
Unsupervised recognition of individual tigers and 
snow leopards from their footprints

INTRODUCTION

Many ecological field studies have used sign survey
techniques for gaining information about animal popu-
lations. Such methods utilize track and dropping counts
as indices of animal activity (e.g. Van Dyke, Brocke &
Shaw, 1986; Smallwood & Fitzhugh, 1995; Zielinski &
Stauffer, 1996), habitat use (Petrak, 1990; Putman, 1990)
and population density (Koster & Hart, 1988; Small-
wood & Fitzhugh, 1993; Komers & Brotherton, 1997).
These methods have advantages in that they are rela-
tively inexpensive, logistically straightforward and they
do not require direct contact with the animal or animals
in question (Putman, 1984; Clevenger, 1993). When
compared with more direct methods, such as mark–
recapture or radio-tracking, the data gained from sign
surveys may not be as rigorous (Servin, Rau & Delibes,
1987).

The ability to identify which individuals are respon-
sible for sets of footprints would allow indirect tracking
methods to be used for gaining in-depth ecological infor-
mation, such as home-range estimates. Animals with
conspicuous footprint characteristics, such as missing

digits or obvious scars, may be discriminated by eye, but
such animals may be rare in the population of interest.
Smallwood & Fitzhugh (1993) showed that for moun-
tain lion the tracks of known individuals could be dis-
tinguished using discriminant function analysis (DFA).
One problem with this is that in most field studies there
is no prior information about the animals responsible for
sets of tracks. In such circumstances supervised classi-
fication methods such as DFA or non-hierarchical clus-
ter analysis are of little use, since class assignments (i.e.
individual identities) are required before analysis. Many
surveys of free-ranging tigers have attempted to manu-
ally allocate footprints to individuals, by comparing and
sorting tracings taken in the field (Panwar, 1979). Such
methods have received criticism, because of their sub-
jectivity (Karanth, 1987). The requirement has thus been
highlighted that, for tigers, a reliable systematic means
of identifying individuals from their footprints should be
developed (Nowell & Jackson, 1996). Such a method
could also be applied to the study of a range of other
animal species.

Unsupervised classification methods automatically
extract inherent clusters within datasets, without prior
labelling of cases within the data. This gives a potential
means by which footprints from unknown animals 
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Abstract
This study presents the testing of two unsupervised classification methods for their ability to
accurately identify unknown individual tigers, Panthera tigris, and snow leopards, Panthera
uncia, from their footprints. A neural-network based method, the Kohonen self-organizing map
(SOM), and a Bayesian method, AutoClass, were assessed using hind footprints taken from captive
animals under standardized conditions. AutoClass successfully discriminated individuals of both
species from their footprints. Classification accuracy was greatest for tigers, with more misclassifica-
tion of individuals occurring for snow leopards. Examination of variable influence on class forma-
tions failed to identify consistently influential measurements for either species. The self-organizing
map did not provide accurate classification of individuals for either species. Results were not sub-
stantially improved by altering map dimensions nor by using principal components derived from
the original data. The interpretation of resulting classifications and the importance of using such
techniques in the study of wild animal populations are discussed. The need for further testing in the
field is highlighted.
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could be grouped into individuals, without subjective
bias. To assess unsupervised classification as a potential
tool in animal ecology, two methods were tested 
using footprints from captive tigers and snow leopards.
These were the Kohonen self-organizing map (SOM): a
neural-network based system developed at Helsinki
University of Technology (Kohonen, Kangas &
Laaksonen, 1992); and AutoClass: a Bayesian method
developed at NASA (Stutz & Cheeseman, 1994).
Software for both methods are freely available for
research purposes over the internet via anonymous ftp
(SOM: ftp://cochlea.hut.fi/pub/som_pak [130.233.168.
48]; AutoClass: ftp://csr.uta.edu/pub/autoclass).

The Kohonen self-organizing map is a neural-net-
work based clustering method, involving the projec-
tion of a multivariate input space onto a two-
dimensional array (Kohonen et al., 1992). Each
instance within the multivariate input space is mapped
to all nodes on the two-dimensional array. The array
is made to resonate in accordance with the input data,
resulting in one or more regions of excitation, corre-
sponding to clusters within the input space. More
detailed technical accounts of this method are given
by Kohonen (1989) and Kohonen et al. (1992). SOMs
have been successfully applied to a number of classi-
fication problems in astronomy (Murtagh &
Hernandez-Pajares, 1995), biochemistry (Reibnegger,
Weiss & Wachter, 1993) and spatial patterning (Varfis
& Versino, 1992).

