sites to be modeled
and estimated using suitable covariates (e.g.,
habitat). They accomplished this by considering
the likelihood to be a mixture of site-specific un-
conditional detection probabilities that depend
on only the number of animals available for
detection. Specifically, they modeled the site-spe-
cific unconditional detection probability pi as 
1 – (1 – r)Ni, where r is the detection probability
of an individual and Ni is the number of animals
available for detection at site i. Royle and Nichols
(2003) assumed closure of the site-specific popu-
lations (i.e., Ni was constant for each site) and,
while not stated explicitly, they also assumed that
members of Ni were not members of Nj (i =/ j).
That is, sites need to be far enough apart so that

distinct individuals can not be detected at >1 site
(i.e., the site-specific populations sampled are
disjoint sets). Under this assumption N = Σ Ni.

If we consider detection stations in IDI studies
to be sites where presence-absence is determined
on multiple occasions, and if we assume site-spe-
cific populations sampled by IDIs are closed and
disjoint, then it is clear IDIs are nearly identical
in structure to the occupancy studies considered
by Royle and Nichols (2003) and we would expect
their model could be applied to IDI data. How-
ever, the sampling situation for IDIs differs from
that of Royle and Nichols in an important way.
Royle and Nichols considered the sampling inter-
val during which presence–absence was deter-
mined to be extremely short and constant among
sites (in their example the interval was only 5
minutes), whereas sampling intervals for IDIs are
usually long (on the order of days) and may vary
among sites. Consequently, for IDIs we expect
that the unconditional detection probability at a
station will depend on the number of animals
available for detection at that station (i.e., Ni)
and on the length of the sampling interval (i.e.,
tij). That is, assuming Ni > 0 and remains constant
over the sampling interval, then we expect the
detection probability at site i to be near 0 if the
interval is too short, and if it is too long we expect
it to be near 1. Thus, for IDIs we modify the Royle
and Nichols (2003) expression for the uncondi-
tional detection probability in the following way.
Let pij be the unconditional detection probability
for the i th detection station on the j th sampling
occasion, and let r be the detection probability of
an individual over a unit time interval (condi-
tional on presence); then pij = 1 – (1 – r)tij Ni.
From this expression, which now incorporates
the length of the sampling interval (tij), we see
that if Ni = 0 then pij = 0, no matter how long the
sampling interval is, and if Ni > 0 then pij is in the
interval (0, 1) for tij > 0 and increases toward 1 as
tij grows large.

In IDI studies, wij is the outcome of a Bernoulli
trial with parameter pij, where pij = Pr(wij =1 | Ni,
r) = 1 – (1 – r)tij Ni. Thus, if we let wi = (wi1, wi2, ...,
wiJi

), then the likelihood (L) for the ith site is:

.

Under this model, r is not identifiable because Ni
is unknown. Nevertheless, it is possible to esti-
mate r by following the reasoning and steps in
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Royle and Nichols (2003). Briefly, we suppose
site-specific abundances Ni are realizations of a
random variable having discrete probability dis-
tribution f(N | λ), where λ is a parameter vector
and Pr(N = k) = f(N = k) = fk (k = 0, 1, …). Under
this assumption, we can remove the unobserved
Ni from the likelihood by averaging the condi-
tional (on Ni) likelihood over the possible values
of Ni . The resulting integrated likelihood is:

,

where here, pij = 1 – (1 – r)tij k and K is the number
of support points (sensu Royle and Nichols 2003).
Then, assuming independence of data from the
R detection stations and letting W = {wij }, we take
the product over R to yield the full likelihood:

. 

As was done in Royle and Nichols (2003), we
specify a parametric form for fk (e.g., a Poisson or
negative binomial distribution). The Poisson model
is appealing because it can be motivated by suppos-
ing individuals (i.e., home range centers) are dis-
tributed randomly in space according to a homo-
geneous Poisson point process. Under a Poisson
model the parameter, λ, is the expected abundance
at the ith site (i.e., E[Ni] = λ). Thus, we can estimate
the probability a species is present at a site (i.e., the
occupancy probability of a detection station) as 1 –
f(0 | λ̂) = 1 – exp(–λ̂), which is qualitatively equiva-
lent to the parameter ψ in MacKenzie et al. (2002).
Likewise, as in Royle and Nichols (2003), λ̂ is an
estimate of the average abundance at a site, so
when populations are closed and disjoint, overall
abundance (N̂ ) can be estimated as R λ̂. 

