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Abstract. Efforts to draw inferences about species occurrence frequently account for false
negatives, the common situation when individuals of a species are not detected even when a site
is occupied. However, recent studies suggest the need to also deal with false positives, which
occur when species are misidentified so that a species is recorded as detected when a site is
unoccupied. Bias in estimators of occupancy, colonization, and extinction can be severe when
false positives occur. Accordingly, we propose models that simultaneously account for both
types of error. Our approach can be used to improve estimates of occupancy for study designs
where a subset of detections is of a type or method for which false positives can be assumed to
not occur. We illustrate properties of the estimators with simulations and data for three species
of frogs. We show that models that account for possible misidentification have greater support
(lower AIC for two species) and can yield substantially different occupancy estimates than those
that do not. When the potential for misidentification exists, researchers should consider
analytical techniques that can account for this source of error, such as those presented here.

Key words: anuran censuses; call surveys; false positive detection; Lithobates spp.; misclassification;
misidentification; multiple states; presence–absence; proportion area occupied; site occupancy; species
occurrence.

INTRODUCTION

Accurately determining patterns of species occurrence

requires that detection errors are properly accounted for

(MacKenzie et al. 2002, 2003). Methodological advances

that address imperfect detection have motivated numer-

ous recent ecological studies of site occupancy and local

extinction and colonization dynamics. Occupancy esti-

mation is now part of the standard tool kit for modeling

species dynamics, monitoring trends, and informing

management (MacKenzie et al. 2002, 2003, Mazerolle et

al. 2007). Methods have largely focused on false

negative detections, which occur when individuals are

not detected at occupied sites. Less attention has been

given to false positive detections, which occur when a

species is recorded at a site that is unoccupied by that

species. These errors typically arise when organisms are

detected but the species is misidentified, but can also

occur when detections are recorded at sites where no

species are present. Controlled studies of electronically

broadcast avian and anuran calls show that even highly

trained observers can misclassify species as present when

they are actually absent (Simons et al. 2007, Alldredge et

al. 2008, McClintock et al. 2010a). False positive

detections have negative consequences when estimating

occupancy if not accounted for, leading to overestima-

tion of occupancy probability (Royle and Link 2006)

and biasing estimators for both extinction and coloni-

zation probabilities (McClintock et al. 2010b, c).

Royle and Link (2006) developed the existing approach

to account for false positive detections when estimating

occupancy (hereafter Royle-Link model). Numbers of

observed detections for each site are treated as a simple

binomial mixture, the result of false positive detections

occurring at unoccupied sites and true positive detections

at occupied sites. Unfortunately, limitations of the model

have impeded its successful implementation (e.g., Fitz-

patrick et al. 2009,McClintock et al. 2010b). These include

correlation among parameters in the model and inability

to distinguish heterogeneity in true positive detection

probabilities among sites from heterogeneity due to false

positive detections. This affects identifiability of model

parameters and can result in unrealistic parameter

estimates (Royle and Link 2006, Fitzpatrick et al. 2009,

McClintock et al. 2010b). Estimators that incorporate

additional information about the detection process, e.g.,

degree of certainty in a detection and multiple survey

methods, may overcome these difficulties (McClintock et

al. 2010b).

We present new methods for estimating occupancy,

which incorporate additional information about the

false positive detection process. We deal first with the
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case where a single detection method is utilized and

detections are classified into multiple states according to

the degree of certainty that the detection is correct. Then
we address cases where multiple detection methods are

utilized, and each method differs in the degree of

certainty that any given detection is correct. For each

of these models, we present the likelihood and examine

the properties of maximum likelihood estimates using
Monte Carlo simulations. We then demonstrate our

methods using surveys of American bullfrogs (Litho-

bates catesbeianus), green frogs (L. clamitans), and

pickerel frogs (L. palustris) conducted at 124 sites in
and around the Maryland side of the Chesapeake and

Ohio Canal National Historic Park (CHOH), USA,

during March–July 2005. We also provide results from

an experimental study that used observations of
electronically broadcast calls of the southern leopard

frog (L. sphenocephalus) to simulate surveys of sites with

known occupancy states.