AutoClass is an unsupervised classification system
based upon Bayesian theory. Bayes’ rule is a math-
ematical method of describing probabilities given prior
expectations and defines how probabilities alter with
evidence. AutoClass searches the input data space
repeatedly, automatically selecting the most probable
classifications. The best classifications optimally
trade-off predictive accuracy against class complexity,
avoiding over-fitting the data (Cheeseman & Stutz,
1995). Cases are allocated to classes probabilistically,
rather than employing cut-off criteria. Class member-
ship probabilities sum to 1, resulting in a ‘fuzzy’ clas-
sification. Input data are expressed as statistical
models, which may be either independent or allow for
covariance between variables. A full account of
Bayesian theory and it’s application in AutoClass is
given by Hanson, Stutz & Cheeseman (1991).
AutoClass has been successfully demonstrated as a
classification tool in a number of fields including
astronomy, biochemistry and remote sensing
(Cheeseman & Stutz, 1995).

METHODS

The two classification methods were tested using 10
tigers (Panthera tigris) and 6 snow leopards (Panthera
uncia), all held at Port Lympne Zoo. Of the tigers, 7
were Bengal tigers (P. t. tigris) and 3 were Siberian
tigers (P. t. altaica) (Table 1).

Footprints were taken from a consistent substrate of
fine builder’s sand. The sand was placed on the floor of

the enclosures and spread to an approximately even
depth of 2 cm. The study animals moved over the sand
patches one at a time enabling each track set to be
assigned to an individual. Footprints were collected from
sets only if the animals were travelling at a normal walk-
ing or trotting pace. Only footprints made by the hind
feet were collected. This was because, during normal
walking or trotting, the hind footprints often register over
those of the fore feet, resulting in fewer intact fore foot-
prints.

Two methods of footprint acquisition were used:
acetate tracing (Panwar, 1979) and photographs. With
the acetate method, acetate sheets were placed onto a
picture frame, which could be positioned over the prints
without disturbing them. The outline of the print was
traced onto the acetate using an indelible pen. The
method for doing this was to kneel over the print and
look directly down onto it at all times whilst tracing.
Photographs were taken using a standard 35 mm cam-
era, with a 50 mm lens, pointing directly down onto the
print. A flash gun was positioned at a low angle to the
prints, to give depth to the photographs. Scale rules were
placed next to the prints for calibration. A minimum of
10 footprints were acquired from each hind foot for both
methods. All animals were sampled using acetate trac-
ing and a subset of tigers were photographed for com-
parison and as a test of the consistency of the acetate
method.

A total of 27 morphometric measurements were taken
from each print: 18 linear and 9 angular measures (Fig. 1).
Measurements were taken from tracings of acetates and
photographs, which allowed annotations and reference
lines to be added without defacing the original samples.
The units of linear measurement were millimetres, with
a precision of 0.5 mm. Angular variables were mea-
sured in angular degrees, with 0.5° (i.e. 30′) level of
precision.
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Table 1. Footprint collections made at Port Lympne Zoo from tigers
and snow leopards using acetate and photographic methods

Name Sex Age     Left hind foot   Right hind foot

(years) Acetate Photo Acetate Photo

Tigers:
Chambal M 11 10 10 10 11
Harami M 8 10 10
Nari F 17 10 10 10 10
Pindi F 9 10 11
Spotty M 4 10 11
Stripey M 4 10 11
Thana F 9 10 11
Vosthoka M 11 10 10 10
Zeyana F 11 10 10 10 10
Zeynaa F 11 10 10 10 10

Snow Leopards:
Alf M 6 10 11
Aria F 6 10 10
Atheni F 6 10 10
Atheni-Moon F 3 10 10
Messalina F 16 10 10
Sitar F 14 10 10

aSubspecies P. t. altaica.



Analysis

Data for each hind foot were analysed separately. It was
assumed that footprints taken from track sets in the field
could be accurately identified as being made by either
left or right hind feet. It was also assumed that an expe-
rienced tracker or field biologist could differentiate
between footprints made by fore and hind feet.