In many studies, we would expect Ni to exhibit
excess variation (i.e., overdispersion) relative to
the Poisson model. One approach for dealing
with overdispersion is to use a negative-binomial
distribution for fk instead of a Poisson (e.g., Royle
and Nichols 2003). We evaluate this approach in
the next section. A second approach for accom-
modating overdispersion is to incorporate covari-
ates thought to influence abundance. For exam-
ple, habitat measurements are collected as part
of many studies, and a common goal is to evalu-
ate the relationship between abundance and
these covariates. Covariates can be easily incor-

porated into a Poisson abundance model using
the standard log-linear model relating abun-
dance to covariates. For example, if at station i
covariates xi1, ..., xik exist, then the model for λi,
which is the expected abundance at site i (i.e., λi
= E[Ni]), is  log(λi) = α0 + α1xi1 + ... + αkxik. Such
models were successfully used by Royle et al.
(2004) for modeling the relationship between
bird density and habitat covariates under conven-
tional point-counting protocols. In a similar man-
ner, covariates that are thought to affect detection
probability can be modeled. For detection covari-
ates, we consider standard linear-logistic models of
the form: logit(r) = β0 + β1uij1 + ... + βkuijk , where
uij1, ..., uijk are the values of k detection covari-
ates measured at site i during visit j. We give 2
examples using covariates for r in the next section.

SIMULATIONS AND EXAMPLES
We evaluated the performance (i.e., bias and

precision) of our model with respect to the para-
meters λ and ψ under 2 simulation scenarios.
Our goal was to provide insight into how well the
model would be expected to perform under real-
istic sample sizes, as well as its robustness to
assumption violation. Under the first scenario we
let the distribution f(N) be Poisson, and we
assumed a Poisson model for fk for our analysis.
For these simulations R = 100 detection stations,
Ji = 6 sampling occasions (stations were estab-
lished on the 0th occasion), and the sampling
interval (days) between sampling occasions was
{tij } = (2, 4, 6, 8, 10, 12). We investigated 3 other
cases for {tij } (i.e., [7, 7, 7, 7, 7, 7], [6, 7, 8, 6, 7, 8],
and [1, 1, 1, 13, 13, 13]), but because they yield-
ed similar results we did not report on them here.
The levels investigated for r, the detection proba-
bility of an individual over a unit time interval,
and λi, the expected abundance of individuals at
site i, were r ∈ {0.05, 0.10, 0.20} and λi = λ ∈ {1.5,
3.0 }. We averaged results over 1,000 repetitions
(Table 1). Under the second scenario, we investi-

Table 1. Performance of our model using simulated data, with
R = 100, Ji = 6, and {tij } = (2, 4, 6, 8, 10, 12) for all i. In these
simulations the probability distribution f (N) was Poisson, and
for our analysis we modeled fk as a Poisson. Results are pre-
sented for ψ ∈ {0.78, 0.95}, and all combinations of r ∈ {0.05,
0.10, 0.20} and E [Ni ] = λ ∈ {1.5, 3.0}, and are averages over
1,000 repetitions.

λ = 1.5, ψ = 0.78,  λ = 3.0, ψ = 0.95

r λ̂ SE ψ̂ SE λ̂ SE ψ̂ SE

0.05 1.53  0.245 0.78 0.050 3.19 0.720 0.95 0.026  
0.10 1.52 0.200 0.78 0.043 3.14 0.567 0.95 0.022
0.20 1.51 0.184 0.78 0.040 3.12 0.814 0.95 0.021
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gated the effect of overdispersion on the perfor-
mance of our model. We did this by assuming
f(N ) was negative binomial with E[Ni] = λ ∈ {1.5,
3.0} and CV = 2.0, and for our analysis we mod-
eled fk as a Poisson or a negative binomial. As was
true under the first scenario, Ji = 6 and {tij } = (2,
4, 6, 8, 10, 12). We present results for R ∈ {100,
200}, ψ ∈ {0.65, 0.88}, and r ∈ {0.05, 0.10, 0.20} as
averages over 1,000 repetitions (Table 2). 

