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Information on the number of carnivore taxa that were involved with archaeological bone assemblages is pertinent to
questions of site formation, hominid and carnivore competition for carcasses and the sequence of hominid and
carnivore activity at sites. A majority of early archaeological bone assemblages bear evidence that both hominids and
carnivores removed flesh and/or marrow from the bones. Whether flesh specialists (felids) or bone-crunchers (hyaenas),
or both, fed upon the carcasses is crucial for deciphering the timing of hominid involvement with the assemblages. Here
we present an initial attempt to differentiate the tooth mark signature inflicted on bones by a single carnivore species
versus multiple carnivore taxa. Quantitative data on carnivore tooth pits, those resembling a tooth crown or a cusp, are
presented for two characteristics: the area of the marks in millimetres, and the shape as determined by the ratio of the
major axis to the minor axis of the mark. Tooth pits from bones modified by extant East African carnivores and latex
impressions of tooth pits from extinct carnivore species are compared to those in the FLK Zinjanthropus bone
assemblage. Data on tooth mark shape indicate greater variability in the Zinj sample than is exhibited by any individual
extant or extinct carnivore species in the comparative sample. Data on tooth mark area demonstrate that bone density
is related to the size of marks. Taken together, these data support the inference that felids defleshed bones in the Zinj

assemblage and that hyaenas had final access to any grease or tissues that remained.
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Introduction

hile carnivore gnaw damage is well docu-

mented at many early archaeological sites,

the identity and number of carnivore taxa
that fed on the bones remains elusive (e.g., Leakey,
1971; Binford, 1981; Potts & Shipman, 1981; Shipman,
1983; Bunn & Kroll, 1986; Potts, 1988; Blumenschine,
1995). This problem is compounded by the large
number of carnivore taxa that could have inflicted
marks on archaeological bones. The carnivore guilds
present in East Africa during the Plio—Pleistocene
include ancestors of extant felids: lions, leopards and
cheetahs (Barry, 1987), as well as three extinct felids
Homotherium and Megantereon, commonly known as
“true sabertooths”, and Dinofelis usually referred to
as a ‘““false sabertooth” (Leakey, 1976; Anderson &
Kurten, 1981). In addition, evidence indicates that
the ancestor of the modern spotted hyaena, Crocuta
crocuta, and possibly the striped hyaena, Hyaena
hyaena, and Chasmaporthetes were present in East
Africa during the Plio—Pleistocene (Turner, 1985).
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Large canids are also present in the East African
Plio—Pleistocene fossil record (Turner, 1986). Identify-
ing which carnivores were involved with archaeological
bone assemblages is crucial for evaluating models of
carcass procurement by hominids.

Identification of the involvement of specific carni-
vores with early archacological bone assemblages
could provide pivotal evidence for hominids having
either early or late access to carcasses. For example, in
models in which hominids are presumed to have had
late access to carcasses, felids are most often implicated
as the initial consumer (e.g., Blumenschine, 1986,
1988; Marean, 1989; Cavallo & Blumenschine, 1989;
Selvaggio, 1994a, 1998b). On the other hand, those
who support hominids having early access to carcasses
suggest that the conspicuous gnaw damage on many
butchery-marked bones indicate that hyaenas ravaged
the assemblage after hominids had removed all the
flesh and marrow from the bones (e.g., Bunn & Kroll,
1986; Bunn & Ezzo, 1993; Oliver, 1994). However,
recent studies on bone survival demonstrate that marks
inflicted on midshafts during butchery (Blumenschine,
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1988; Blumenschine & Selvaggio, 1991) or defleshing
by carnivores (Selvaggio, 1994a, b, 1998a) are not
significantly altered when hyaenas have final access to
hammerstone-fragmented bones. Therefore, tooth
marks inflicted on long bone shafts during defleshing
by felids can survive in the archaeological record even
though an assemblage had been ravaged by hyaenas.
The research presented provides a quantitative
method for describing and analysing carnivore tooth
marks in archacological assemblages. It differs from
previous research of tooth mark morphology in
three ways (Horton & Wright, 1981; Haynes, 1983;
Rabinovich, 1990). First, the sample is derived from a
greater number of carnivore species than earlier
studies. Secondly, this study is limited to comparisons
of carnivore tooth marks that resemble a crown or a
cusp. And thirdly, the sample is stratified to evaluate
the impact of bone density on the area of tooth marks.