MODEL DESCRIPTIONS

Multiple detection state model

We first developed the model for cases where a single
detection method is used. Consider a general model

where R sites are each visited T times. The true

occupancy state of the ith site, zi, is assumed to come

from one of K occupancy states. Observations of the ith
site on the tth visit, yit, are classified into one of L

observation states that differ in the probability of being

a false positive detection. We define the probability of

recording an observation l conditional on the true
occupancy as

plk ¼ Pðyit ¼ l j zi ¼ kÞ: ð1Þ

The probability that the true occupancy state is k (i.e.,

zi¼k) is denoted by wk, where
P

k wk¼1. The likelihood

can then be expressed as

Lðp;w j yÞ}
YR

i¼1

XK�1

k¼0

YT

t¼1

pyitk

( )
wik

" # !
: ð2Þ

We demonstrate use of the likelihood when two types

of detections occur, where the first type may include

false positive detections (‘‘uncertain detections’’), but the
second does not (‘‘certain detections’’). For example,

when sampling a site to determine whether it is occupied

by a species, one might consider an indirect observation

based on sign to be uncertain (e.g., scat or tracks) and a

direct observation to be certain (e.g., visual encounter).
Let zi be 1 if the ith site is occupied and 0 if it is

unoccupied. An observation yit from the ith site on the

tth visit is either 2, for a certain detection; 1, for an

uncertain detection; or 0, for no detection.

We can then parameterize the model using three
parameters: The probability of (incorrectly) detecting

the species at a site given the site is unoccupied ( p10), the

probability of detecting the species at a site given the site

is occupied ( p11), and the probability that a detection is

classified as certain given that the site is occupied and

the species was detected (b). The reparameterized

detection probabilities for Eq. 1 are given in Table 1,

which maintains a necessary constraint that each row

sums to 1. We illustrate how Eqs. 1–2 and Table 1 are

used to calculate the probability of observing example

detection histories for individual sites in Appendix A. A

generalized linear model can be used to specify the

relationship of each of the parameters to covariates (e.g.,

logit[p11] ¼ bX ). Rather than the conditional binomial

parameterization, one could also estimate the probabil-

ities of each of the L observation states, which come

from a multinomial distribution, using a multinomial-

logit function. We demonstrate how the likelihood can

be applied to another sampling design where K ¼ 4

occupancy states and L ¼ 4 observation states occur in

Appendix B. Other potential generalizations are consid-

ered in the Discussion.

Multiple detection method model

Our second approach allows multiple detection

methods to be employed on unique sampling occasions

for a site where the true occupancy state is static. We

keep the same notation from the multiple detection state

model for the first detection method. In addition, the R

sites are now visited S additional times using the second

detection method. Observations of the ith site on the sth

visit, wis, are classified into one of M observation states.

The probability of detecting a species, conditional on

whether a site is occupied or not, for each of the

methods is

plk ¼ Pðyit ¼ l j zi ¼ kÞ

and

smk ¼ Pðwis ¼ m j zi ¼ kÞ: ð3Þ

The likelihood is

Lðp; s;w j y;wÞ}
YR

i¼1

XK�1

k¼0

YT

t¼1

pyitk

( )
3

YS

s¼1

swisk

( )
wik

" # !
:

ð4Þ

TABLE 1. Parameterization for the expected probability of
recording the observation state y given the true state of the
site z (P[y j z]) for the multiple detection state model with
only certain and uncertain detections.