Under the first scenario, we found that λ̂ had a
small but positive bias (Table 1), which was con-
sistent with the simulation results obtained by
Royle and Nichols (2003). Coefficients of varia-
tion for λ̂ ranged from 13% to 22%. With respect
to ψ̂, our model performed very well, and esti-
mates were essentially unbiased. Coefficients of
variation for ψ̂ ranged from 2% to 6%. Under the
second scenario, we found that when the {Ni }
exhibited excess variation but were analyzed
under a Poisson, which did not account for
overdispersion, λ̂ was strongly negatively biased
(for our simulations relative bias was approxi-
mately –30%). However, in these same simula-
tions ψ̂ was essentially unbiased and was robust to
the presence of excess variation in the {Ni }, even
though a less-than-optimal model was used for fk.
When we analyzed the data under a model that
accounted for overdispersion, specifically the
negative binomial, our estimates of λ improved
substantially, except at the lowest values of r. For
r = 0.05, λ̂ was positively biased, whereas the medi-
an value for λ̂ was centered near the true value of
λ (Table 2). This, in combination with the large

standard errors, suggest-
ed the sampling distrib-
ution for λ̂ was strongly
skewed (heavy right
tail). Instability of esti-
mates, like that we
observed for  λ̂, is com-
mon when certain
model parameters are
near a boundary (in this
case r was near 0). We
suggest that when fitting
real data, investigators
examine the condition
number of the Hessian
matrix for their parame-
ters to see if it is large. If
it is, then it is likely the
matrix is ill-conditioned
(Schneider 1987:427)
and the optimization

routine will yield a poor estimate of λ. For r = 0.10
and r = 0.20 the sampling distributions for λ̂ also
appeared to be skewed, but only slightly, and in
these cases we got reasonably good estimates,
especially for R = 200. Under the negative bino-
mial model for fk, ψ̂ was unbiased in nearly every
case we investigated.

Example 1 – Tracking Tubes For Small
Mammals

Nams and Gillis (2003) described a study
wherein tracking tubes were used to index small
mammals in a boreal forest region of northern
Nova Scotia, Canada. One of their goals was to
determine whether small mammals change in
their tendency to enter tracking tubes with the
cumulative length of time a tube had been in
place (i.e., a time effect). In terms of our nota-
tion, they were interested in whether r was con-
stant (i.e., a no-time-effect model) or whether r
increased or decreased with cumulative length of
time (i.e., a time-effect model). Nams and Gillis
(2003) recorded the number of sets of tracks
entering a tube over a sampling occasion, the
length of sampling occasions (days), and species
if it could be determined. Dr. Vilis O. Nams
(Nova Scotia Agricultural College, Nova Scotia,
Canada) provided us with his data for 12 lines of
tracking tubes having 80 tubes per line (thus R =
960), each of which were rechecked 5, 6, or 8
times (i.e., Ji ∈ {5, 6, 8}) over a 4-week period. We
collapsed the Nams and Gillis (2003) data for
individual tubes into a binary variable, where 1

Table 2. Performance of our model using simulated data, with Ji = 6 and {tij } = (2, 4, 6, 8, 10,
12) for all i. In these simulations the probability distribution f (N) was negative binomial with
E[Ni ] = λ ∈ {1.5, 3.0} and CV = 2.0, and for our analysis we modeled fk as a Poisson or a neg-
ative binomial. Results are presented for ψ ∈ {0.65, 0.88} and r ∈ {0.05, 0.10, 0.20} and,
except for λ̂ med (where med denotes median), columns are averages over 1,000 repetitions.