Methods and Samples

The tooth marks in this sample were selected by their
resemblance to undamaged tooth cusps or complete
crowns. Such marks are generally described as tooth
pits (Binford, 1981). Tooth pits from three sources are
compared: (1) those inflicted on long bones by a single
species of extant East African carnivore (N=221); (2)
tooth pits moulded from bovid long bones in the 1-8
million years of the FLK Zinjanthropus assemblage
(N=61) and; (3) latex impressions of tooth crowns and
cusps from several extinct carnivore species (N=27).
Tooth pits in the modern and archaeological samples
were randomly drawn with respect to the size of marks
and their location on bones. Therefore, it is assumed
that tooth marks in these samples represent those
inflicted by both anterior and posterior dentition.

The sample from extant carnivores was collected in
1989-1990 from free-ranging species in Tanzania and
from captive spotted hyaenas in the colony established
at the University of California, Berkeley. With the
exception of hyaenas, the sample of tooth pits on bones
were inflicted by natural feeding populations which
were comprised of individuals of both sexes and vari-
ous ages. The results, therefore, are not biased by age
or sex.

Extinct carnivore species are represented by latex
impressions of undamaged cusps and crowns from
carnivore dentition in the Omo fossil assemblage. The
impressions were made by lightly pressing the crown or
a cusp into a flattened disc of “Cuttersil” latex
material. An accurate impression of crown/cusp shape
was produced, but because of the initial softness of the
material, the area of the impression is larger than a
similar mark inflicted on bone. Thus, this sample is
excluded from comparisons of tooth mark area.

Extant carnivores are represented by 221 tooth pits.
The hyaena and leopard samples are the largest with 77
and 67 tooth marks, respectively. Cheetah (35), lion

(38) and jackal (4) are less well represented. Differences
among the sample result from the number of bones
modified by specific carnivores and the degree of which
tooth marks in each sample met a standard of minimal
extraneous crushing of the perimeter of the mark.

The Zinjanthropus sample was collected during a
5-week study in 1989 and 1990 at the National
Museum of Kenya, Nairobi, Kenya. Tooth pits were
moulded using “Xanthopren”, a material that accu-
rately produces a negative impression of a mark on the
bone’s surface. The methods used to mould bone
modifications with this material have been described
fully elsewhere (Shipman & Rose, 1983). Since the
moulds are an accurate negative impression of marks
on a bone’s surface, they are appropriate for compari-
son with tooth pits from the modern bone sample for
both area and shape.

An experiment was conducted to determine the
accuracy of computer measurements on moulded tooth
marks compared to actual tooth marks on bone speci-
mens. A random sample of eight bone specimens was
drawn in which tooth marks had been measured by
video-imaging. The tooth marks were moulded using
the same material used for the Zinj sample. Moulds of
shallow marks showed more variation between the
samples than deep marks. This was due to the dark
colour of the moulds and a shadow effect when the
image was projected on the video monitor. The shadow
made one portion of the mark’s perimeter appear
slightly distorted. Since different lighting techniques
could not remedy this problem, moulds of shallow
tooth pits were deleted from the Zinj sample presented
here. In contrast, the perimeter of tooth pits on bone
specimens were usually well defined on the monitor. In
the few cases in which the perimeter of the mark was
not clearly visible, a lead pencil was used to lightly
trace the mark’s perimeter. This greatly enhanced the
contrast between the edge of the mark and the bone’s
surface.

Tooth pits from modern carnivores and those in the
Zinj sample are stratified to control for the impact of
bone density on mark area (Table 1). Three different
bones densities were distinguished based on their resist-
ance to tooth penetration: cancellous, thinning cortical
and cortical bone. Tooth pits inflicted by a single
carnivore species on relatively soft cancellous bone are
compared to those inflicted on compact cortical bone.
Thinning cortical bone is the diaphyseal portion closest
to epiphyses where the cortical surface is weakest.

Jaw strength among different carnivore taxa, as well
as tooth size can affect the degree to which teeth
penetrate bone. However, cancellous bone presents less
resistance to tooth pressure than compact cortical
bone. Cortical bone becomes thinner near the ends of
diaphyses. Here, on bovids, compact bone begins to
include cancellous tissue of the epiphyses. Therefore,
thinning cortical bone is neither as easily penetrated as
cancellous bone nor is it as resistant to tooth pen-
etration as cortical bone nearer the mid-section of the



Table 1. Mean area of tooth marks stratified by bone type

Cortical Thin cortical Cancellous

Carnivore bone bone bone

Spotted hyaenas N=47 N=15 N=15
Mean 2:36 4-98 21-54
S.D. 1-73 419 7-79
95% Conf. int. (1-85-2-87) (2:65-7-73) (11-69-31-40)