True state P(y ¼ 0 j z) P(y ¼ 1 j z) P(y ¼ 2 j z)

z ¼ 0; unoccupied 1 � p10 p10 0
z ¼ 1; occupied 1 � p11 (1 � b) 3 p11 b 3 p11

Notes: Possible observations were not detected (0), had
uncertain detection (1), or had certain detection (2). Definitions:
p10, the probability of (incorrectly) detecting the species at a site
given the site is unoccupied; p11, the probability of detecting the
species at a site given the site is occupied; and b, the probability
that a detection is classified as certain given that the site is
occupied and the species was detected.
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Consider the case where two methods are used; the

first may include false positive detections but the second

does not. As an example, the first method could be

auditory call surveys with some level of uncertainty and

the second method direct handling under the assumption

species can be identified with certainty. Data obtained

from the first detection method are of the type

envisioned by Royle and Link (2006). Data obtained

from the second method follows the standard design of

MacKenzie et al. (2002), where false positive detections

are assumed not to occur.

We use p to specify detection probabilities for the

uncertain detection method and r to specify detection

probabilities for the certain method. The full detection

probabilities for all state combinations are found in

Table 2. Parameters include: p10, the probability of a

false positive detection using the first method; p11, the

probability of a true positive detection using the first

method; and r11, the probability of a true positive

detection using the second method. In Appendix A we

illustrate how Eqs. 3–4 and Table 2 are used to calculate

the probability of observing a set of example detection

histories. When only one visit can be conducted using

the certain method, for all parameters to be identifiable,

at least two visits must be conducted using the uncertain

detection method and vice versa, so that Tþ S � 3. It is

not necessary that both methods be employed at all sites.

When sampling is incomplete one assumes that the sites

where the second detection method was used are

representative of both false positive and true positive

detection probabilities for all sites in the study. The

model is easily generalized to incorporate multiple

occupancy and observation states. This involves speci-

fying plk and smk to incorporate additional observation

and occupancy states as is done in Table 1 and

Appendix B. Although the number of observation states

could differ between the two detection methods, the

number of occupancy states must be the same for both

methods. Similarly, more than two detection methods

can be specified by expanding the likelihood in Eq. 4 to

incorporate additional products specifying detection

probabilities for the additional methods.

Example code for running both models using R

(version 2.10.1; R Development Core Team 2009) is

provided in Supplement 1. Models are also implemented

in the latest version of Program Presence (version 3.1;

Hines 2010). We found that the maximum likelihood

estimator was well behaved for standard numerical

optimization routines. However, it is always advisable to

try multiple starting values for parameters when fitting

models to double-check that results are not for a local

maximum.

Relationship to other occupancy models

The standard occupancy model first proposed by

MacKenzie et al. (2002; MacKenzie model) and the

Royle-Link model are both special cases of the two

models presented here. The MacKenzie model is a

special case of the multiple detection state model when

p10 ¼ 0 and b ¼ 0 and the multiple detection method

model when p10 ¼ 0 and p11 is allowed to differ among

survey occasions when each of the detection methods is

used. The Royle-Link model is intermediate for both

models, in that p10 is estimated for all occasions and all

detections are uncertain.

Similarly, there is a direct relationship between our

multiple detection state model and the multi-state

occupancy framework developed by others (e.g., Royle

2004, Royle and Link 2005, Nichols et al. 2007,

MacKenzie et al. 2009). The multiple detection state

model, where detections are classified as certain (y ¼ 2)

or uncertain (y¼1), is similar to other multistate models

in that even when a species is detected, uncertainty can

remain about the true state of the site. The parallel is

fully realized in our example where occupied sites are

classified into multiple occupancy states based on

potential call intensity levels (Appendix B). In this case,

our model is an extension of the model described by

Royle and Link (2005), allowing for the possibility of

false positive detections. The multiple detection method

model also has parallels to the approach developed by

Nichols et al. (2008) for multiple detection methods at

the same site.