Poisson model for fk Negative binomial model for fk
R r λ̂ SE λ̂med ψ̂ SE  λ̂ SE λ̂med ψ̂ SE  

λ = 1.5, ψ = 0.65  
100 0.05 1.04 0.483 1.03 0.64 0.052 1.97 3.078 1.44 0.65 0.062

0.10 1.09 0.437 1.08 0.66 0.048 1.58 0.506 1.48 0.65 0.047
0.20 1.08 0.440 1.07 0.66 0.049 1.62 0.604 1.50 0.65 0.047

200 0.05 1.03 0.477 1.03 0.64 0.036 1.67 1.708 1.48 0.65 0.042
0.10 1.08 0.431 1.08 0.66 0.035 1.54 0.328 1.49 0.65 0.033
0.20 1.08 0.431 1.08 0.66 0.036 1.53 0.358 1.48 0.65 0.034

λ = 3.0, ψ = 0.88  
100 0.05 2.04 0.999 2.01 0.87 0.038  5.09 10.861 2.84 0.88 0.046

0.10 2.16 0.881 2.14 0.88 0.031  3.20 1.168 2.94 0.87 0.034
0.20 2.20 0.851 2.17 0.89 0.032  3.21 1.205 2.88 0.88 0.033

200 0.05 2.03 0.993 2.02 0.87 0.026  3.62 3.880 2.94 0.88 0.031
0.10 2.15 0.872 2.14 0.88 0.022  3.08 0.788 2.95 0.88 0.024
0.20 2.17 0.852 2.16 0.88 0.024  3.10 0.811 2.97 0.87 0.024



J. Wildl. Manage. 69(3):2005 879ESTIMATING OCCUPANCY AND ABUNDANCE •  Stanley and Royle

denoted the tube was used at least once over the
sampling occasion (0 otherwise), and we ana-
lyzed these data under a no-time-effect model for
r and a time-effect model for r. Specifically, for
the no-time-effect model logit(r) = β0, whereas
for the time-effect model logit(r) = β0 + β1uij ,
where uij was the cumulative length of time the
tracking tube had been in place on the j th occa-
sion. A result with β1 < 0 would indicate tracking
tube use decreased with cumulative length of
time, whereas a result with β1 > 0 would indicate
tracking tube use increased with cumulative
length of time. 

We analyzed the Nams and Gillis (2003) data
for 2 species and 1 genus, under both Poisson
and negative binomial models for fk (Table 3).
Using the Akaike Information Criterion (AIC) to
identify the model best supported by the data
(Akaike 1973, Burnham and Anderson 2002), we
found that a positive time-effect model was select-
ed for all species. Thus our analysis agreed with
that of Nams and Gillis (2003); tracking tube use
increased with the length of time the tubes had
been in place. For both Clethrionomys gapperi and
Sorex spp., AIC selected the negative binomial
model for fk over the Poisson, indicating there
may have been some overdispersion in the data.
Using the following form of the negative binomi-
al (e.g., Lawless 1987):

,

where λ and θ are the parameters, E[Ni] = λ, and
Var[Ni] = λ + λ2/θ, we get ψ = 1 – Pr (Ni = 0) = 1
– [1 + (1/θ)λ]–θ. For C. gapperi, λ̂ = 0.59 and θ̂ =

0.795, thus ψ̂ = 0.36 and N̂ = R λ̂ = 566. Likewise,
for Sorex, λ̂ = 0.99 and θ̂ = 2.15, thus ψ̂ = 0.56 and
N̂ = R λ̂ = 950. For Peromyscus maniculatus, no solu-
tion could be found for the negative binomial
model, so we used the Poisson to estimate ψ and
N. Here, λ̂ = 0.58, so ψ̂ = 1 – exp(–λ̂)= 0.44 and N̂
= R λ̂ = 557. 

Example 2 – Scent Stations
Scent stations have a long history of use for

monitoring coyote (Canis latrans) and other
mammal populations over large areas. Hein and
Andelt (1994) described a study at the Rocky
Mountain Arsenal, Colorado, where 60 scent sta-
tions, separated by an average distance of 1.1 km,
were used to index deer, rodent, lagomorph, and
coyote numbers. Scent stations were monitored
daily for 2 weeks, with half the stations receiving
a supplemental deer carcass the first week and
the other half receiving a supplemental deer car-
cass the second week. Hein and Andelt conclud-
ed that coyotes visited sites with carcasses more
than sites without carcasses but that the presence
of deer carcasses did not influence visitation by
deer, rodents, or lagomorphs. Dr. William F.
Andelt (Colorado State University, Fort Collins,
Colorado) provided us with the raw data from
Hein and Andelt (1994), which we reanalyzed
under our model. We evaluated 2 models; the
first was a no-carcass-covariate model where
logit(r) = β0, and the second was a carcass-covari-
ate model, where logit(r) = β0 + β1uij and uij was
an indicator variable equal to 1 if a carcass was
present at the i th station on the j th occasion (0
otherwise). We evaluated the Poisson and nega-
tive binomial models for fk. However, we only pre-