Cheetahs N=20 N=3 N=12
Mean 1-43 4-47 318
S.D. 0-75 203 3-90
95% Conf. int. (1-08-1-78) (0-56-9-50) (0-70-5-65)

Leopards N=29 N=6 N=32
Mean 2:21 3-23 6-26
S.D. 3-11 2:33 6-83
95% Conf. int. (1-:03-3-40) (0-79-5-68) (3-82-8-71)

Lions N=13 N=11 N=14
Mean 5-48 19-82 17:90
S.D. 4-53 12:64 1650
95% Conf. int. (2-75-8-22) (11-33-28:31) (8:57-27-22)

Jackals N=4
Mean 0-26
S.D. 0-13
95% Conf. int. (0-04-0-47)

FLK Zinj N=49 N=5 N=1
Mean 1-77 1-25 21-34
S.D. 1-61 0-47 19-55
95% Conf. int. (1:25-2-29) (0-66-1-84) (3-26-39-42)

diaphysis. Thus, the category “thinning cortical bone”
controls for tooth mark area on the ends of diaphyseal
fragments where the cortical surface is weakest. In this
sample, tooth marks on cortical bone include those
found on hammerstone-generated diaphyseal frag-
ments and any cortical portions of the bone (distinct
from thinning cortical portions) that remained
attached to epiphyses after hammerstone impact.
Images of individual tooth pits were captured, digi-
tized and stored in a computer using a video camera
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with a magnifying lens. A calibration routine com-
puted the number of pixels/mm. The software made it
possible to use a mouse to trace around the perimeter
of the monitor image of a tooth pit, and create a binary
(black and white) image of the mark. The software
also included algorithms that processed the binary
image and computed characteristics relating to the size
and shape of the tooth pit (for details see Selvaggio,
1994a).

Results

The area of tooth pits on cancellous bone is greater
than those on cortical bone among individual extant
carnivore species and for the Zinj sample (Table 1,
Figure 1). The mean area of tooth pits on cancellous
bone in the Zinj sample is similar to those inflicted by
hyaenas and lions.

For cortical bone, the Zinj sample is most similar in
area to pits inflicted by cheetahs, leopards and spotted
hyaenas. Tooth pit area on thinning cortical bone
exhibits the greatest variation among the bone types.

When the ratio of the major axis to the minor axis is
compared, tooth pits in the FLK Zinjanthropus sample
are more variable than those produced by any individ-
ual modern or extinct carnivore species (Table 2,
Figure 2).

Discussion

The data presented on tooth mark area demonstrate
that bone density is related to the size of marks. Tooth
pit area on thinning cortical bone, where the diaphysis
joins the epiphysis, exhibits the greatest variation
among the bone types (Table 1). This appears to be
related to differences in bone density in this region.
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Figure 1. Mean area of tooth pits and one standard deviation. [J, cortical bone; M, cancellous bone.
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Table 2. The ratio of the major axis to the minor axis for all tooth
marks

Sample N Mean +1s.D.
FLK Zinj 61 2-41 1-83
Dinofelis 3 2-84 0-70
Megantereon 5 1-37 0-14
Percrocuta 8 1-74 0-65
Homotherium 4 2-36 0-50
Extinct felis 7 2:07 0-64
Lion 38 1-75 0-44
Jackal 4 1-55 0-15
Spotted hyaena 77 1-76 0-52
Leopard 67 1-83 0-73
Cheetah 35 1-82 0-49

Tooth pits are larger in area on cancellous bone than
on cortical bone for each extant carnivore species
(Table 1, Figure 1). The problem of identifying carni-
vores solely by tooth mark size can be seen in that
cheetah tooth pits on cancellous bone are similar in
area to those inflicted on cortical bone by hyaenas and
leopards. Lion tooth pits on cortical bone are similar in
area to leopard tooth pits on cancellous bone. Clearly,
bone density and other variables must be considered
when inferring the involvement of a specific carnivore
species with archaeological bone assemblages.

While both lions and hyaenas inflict tooth marks of
similar size on cancellous bone, actualistic research
has shown that spotted hyaenas are attracted to the
grease in epiphyses even when flesh and marrow have
been removed (Blumenschine, 1988; Blumenschine &
Selvaggio, 1991; Marean et al., 1992; Selvaggio, 1994,
1998a). The involvement of hyaenas at the Zinj
site is supported by the deletion of a majority of
epiphyses from this assemblage. Therefore, the most

parsimonious explanation for large-sized tooth marks
on cancellous epiphyses is that they were inflicted by
hyaenas when they ravaged the assemblage.