SIMULATION STUDY

Using Monte Carlo simulations, we examined effi-

ciency of our models for estimating occupancy proba-

bilities. Complete descriptions of methods and results

are included in Appendices C and D, respectively. We

conducted 1000 simulations each for 324 parameter

TABLE 2. Parameterization for the expected probability of recording the observation state y using
an uncertain detection method, and of recording observation state w using a certain detection
method, given the true state of the site z for the multiple detection method model with only
certain and uncertain detections.

True state

Uncertain detection method Certain detection method

P(y ¼ 0 j z) P(y ¼ 1 j z) P(w ¼ 0 j z) P(w ¼ 1 j z)

z ¼ 0; unoccupied 1 � p10 p10 1 0
z ¼ 1; occupied 1 � p11 p11 1 � r11 r11

Notes: Possible observations for each sampling method were not detected (0) or detected (1).
Parameters include: p10, the probability of a false positive detection using the first method; p11, the
probability of a true positive detection using the first method; and r11, the probability of a true
positive detection using the second method.
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combinations that included false positives. All analyses

were done using R (version 2.10.1; R Development Core

Team 2009). The Multiple Detection State and Multiple

Detection Method estimators of occupancy had reduced

bias and increased precision when false positive detec-

tions occurred compared to the MacKenzie model,

which systematically overestimated occupancy (Fig. 1).

Improvement using our models was greatest when

occupancy was low, true positive detection probabilities

were small, and the number of sampling occasions great

(Fig. 2). In simulations where false positive detections

were not included in data sets, model selection

procedures ranked estimators that did not include a

false positive detection probability over those that did

.95% of the time. The multiple detection state model

also performed better than the alternative of removing

all uncertain detections from the data set and analyzing

data using the MacKenzie model. Thus, uncertain

detections contain information that can be used to

improve occupancy estimates when false positive detec-

tions are accounted for in the estimation process.

EXAMPLE APPLICATIONS

We used two data sets to illustrate the application of

our methods. The first example utilized both for an

experimental study where true occupancy state was

known and false positive detections were known to

occur (complete descriptions of analysis and results are

included in Appendix E). For these data, the MacKenzie

model overestimated true occupancy by nearly 80%.

However, when a small portion of true detections was

classified as certain, estimated occupancy probabilities

using both models were highly accurate.

Our second example used data for three frog species:

American bullfrogs (Lithobates catesbiana), green frogs

(L. clamitans), and pickerel frogs (L. palustris). All sites

were sampled via anuran call surveys where sites were

classified to observation state based on calling intensity.

FIG. 1. We compared (A) mean error and (B) mean square
error for occupancy estimates (proportion of sites in which the
species occurs) for each of 324 simulated parameter combina-
tions (see Appendix: Table C1 for values). Bar widths are
relative to the number of simulated parameter combinations
falling in an interval, and within each plot a given width
represents the same number of combinations for each
estimator. Results are given for the MacKenzie model, the
multiple detection state model (MDSM), and the multiple
detection method model (MDMM). For the MDSM and
MDMM, the simulated probability of certain detections
(certain state, b, or certain method, r11) was set at 0.50.

FIG. 2. Mean square error for occupancy estimates
(proportion of sites in which the species occurs) for each of
324 simulated parameter combinations (see Appendix: Table
C1 for values). Bar widths are relative to the number of
simulated parameter combinations falling in an interval, and
within each plot a given width represents the same number of
combinations for each estimator. Results are given for the
MacKenzie model, the multiple detection state model
(MDSM), and the multiple detection method model (MDMM).
For the MDSM and MDMM, the simulated probability of
certain detections (certain state, b, or certain method, r11) was
set at 0.50. Results are presented for the lowest and highest
simulated values of (A) occupancy (w1), (B) true positive
detection probability ( p11), and (C) number of sampling
occasions (T ).
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Observers also visited a subsample of wetlands near