Table 3. Analytical results for the Nams and Gillis (2003) tracking tube data under a Poisson model for fk, and a negative bino-
mial model for fk. The covariate model includes a time-effect representing the cumulative length of time tubes had been in place.
For Peromyscus maniculatus a solution could not be obtained for the negative binomial model. Akaike Information Criterion (AIC)
values with boldface type indicate the models best supported by the data.

No-covariate model  Covariate model  

Species β̂0 SE λ̂ SE AIC β̂0 SE β̂1 SE λ̂ SE AIC  

Poisson model for fk
Clethrionomys

gapperi –3.7 0.11 0.37 0.039 1,809.3 –3.8 0.11 0.10 0.049 0.37 0.036 1,809.5  
Peromyscus

maniculatus –4.6 0.20 0.76 0.170 1,706.1 –4.6 0.15 0.29 0.054 0.58 0.073 1,698.6 
Sorex spp. –3.3 0.06 0.75 0.045 3,779.5  –3.3 0.06 0.21 0.035 0.67 0.034 3,769.5  

Negative binomial model for fk
Clethrionomys

gapperi –4.2 0.749 0.59 0.442 1,811.0 –4.2 0.75 0.14 0.306 0.59 0.439 1,802.2
Peromyscus  

maniculatus – – – – – – – – – – – –
Sorex spp. –3.5 0.271 0.96 0.260 3,780.9 –3.6 0.28 0.15 0.018 0.99 0.276 3,748.1
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sent results for the Poisson model (Table 4)
because for all species the likelihood was maxi-
mized at the boundary when we used the nega-
tive binomial. 

Our results are in agreement with those of Hein
and Andelt (1994); coyotes used scent stations
with a supplemental deer carcass more often than
stations without a supplemental deer carcass,
whereas deer, rodent, and lagomorphs did not.
Under the Poisson model occupancy was estimat-
ed as ψ̂ = 1 – exp(–λ̂), which for lagomorphs,
rodents, deer, and coyotes yielded 0.55, 0.96, 0.88,
and 1.00, respectively. Likewise, for N̂ (where R =
60) we got 48, 190, 130, and 508, respectively (see
DISCUSSION for the probable cause of the
rather large numbers for deer and coyotes).

DISCUSSION
The model of Royle and Nichols (2003) was

motivated, in part, as a means of developing esti-
mators of site-occupancy (sensu MacKenzie et al.
2002) that accommodate heterogeneity in the
probability a species will be detected at a site due
to variation in abundance. Our model extends
the Royle and Nichols (2003) model by explicitly
incorporating the length of the sampling interval
into this probability. As a consequence, we obtain
a model that allows useful information to be
extracted from IDIs when the detection station
data are binary. Specifically, our model shows
how data from IDIs can be used to estimate site
occupancy, model factors influencing patterns of
occupancy and abundance in space, and estimate
abundance under certain circumstances.

Our simulations (Tables 1, 2) showed site-occu-
pancy estimates under our model were robust to
the parametric form chosen for fk. When we sim-
ulated abundance data at detection stations
under a Poisson and analyzed them under a Pois-
son, estimates were unbiased, as we expected.
Moreover, when we simulated abundance data at
detection stations in a manner incorporating
overdispersion relative to the Poisson (i.e., using
a negative binomial), site-occupancy estimates

were unbiased under a negative binomial model
but were also unbiased under a Poisson model.
Thus, ψ̂ appeared insensitive to model choice for
the cases we examined and, with respect to occu-
pancy estimation, suggested our model would
perform well in practice.