Unsurprisingly, the amount of covariance between
linear measures was relatively high, since all variables
were presumably related to overall footprint size. For
tiger left hind feet (LHF) the average Pearson correla-
tion coefficient (r) between linear measures was 0.615
(n = 150), where n is the number of records. Angular
variables were also correlated with one another (tiger
LHF: average r = 0.229; n = 150), though the covari-
ance between linear and angular variables was relatively
low (tiger LHF: average r = 0.021; n = 150). This pat-
tern of variable correlations was also shown by tiger and
snow leopard RHF footprints. Neural networks, such as
SOM, are reportedly relatively insensitive to covariance
between input variables (Ripley, 1993). However, sen-
sitivity to covariance is likely to be dependent on the
nature of the data and, in some cases, classification effi-
ciency may be improved using a principal components
analysis (PCA) prior to entry into the SOM (Murtagh &
Hernandez-Pajares, 1995). With AutoClass, linear and
angular variables were entered within separate multi-
normal ‘multi_normal_cn’ models, which were report-
edly able to allow for these covariances (Stutz &
Cheeseman, 1994).

To assess any effects of covariance on the two clas-
sifiers, data dimensionality was reduced into indepen-
dent variables using PCA. Ten principal components
were generated from the 27 original variables in each

case. These derived variables consistently accounted for
at least 95% of the variability of the original datasets.
Entry of the principal components into the SOM required
no modification from that required for the original data.
With AutoClass, principal components were entered as
a ‘single_normal_cn’ model, which assumes indepen-
dence between variables.

The probable overall size difference between Siberian
and Bengal tiger footprints was not considered prob-
lematic for the analysis. However, in addition to
analysing all tigers together, Bengal tiger footprints were
analysed as a separate subset. Data from both footprint
acquisition methods, acetates and photographs, were ini-
tially pooled prior to entry into both classifiers. Cases
were labelled, and thus the relative class allocations of
footprints derived from each method could be observed
within the classifications.

For the SOM, maps of dimensions 3×3, 3×5, 10×10,
10×15, 20×20, 20×25 and 50×50 were used to assess the
influence of map size on classification accuracy.
Rectangular, rather than square maps, may be more effi-
cient for classification (Kohonen et al., 1992), thus both
types were assessed.

RESULTS

Self-organizing map tested using tiger footprints

Self-organizing maps (SOMs) derived from all tiger
footprints combined failed to sufficiently cluster indi-
viduals into distinct groups. The resultant 50×50 map
for left hind footprints is shown in Fig. 2. Increasing the
dimensions of the map appeared to allow more cluster
separation, however there was no apparent difference
between rectangular and square maps. The prints from
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Fig. 1. Morphometric measurements taken from footprints: A, main pad width; B, main pad length; C, inner toe distance;
D, total width; E, total length; f1 to f4, toe widths; g1 to g4, toe lengths; H main pad top to toe baseline; i1 to i4, distance
from toes to baseline; a1, main pad top angle; a2, inner toe spread angle; a3, outer toe angle; a41 to a44, right-hand angle from
baseline to each toe; a5, outer toes to main pad angle; a6, baseline to toe baseline angle. t1 to t4, toe 1 to toe 4.



individual animals were mapped within closer proxim-
ity to one another, though the overall separation from
other individuals was poor.

Measurements of footprints made from acetates and
photographs did not occur within close proximity for all
individuals. Footprints from both methods for Vosthok,
Zeyna, Nari and Chambal were distributed in relatively

close proximity, though not sufficiently to be able to con-
sider the two methods as equivalent. Similarly unsuc-
cessful results were also obtained for SOMs derived
from the right hind footprints of all tigers combined. 

The separation of individuals was slightly worse when
Siberian tigers were excluded from the analyses of both
feet and no improvement in classification was gained by
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Fig. 2. Self-organizing map (50×50) for left hind footprints of all tigers combined. The ‘_p’ suffix on tiger identifiers indicates
measurements were derived from photographs of the footprints

Fig. 3. Self-organizing map (50×50) for all tigers, left hand footprints, constructed from 10 principal components, accounting
for 96.4% of the original variability. The ‘_p’ suffix on tiger identifers indicates measurements were derived from photographs
of the footprints



using variables derived solely from acetates. The use of
principal components slightly improved individual sep-
aration for both left (Fig. 3) and right footprints. Ten
principal components were used, accounting for 96.4%
of the variability in the original data.

The increase in separation of individuals shown in
Fig. 3 was offset by an increase in overall scatter within
the map. Individuals such as Chambal, Pindi, Zeyna and
Harami show close aggregation in their point distribu-
tions. However, there are many outlying points which
would confuse the classification were this to come from
field data of unknown individual composition.