acoustic observation points and recorded species seen

and handled, providing a second detection method. The

auditory survey occurred on 11 routes each consisting of

10 sites on three occasions during March–June 2005 as

part of the North American Amphibian Monitoring

Program (NAAMP; Weir and Mossman 2005). All were

within a 32 km radius of the Chesapeake and Ohio

Canal National Historic Park (CHOH), USA. An

additional route, consisting of 14 sites, was located

within CHOH, and these sites were surveyed for calling

anurans on 14–30 occasions. Detections from call

surveys were classified based on NAAMP calling

intensity categories: low (individuals can be counted;

there is space between the calls), medium (calls of

individuals can be distinguished, but there is some

overlapping of calls), and high (full chorus, calls are

constant, continuous, and overlapping). In addition, 34

randomly selected wetlands ,250 m from CHOH call

count locations were directly sampled eight times during

the same time period (i.e., by two independent observers

over four survey occasions). Observers recorded obser-

vations of individuals in all life history phases (adults,

egg masses, and tadpoles) from visual encounter surveys

and captures by dip net. Data for all ponds associated

with a site were combined to yield certain detection data

for each of the eight sampling occasions.

We combined multiple detection state and method

models to analyze the data. We treated call surveys as

our first detection method, where false positive detec-

tions were allowed, and the pond surveys as our second

detection method, where species were identified in the

hand and detections were assumed to be certain.

Furthermore, for the first survey, we assumed medium

and high intensity detections were certain (y ¼ 2) and

low intensity detections were uncertain (y ¼ 1). The

complete parameterization for both models is given by

replacing the parameterization for the uncertain detec-

tion method in Table 2 with the one in Table 1 and

maximizing the multiple detection method likelihood

(Eq. 4).

We estimated separate occupancy probabilities for

NAAMP and CHOH sites. Ambient air temperature has

an important effect on calling frequency and intensity

for amphibians (Mazerolle et al. 2007). Therefore, p11
and b were allowed to vary as a quadratic function of air

temperature (temp) at the time of the survey, where

logit( p11)¼a0þa13 tempþa23 temp2 and logit(b)¼b0
þ b1 3 tempþ b2 3 temp2. To determine support for the

presence of false positives in the data sets we compared

the full parameterization to one where false positive

detections were assumed not to occur by making the

constraint that p10 ¼ 0. We calculated the overall

occupancy probability as a weighted mean, based on

the relative proportions of NAAMP and CHOH sites.

The estimated false positive probability, p10, was 0.030

for bullfrog, 0.008 for the green frog, and 0.027 for the

pickerel frog. For the green and pickerel frogs the model

where false positive were accounted for had lower AIC

than the model where they were assumed not to occur

(DAIC ¼ 3.2 and 0.3, respectively). The model where

false positives did not occur had lower AIC for the

bullfrog (DAIC ¼ 0.8). As expected, for all species the

estimates of occupancy were lower for the model where

false positive detections were accounted for (Fig. 3). The

greatest difference occurred for the pickerel frog, where

the occupancy estimate was less than half the estimate

from the model assuming no false positive detections.

DISCUSSION

By accounting for false positive detection probability

researchers can significantly reduce bias and increase

precision of estimators of occupancy when false positive

detections occur. Our models offer a flexible approach to

account for misclassification, applicable to a range of

situations encountered in occupancy studies. Methods

can take advantage of additional information that may

exist in established protocols and can limit use of costly

sampling methods such as direct handling to a subset of

sites and sampling occasions. The results from our

simulations and example applications reinforce previous

findings that even small probabilities of misclassification

can lead to significant biases in estimates of the

proportion of occupied sites (Royle and Link 2006,

McClintock et al. 2010b), making analytical methods

that account for false positive detections necessary for

many studies.

Results presented here can be used to determine when

our methods will be most useful, how to optimally

implement sampling when using these models, and some

general guidelines for analyses. False positive detections

induced significant bias, and as misidentifications

increased, bias also increased. Data collection methods

where false positive errors are known to occur such as

large-scale volunteer-based surveys (e.g., Weir and

Mossman 2005), interviews with local experts (Karanth

et al. 2010, Zeller et al. 2011), use of historical records

(Boessenkool et al. 2010), call surveys (Simons et al.