In contrast to ψ̂, our abundance estimate λ̂ was
sensitive to the parametric form chosen for fk.
When abundance at detection stations was simu-
lated under a negative binomial to produce over-
dispersion relative to the Poisson, estimates
under a negative binomial model were relatively
good, though there was some positive bias when
detectability was low (i.e., r = 0.05). However,
when we analyzed those same data under a Pois-
son model for fk, estimates of λ were strongly neg-
atively biased (Table 2). It therefore seems prefer-
able to accommodate overdispersion in the data
by using biologically relevant covariates and an
appropriate link function, because in real-world
datasets it is common to find excess variation of
some form in the {Ni } and because we typically
will not know the form this excess variation will
take, so we will not know the appropriate model
to use. Whereas we did not evaluate the use of
covariates for λ, the approach was used success-
fully in other studies (Royle et al. 2004), and we
believe it merits further investigation for our
model. The covariate approach has the added
advantage that it can provide information on
habitat or other factors that might influence pat-
terns of occupancy or abundance. 

The tracking tube and scent station examples
we provided illustrate some of the strengths and
weaknesses of our model. A strength is that we
now have a model linking data from IDI studies
with parameters of interest, namely site occupan-
cy and abundance. We are no longer forced to
treat data from IDIs as indices having an
unknown relationship with the parameter(s) of
interest. Another strength is that the model
offers a flexible framework for evaluating covari-
ates. By using a covariate in the tracking tube
example, we learned tubes were used more fre-

Table 4. Analytical results for the Hein and Andelt (1994) scent station data under a Poisson model for fk (a solution could not be
obtained under the negative binomial model for any of the species). The covariate model includes a carcass effect (see text).
Akaike Information Criterion (AIC) values with boldface type indicate the models best supported by the data.

No-covariate model Covariate model

Species β̂0 SE λ̂ SE AIC β̂0 SE β̂1 SE λ̂ SE AIC  

Lagomorph 0.24 0.031 0.80 0.121 341.0 0.25 0.039 0.23 0.039 0.81 0.122 342.9
Rodent 0.28 0.039 3.17 0.480 536.2 0.28 0.043 0.28 0.042 3.18 0.481 538.2
Deer 0.09 0.029 2.16 0.711 383.1 0.07 0.027 0.10 0.033 2.22 0.753 384.3
Coyote 0.08 0.031 5.11 1.973 537.9 0.04 0.026 0.06 0.044 8.47 5.970 532.5
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quently the longer they were in place, and by
using a covariate in the scent station example, we
learned carcasses increased coyote visitation but
had no effect on the other species monitored.
This information should prove useful in the
design of future studies using these methods. 

A weakness of our model is that results from
our model could be misleading if model assump-
tions are ignored. Our estimate of population
size (N̂ ) exploits the fact that if λ̂i is an estimate
of the station-specific population at risk of detec-
tion (analogous to the population at risk of cap-
ture in a capture–recapture context), then the
sum of λ̂i over the R detection stations is an esti-
mate of the population at risk of detection. How-
ever, the veracity of this estimate is predicated on
the assumption that detection stations are far
enough apart that station-specific populations at
risk of detection do not overlap (i.e., they are dis-
joint sets). Even though λ̂i is an asymptotically un-
biased estimate of the population at risk of detec-
tion for the ith station, if some individuals at this
station are also at risk of detection at the j th sta-
tion (i =/ j), then summing these estimates will
create a positive bias in N̂ because some individ-
uals are double counted. We believe this explains
the high values we observed for deer and coyotes
in our scent station example above. Both deer
and coyotes are wide-ranging animals (e.g., coy-
otes can travel 4 km a night; Nowak 1991), yet the
spacing of the scent stations averaged only 1.1
km. Thus, it seems certain that some individuals
were detected at multiple stations, and that our
estimate of 508 for coyotes was positively biased.
Indeed, Hein and Andelt (1995) sampled the
same area less than a year later, and using mark-
resight methods, they estimated the population
of coyotes to be only 73 individuals. 