The mean area of tooth pits on cortical bone in the
Zinj sample is most similar to those made by cheetahs,
leopards and hyaenas. However, tooth pits in the
Zinjanthropus sample exhibit more variation in the
ratio of the major to the minor axes than those made
by any single modern or extinct carnivore species in the
sample (Table 2, Figure 2). Therefore, hyaenas can be
ruled out as the only carnivore that fed on the car-
casses. The great variation in tooth pit shape in the
Zinj sample indicates more than one carnivore taxon
was involved with this assemblage.

Carcasses appear to have been defleshed by medium-
sized felids, and hyaenas had final access to any grease
or tissues that remained. Many of the bones in this Zinj
sample bear butchery marks. Therefore, the results
support the inference that hominid access was inter-
mediate to carnivore access to bones at this site
(Selvaggio, 1994a, 1998a; Blumenschine, 1995).

Conclusions

Early archaeological bone asemblages are usually
multi-patterned by a variety of physical and biological
agents. While carnivore damage is often part of the
pattern, only one carnivore, the spotted hyaena, has
been the focus of most studies (e.g. Binford et al., 1988;
Blumenschine, 1988, 1995; Blumenschine & Selvaggio,
1991; Marean et al., 1992; Capaldo, 1997; for excep-
tions see, Horton & Wright, 1981; Haynes, 1983;
Rabinovich, 1990; Selvaggio, 1994a, b, 1998a). The
significant damage inflicted on bones by spotted hyae-
nas has led to the erroneous conclusion that traces
of previous feeding episodes would be obliterated if
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Figure 2. The ratio of the major axis to the minor axis.



hyaenas ravaged an assemblage (e.g., Binford et al.,
1988). This notion has become so embedded in
the palacoanthropological literature that the term
“carnivore” has become somewhat synonymous
with “hyaena”. The research presented here and
elsewhere (Selvaggio, 1994a, b, 1998a) demonstrates
that tooth marks inflicted on bones by carnivores
other than hyaenas can survive in the archaeological
record.

Differences in dentition, particularly that of flesh
specialists compared to bone specialists, appear to be
reflected in tooth mark morphology. While there is
overlap in the single morphological trait presented in
this study, current research on additional morphologi-
cal characteristics may identify unique features associ-
ated with specific species. The focus on carnivore tooth
marks is justified because it is unlikely that hominids
frequently inflicted tooth marks on bones. The devel-
opment of stone tools is generally acknowledged to
be a cultural innovation necessitated by the lack of
shearing dentition in the hominid line.

The data presented illustrate two points. First, that
bone density is related to the size (area) of tooth pits.
Therefore, large tooth marks on cancellous bone
should not be automatically attributed to hyaenas.
Variability in tooth mark size within an archaeological
sample should be considered in inferences of the
number of carnivore taxa involved with an assemblage.
Secondly, the data support the inference that multiple
carnivore taxa were involved with the FLK Zinjanthro-
pus assemblage. Tooth marks on cortical bone suggest
medium-sized carnivores. Hyaenas can be ruled out as
the only carnivore involved with the assemblage by the
great variability in the ratio of the major axis to the
minor axis of marks in the Zinj sample.

Considered together, the results support arguments
that hominids at the Zinj site scavenged carcasses
abandoned by leopards (Cavallo & Blumenschine,
1989), or those abandoned by extinct medium-sized
carnivores (Marean, 1989) or from carcasses cached in
water by hyaenas (Selvaggio, 1998b). After hominids
had removed the remaining flesh scraps and marrow,
hyaenas ravaged the site, deleting many grease-bearing
epiphyseal fragments. While the results presented
here support the contention that multiple carnivore
taxa were involved with the Zinj assemblage, similar
research needs to be conducted for other early archaeo-
logical assemblages to determine if this site is unique or
if it is representative of hominid and carnivore activity
at other early archaeological sites.

Carnivores are relatively rare in the archaeological
record. The ability to identify specific carnivores from
their tooth marks on bones could provide evidence for
their presence at sites even when their skeletal remains
are not preserved. Distinguishing which carnivores
were active at sites could broaden the base of palaco-
environmental reconstructions and be useful for testing
models of hominid and carnivore competition for
carcasses.
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