Self-organizing map tested using snow leopard
footprints

Results from snow leopard footprints were similar to
those from tiger prints. No discrimination of individual
snow leopards could be gained from SOMs. Larger maps
produced greater separation between individuals, but
there was no apparent benefit from using rectangular,
rather than square, maps. As with tigers, cases for indi-
viduals occurred within relatively close proximity, but
true separation from other individual groupings could
not be attained (Fig. 4).
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Fig. 4. Self-organizing map (50×50) derived from snow leopard left hind footprints.

Table 2. AutoClass classification of left footprints for all tigers combined

Class

Animal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total

Chambal 10 10
Chambal_p 10 10
Harami 10 10
Nari 10 10
Nari_p 10 10
Pindi 10 10
Spotty 10 10
Stripey 10 10
Thana 10 10
Vosthok 10 10
Vosthok_p 10 10
Zeyan 9 1 10
Zeyan_p 10 10
Zeyna 10 10
Zeyna_p 10 10

Total 10 10 10 10 10 10 10 10 10 10 10 9 10 11 10 150

Class assignments are shown with the numbers of cases occurring from each individual. The ‘_p’ suffix on tiger identifiers indicates measurements were derived from pho-
tographs of the footprints.



With snow leopards, using principal components
added nothing to the power of the classification. As with
tigers, PCA appeared to increase noise within the map,
but with snow leopards there was no additional individ-
ual separation. The effect was to further confuse any
potential separations.

AutoClass tested using tiger footprints

AutoClass successfully discriminated tigers into individual
classes using left (Table 2) and right (Table 3) footprints.

The classification using left hind footprints misclassi-
fied only one case of Zeyan into the class predominated
by Zeyna. All cases had probabilities of class member-
ship exceeding 0.95.

The misclassification rate for the right hind footprints
was slightly higher than that for the left foot. Two cases
were misrepresented: one case from Spotty was mis-

classified into the class of Pindi and one case from Nari
was misclassified as Chambal. Probabilities of class
membership were consistently high, with P > 0.94. For
those individuals whose footprints were represented by
both acetates and photographs, data from each method
were classified as separate class instances.

Variable a3, the outer toe angle, appears to be most
influential in the classification of left hind footprints (Fig.
5), with no other variables contributing appreciably.
Closer examination of the outputs from AutoClass reveal
that a3 was only influential in determining classes 11 and
12 (Zeyan and Zeyan_p). No isolated variable or subset
of variables was consistently influential in the overall
classification. In general, angular measures were the most
important for the classification.

In the classification of right hind footprints, variables
i3 (toe3 to baseline) and g4 (toe4 height) are most influ-
ential (Fig. 5). As with classification of left prints, vari-

258 P. RIORDAN

Table 3. AutoClass classification of right footprints for all tigers combined

Class

Animal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Total

Chambal 10 10
Chambal_p 11 11
Harami 10 10
Nari 1 9 10
Nari_p 10 10
Pindi 11 11
Spotty 1 10 11
Stripey 11 11
Thana 11 11
Vosthok 10 10
Zeyan 10 10
Zeyan_p 10 10
Zeyna 10 10
Zeyna_p 10 10

Total: 11 11 10 9 10 12 10 11 11 10 10 10 10 10 145

Class assignments are shown with the numbers of cases occurring from each individual.

Fig. 5. Normalized influences of each variable within the AutoClass classifications of left ( ) and right ( ) hind footprints of
all tigers combined.



able influences were not consistent for all classes.
Classes 3 (Nari) and 6 (Spotty) were strongly influenced
by i3 and only class 9 (Vosthok) was influenced by g4.
Classes 3 (Nari) and 10 (Zeyan) were also significantly
influenced by i4 (toe4 to baseline) although the overall
influence of a3 across the entire classification appears
greater (Fig. 5). Overall, the linear measures relating to
toe distance from the main pad (i1–i4) were most sig-
nificant for the classification.

The inclusion of the Siberian tigers in the classifica-
tion did not have a detrimental effect. Omitting them

from the classification still resulted in accurate discrim-
ination of the remaining Bengal tigers.

Using 10 principal components within AutoClass, as
with the SOM method, appeared to confuse the classifi-
cations of both LHF and RHF. Misclassification between
individuals prevented accurate individual identification.