The problem of double counting in IDIs and
the need to have adequate spacing between sta-
tions has been recognized by others. For exam-
ple, Diefenbach et al. (1994) recommended that
scent stations be far enough apart that bobcats
(Lynx rufus) could not visit >1 station, and Zielin-
ski and Stauffer (1996) spaced track plates for
fisher (Martes pennanti) and marten (M. ameri-
cana) a distance of twice the diameter of the
mean male home range to ensure independence
of stations. Our scent station example under-
scores the importance of spacing stations far
enough apart that station-specific populations at
risk of detection are disjoint sets, and this should
serve as a warning to investigators using this
method to estimate abundance. Moreover, it sug-

gests that whenever possible the focus of IDI stud-
ies should be on modeling factors influencing λi,
rather than estimating N. In ecological research
this will often be possible because we are typical-
ly more interested in comparing occupancy or
abundance in time or space to evaluate treatment
or habitat effects—and these effects can be built
into the model explicitly using the log link—than
in determining absolute abundance.

An issue related to that of detection station
spacing is the effective area of detection of a sta-
tion. For some territorial species near carrying
capacity, we might expect home range sizes to in-
crease as species density decreases or to decrease
as species density increases. In such cases, the
effective area sampled by a detection station may
change as a function of density; at low species
density we might expect the effective area sam-
pled to be larger than at high species density.
One consequence of this effect is that abundance
estimates for 2 areas could be identical, in spite of
the fact that densities differ. The severity and per-
vasiveness of this problem is currently unknown,
and it merits further research, as it is relevant to
any method where abundance, rather than den-
sity, is being estimated. For species that are not
territorial, or species that are territorial but are
well below carrying capacity, we would not expect
this situation to occur.

Several extensions of the model we presented will
be important for increasing its applicability. One
that we are currently investigating is to generalize
the model to accommodate data other than binary
detection data. Many IDI sampling methods yield
data that are more informative than simple pres-
ence/absence data, in the form of counts of visits
to each station. This extra information can be
exploited in the model we described previously.
Under the special case where the number of visits
recorded are of unique individuals, the model pro-
posed by Royle (2004) is directly applicable. More
commonly, it is not possible to determine the num-
ber of distinct individuals visiting a station, just the
total number of visits, say Ti. In this case, one plau-
sible model is to assume that each of the Ni indi-
viduals visit station i mj times (for individuals j = 1,
2,…, Ni) and that mj has a Poisson distribution with
parameter θ, the visitation intensity of individuals
in the local population. When the stations are visit-
ed multiple times, subject to closure of the popula-
tion, this additional parameter can be estimated
using a mixture model analogous to that proposed
by Royle (2004). Indeed, simple moment estima-
tors of θ and λ are available under this Poisson-Pois-
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son mixture model, and it can be shown that θ̂ =
[Var(Ti)/Mean(Ti)] – 1 and that λ̂ = Mean(Ti)/ θ̂.
More detailed evaluation of such models is neces-
sary, and this is an area of ongoing research for us. 

MANAGEMENT IMPLICATIONS
In management settings, a common goal is to

determine the distribution and abundance of a
species over some area or region of interest and to
identify factors influencing distribution and abun-
dance. Our model is a tool that can be used to
accomplish that goal, at small and large scales, for
species that typically can be detected only indi-
rectly (e.g., by tracks or hair). When setting up an
IDI study that will be analyzed under our model, it
is crucial that there be an adequate number of sta-
tions (usually in excess of 100), that stations can be
completely reset each time they are checked, that
stations are checked multiple times (e.g., >5), and
that stations are far enough apart that a member
of the target species can not visit >1 station over
the duration of the study. This latter requirement
can often be met by determining the average
length of the major axis of home range size (e.g.,
from literature), then spacing stations a distance
greater than mean length plus 2 standard devia-
tions. In the case of snow track surveys, where
detection stations are not points as they are for
many other IDI methods, we might for example
specify a straight-line route where we record pres-
ence or absence of tracks intersecting a 1.6-km seg-
ment of road (i.e., the detection station), then
travel a distance of 8 km (more or less depending
on the home range size of the target species)
before recording presence or absence of tracks
intersecting the next 1.6-km segment of road. 

Our simulation results suggested that site-occu-
pancy estimates under our model are robust but
that abundance estimates are sensitive to model
assumptions. We therefore caution the reader to
closely examine assumptions if abundance esti-
mates are the goal. In some cases, it may even be
beneficial to verify estimates under our model using
a double sampling approach, where more intensive
methods are used to estimate abundance for a
randomly selected subset of the detection stations. 
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