2007, McClintock et al. 2010a), computer algorithms to

FIG. 3. Estimates of occupancy (proportion of sites in
which the species occurs) for three species of frogs at sites in
and around the Maryland side of the Chesapeake and Ohio
Canal National Historic Park, USA. These estimates were
systematically lower when the possibility of false positive
detections was included in models than when it was not.
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detect species from recordings (Acevedo et al. 2009), and

laboratory assays (McClintock et al. 2010c), should

address this bias when analyzing occupancy data. In our

simulation and data studies, the largest bias occurred

when occupancy probability was low. Given the serious

consequences for management of rare species when

inaccurate estimates of status occur, accounting for this

bias will be especially important (McKelvey et al. 2008).

Interestingly, bias also increased as sampling occasions

increased, and increasing true positive detection prob-

abilities and the number of sampled sites did little to

reduce bias. Thus, problems with false positive detec-

tions are not solved by simply increasing sampling

effort.

Performance improved for both of our models as the

proportion of certain detections increased. The multiple

detection state model performed poorest when occupan-

cy probability was low and the number of sampling

occasions was few. The multiple detection method

model performed poorest when occupancy probability

was high and true positive detection probability low. We

did not examine how the number of visits using the

certain detection method affected estimates, but increas-

ing occasions is likely to also improve performance.

For simulations and examples presented here we

assumed that a subset of observations was certain, an

assumption that may be relaxed. For example, observa-

tions could be assigned to ‘‘uncertain’’ and ‘‘less

uncertain’’ categories. Allowing that p20 . 0 and s10 .

0 (Eqs. 1 and 3) and specifying the constraints that p20 ,

p10 and s10 , p10, would result in a model with multiple

uncertain observation states. Similarly, the likelihoods

easily accommodate additional true occupancy states (K

. 2), observation states (L . 3), or more than two

detection methods (e.g., see Appendix B).

For purposes of illustration, we used a model selection

criterion in our example to discriminate between models

that did and did not allow for false positive detections.

When false positive detections are known to occur using

a model where the false positive detection probability

was 0 would not make sense. As shown by simulation,

when detection probabilities are sufficient and false

positive detections occur, our models consistently

outperform the MacKenzie model across a wide range

of scenarios. We saw some evidence that even when false

positives occur, power may still be somewhat limited to

discriminate between models where false positives are

and are not accounted for in the model. Therefore, we

suggest a safe approach is to use model averaging when

estimates are obtained under models that both do and

do not allow for false positives (Burnham and Anderson

2002).

Other extensions that account for false positives may

further improve inference about occupancy. When

misclassifications occur directly between two species

(i.e., when one of the species is typically mistaken for the

other) two-species occupancy models (MacKenzie et al.

2004) could be modified to allow for false positives for a

species to only occur when a second species is present at

the same site. As shown here, auxiliary covariate

information (e.g., distance and temperature) is also

useful to disentangle true positive and false positive

detections. Spatial information regarding occupancy of

nearby sites is another potential source of auxiliary

information. Finally, our models can readily be extend-

ed to cases when occupancy changes across time using

dynamic occupancy models (MacKenzie et al. 2003,

2009, McClintock et al. 2010c).
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APPENDIX A

Calculating probabilities for example encounter histories for both multiple detection state model and the multiple detection
method model (Ecological Archives E092-121-A1).

APPENDIX B

Multiple detection state model with four occupancy states and four observation states (Ecological Archives E092-121-A2).

APPENDIX C

Simulation methods (Ecological Archives E092-121-A3).

APPENDIX D

Simulation results (Ecological Archives E092-121-A4).

APPENDIX E

Additional example application for experimental data with known occupancy probability (Ecological Archives E092-121-A5).

SUPPLEMENT

Examples of R code to fit models (Ecological Archives E092-121-S1).
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