AutoClass tested using snow leopard footprints

As with tigers, AutoClass accurately discriminated indi-
vidual snow leopards from their left hind footprints
(Table 4). All but one instance of Sitar were clustered
into discrete classes. Probabilities of case inclusion into
each class were consistently greater than 0.97, with the
exception of Sitar’s occurrence within class 1, where
P(c1) = 0.57 and probability of membership to class 6,
P(c6) = 0.42.

AutoClass classification of snow leopard right hind
footprints was less powerful than that for the left foot
(Table 5). The major class assignments of Atheni-Moon
and Messalina co-occurred in class 4 with instances of
both animals conflicting with Atheni in class 3. All prob-
abilities of class membership exceeded 0.95.

For the classification of the left foot, variables a6
(baseline to toe baseline angle) and a5 (outer toes to
main pad angle) had greatest overall importance (Fig.
6). Variable a6 was particularly important in defining
class 2 (Aria) and a5 was influential for class 3 (Atheni)
and class 2. Angular variables and the linear ix (distance
from toes to baseline) are most important for the 
overall classification of individuals from the left foot-
prints.

In classifying individuals based on right footprints, vari-
ables a3 (outer toe angle), H (main pad apex to toe base-
line) and a2 (inner toe spread angle) were most influential.
Variable a3 was important in defining class 5 (Sitar) and
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Table 4. AutoClass classification of left footprints for snow leopards

Class

Animal 1 2 3 4 5 6 Total

Alf 10 10
Aria 10 10
Atheni 10 10
Atheni-Moon 10 10
Messalina 10 10
Sitar 1 9 10

Total 11 10 10 10 10 9 60

Table 5. AutoClass classification of right footprints for snow leopards

Class

Animal 1 2 3 4 5 Total

Alf 11 11
Aria 10 10
Atheni 10 10
Atheni-Moon 3 7 10
Messalina 2 8 10
Sitar 10 10

Total 11 10 15 15 10 61

Fig. 6. Normalized influences of each variable within the AutoClass classifications of left ( ) and right ( ) hind footprints of
snow leopards.



variable H was dominant in class 2 (Aria). Variable a2
was influential over all classes, except for class 2.

As with tigers, entering principal components into
AutoClass as separate, independent models created a
number of misclassifications. This prevented accurate
classification of individuals from both LHF and RHF.

DISCUSSION

In discussing the results of the two classification
methods tested, the question must be asked as to whether
they would discriminate individuals from footprints
taken in the field, with no prior knowledge of the ani-
mals concerned. Given the results of this test, the
Kohonen self-organizing map would not. AutoClass,
however, may be able to discriminate wild animals in a
field study.

The reasons for the disparity in performance between
these two classification methods, given the same data,
presumably lies in their different algorithmic approaches
to unsupervised learning. Both systems have been suc-
cessfully demonstrated in a number of applications and
so one must suppose that the nature of the data presented
here was not suited to SOM, whereas AutoClass was
able to perform well. This may have been in part due to
covariance, since PCA gave slight improvement to the
SOM results, though not sufficient to allow clear indi-
vidual discrimination. Within the data set, there is a high
degree of heteroscedasticity between individuals for
each variable. For example, for acetate tracings of tiger
left footprints, values of the coefficient of variation (V),
as calculated by V = s × 100/x– (Zar, 1984), ranged from
0.21 (VStripey, a43) to 64.48 (VHarami, a6). Not surprisingly, V
was greatest for the smaller angles, a5 and a6, where
relative precision was lowest. This pattern was consis-
tent for data from tiger RHF as well as for snow leop-
ards. Variability was also not consistent for each
individual, with some animals showing marked variable
dispersion. The combination of covariance and high vari-
ability within individual footprint data produced rela-
tively noisy data. 

The SOM, as a neural-based classifier, attempts a non-
linear projection of the input data probability density
functions. Neural networks seek a global approximation
of such functions, i.e. a generalization relating all
footprints to the individual animals responsible. As 
data variance increases, function approximation tends
toward more local solutions, i.e. overfitting (Geman,
Bienenstock & Doursat, 1992; Lawrence, Tsoi & Back,
1996). The degree of noise within the data may inhibit
the SOM from finding global function generality, thus
preventing the formation of an accurate classification. 

AutoClass describes the functional form of the prob-
ability functions as class models, incorporating a num-
ber of input variables. Models in this case were defined
according to covariance, with correlated variables occur-
ring within the same model. Classes are then formed
from the particular set of parameter values and their
associated model, resulting in a probabilistic classifica-
tion (Stutz & Cheeseman, 1994). Data noise is thus dis-

tributed among the class models, diluting its effects and
thus allowing a workable classification. This is demon-
strated by the failure of AutoClass to construct an accu-
rate classification from derived principal components.
The removal of covariances required separate class mod-
els for each principal component with no dilution of the
effects of data variability. This may give rise to local
minima in the probability density functions, in a similar
fashion to those experienced by neural networks.

Given that this study was performed by a single
researcher, under standardized conditions, data gained
from footprints taken as part of a field study may show
marked differences to those presented here. Differences
in substrate, slope and animal speeds may all have influ-
ence on intra-individual data variability to some degree,
potentially influencing classification accuracy. Where
acetate tracings are taken, inconsistencies between field-
workers may arise where more than one person is col-
lecting data. All of these factors need addressing prior
to using this method in a field situation.

To some extent, these issues can be controlled for.
Animal speeds can be approximated from the relative
positions of footprints in a set of tracks (Liebenberg,
1990). Analyses can thus be performed using footprints
made by animals travelling at the same speed, although
the available dataset may be reduced. The effects of sub-
strate and slope differences would require more investi-
gation. Smallwood & Fitzhugh (1993) showed that, for
mountain lion, slope was significant in affecting toe
spread and main pad width, whilst having the smallest
effect on total print length and main pad width.
AutoClass was little influenced by either main pad width
(variable A) or total print length (E) and so slope effects
may be detrimental to individual classification. Field
study sites possessing differing substrates or studies per-
formed in both wet and dry conditions also require cau-
tion. Further study may reveal additional footprint
variables that are not as sensitive to the effects of sub-
strate or slope.

In many field situations, it may be impractical to apply
this method to prints occurring on natural substrates.
Under such circumstances this method could still be
employed for mark–recapture census studies, using
sand-traps, or another suitable artificial substrate, to col-
lect footprints from defined locations (S. Alibhai, pers.
comm.; Karanth, 1995).

Misclassifications of footprints from a field study will
not be obvious, since learning is unsupervised and thus
individual identities are not known prior to analysis.
Several misclassifications occurred in the results from
AutoClass presented here. For snow leopard RHF, to
take the highest misclassification rate, these results could
be interpreted as five animals occurring in the study with
15 prints from the first two animals, 11 from the third
and 10 from the last two. The actual situation was that
six animals produced the prints, with 11 footprints from
the first animal and 10 from all others. In a carefully
designed field study, one would aim to acquire as many
footprints from a set of tracks as possible, since all tracks
in a set are known to have been made by one animal.
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Footprints that are classified into classes that do not con-
tain the majority of prints from the same set can be
ignored, since they must be misclassifications. Small
classes, containing complete sets of prints, such as Nari
in the LHF classification of Bengal tigers, must be
treated cautiously. By disregarding small classes as
unrepresentative cases, one risks omitting what may be
an additional animal. Such situations may occur at the
edges of the study site or may be the result of a dis-
persing animal, passing through the area. Careful exam-
ination of the spatio-temporal distribution of such prints
may give clues as to their reliability.

As the number of animals included in the classifica-
tion increases, the variability within any particular mea-
surement, across all individuals, is likely to diminish.
This may in turn lead to a reduction in overall classifi-
cation accuracy. All measurements will be bounded by
maxima and minima, which will be species typical.
Improvements in classifications involving a potentially
large number of individuals may be gained by weight-
ing those measurements that retain the greatest variance.

In presenting this study, I have established that it is
possible to accurately identify unknown individual tigers
and snow leopards from their footprints using unsuper-
vised learning techniques. I have demonstrated that with
further research, this method could be used in field work
to provide a reliable classification of individual animals
from a study area, which may be particularly important
in tiger conservation (Nowell & Jackson, 1996). It must
be emphasized that in a field situation, a classification
using AutoClass can not rely solely on the footprints pre-
sented to the classifier. Additional information is likely
to be important in estimating the reliability of the result-
ing classifications. This method need not be restricted to
carnivore research. Any animal with sufficiently com-
plex footprints could potentially be classified using
AutoClass, though preliminary studies would be needed.
Footprint classification may not be suitable for smaller
animals, since the precision with which track variability
can be expressed will decrease with print size. One could
envisage the situation where measurement error exceeds
the inter-individual differences in footprint dimensions.
Classifications of a variety of animals of differing size
may indicate where this threshold lies. Irrespective of
these issues, I believe that this technique could be a sig-
nificant tool in animal ecology and conservation.
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