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Abstract

The ecological monitoring of threatened species is vital for their survival as it pro-
vides the baselines for conservation, research and management strategies. Wildlife
studies using tracks are controversial mainly due to unreliable recording techniques
limited to two-dimensions (2D). We assess close-range photogrammetry as a low-
cost, rapid, practical and reliable field technique for the digital three-dimensional
(3D) modelling of lion Panthera leo paws and tracks. First, we tested three recon-
struction parameters affecting the 3D model quality. We then compared direct mea-
surements on the paws and tracks versus the same measurements on their digital
3D models. Finally, we assessed the minimum number of photographs required for
the 3D reconstruction. Masking, auto-calibration and optimization provided higher
reconstruction quality. Paws masked semi-automatically and tracks masked manu-
ally were characterized by a geometric deviation of 0.23 � 0.18 cm and
0.50 � 0.33 cm respectively. Unmasked tracks delineated by means of the contour
lines had a geometric deviation of �0.06 � 0.39 cm. The use of a correction fac-
tor reduced the geometric deviation to �0.03 � 0.20 cm (pad-masked paws),
�0.04 � 0.35 cm (pad-masked tracks) and �0.01 � 0.39 cm (unmasked tracks).
Based on the predicted error, the minimum number of photographs required for an
accurate reconstruction is seven (paws) or eight (tracks) photographs. This field
technique, using only a digital camera and a ruler, takes less than one minute to
sample a paw or track. The introduction of the 3D facet provides more realistic
replications of paws and tracks that will enable a better understanding of their
intrinsic properties and variation due to external factors. This advanced recording
technique will permit a refinement of the current methods aiming at identifying
species, age, sex and individual from tracks.

Introduction

Ecological monitoring provides basic information on status and
distribution of animal populations that is crucial for conserva-
tion, research and management strategies (Gese, 2001). Using
tracks is often considered as a non-invasive, cost- and time-
effective way of gaining information on species that are diffi-
cult to observe (Gese, 2001; Long et al., 2012). As an integral
part of hunting, the earliest human beings have developed the
art of tracking that is still used by modern hunter-gatherers
such as the San people of Southern Africa (Liebenberg,
1990a). A study in Namibia showed that modern-day San
trackers were 96% accurate in interpreting the species, age, sex
and individual from tracks for 317 cases (Stander et al., 1997).
Track measurements were used to achieve similar levels of
identification as that of the San trackers for larger felids such
as leopard Panthera pardus (Stander et al., 1997; Gusset &
Burgener, 2005), tiger P. tigris (Gore et al., 1993; Sharma,

Jhala & Sawarkar, 2003, 2005), lion P. leo (Stander et al.,
1997) and mountain lion Puma concolor (Smallwood & Fitz-
hugh, 1993; Grigione et al., 1999; Jewell, Alibhai & Evans,
2014), and for black Diceros bicornis and white Ceratotherium
simum rhinoceroses (Jewell, Alibhai & Law, 2001; Alibhai,
Jewell & Law, 2008). The most significant example of track
use in wildlife studies is the ‘pugmark census method’ that has
been implemented for more than three decades to monitor the
tiger populations in India (Karanth et al., 2003; Sharma et al.,
2005). Designed in 1966, this census involves thousands of
rangers that are searching for tracks across India for set peri-
ods of time (Choudhury, 1970, 1972). Tracings of the left hind
paw’s tracks of purportedly nearly all the tigers are then com-
pared for individual identification. This type of census using
tracks is highly controversial since the protocol does not take
into consideration the variation due to different manipulators
and substrates, and the individual identification is highly sub-
jective (Karanth et al., 2003). The pugmark census method
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and all the above-mentioned track measurement methods are
using recording techniques limited to two-dimensions (2D):
direct measurement, drawing on acetate sheets or taking pho-
tographs. More recently, a Microsoft Kinect depth sensor was
used to capture depth images of tracks from captive tigers
(Lokare et al., 2014).
The rigorous use of tracks in ecological monitoring requires

the variables extracted from them to be sensitive to variation
between animals (species, sex, age and individual) and insensi-
tive to external factors (such as substrate and manipulator
bias). Three-dimensional (3D) reproduction of an object that is
inherently 3D inevitably provides a better representation of
reality that will improve the understanding of its intrinsic prop-
erties and their variation. Photogrammetry, the ‘science of
measuring in photos’ (Linder, 2009), provides a potentially
useful tool for such 3D reconstruction. However, any innova-
tive application first requires validation. Here, we determine
whether close-range photogrammetry can be used as a rapid,
practical and reliable field technique for the digital 3D mod-
elling of lion paws and tracks. We first tested the influence of
reconstruction parameters on the alignment step, before com-
paring direct versus digital measurements and finally we
assessed the number of photographs required for the 3D recon-
struction. This technique was developed with the practical con-
siderations of remote study sites and proximity to potentially
dangerous animals in mind. In addition, digital 3D reconstruc-
tion can be computed with a commercially available low-cost
non-customized software package that implements both digital
photogrammetry and computer vision techniques.

Materials and methods

Study areas

The two study sites, Hluhluwe-iMfolozi Park (HiP, ~900 km2)
and Tembe Elephant Park (TEP, ~300 km2), are located in the
sub-tropical province of KwaZulu-Natal (KZN), eastern South
Africa. These two fenced areas are managed by a provincial
conservation agency, Ezemvelo KZN Wildlife (EKZNW). Situ-
ated in Zululand, HiP is characterized by hilly topography
ranging from 40 to 560 m above sea level with a mean annual
rainfall of 650–985 mm. Three major rivers (Hluhluwe, Black
iMfolozi and White iMfolozi River) traverse the park. TEP is
located in Maputaland along the international border of South
Africa with Mozambique and is characterized by sandy plains
with ancient littoral dunes and a mean annual rainfall of
700 mm. Dry riverbeds in HiP and sandy roads in TEP pro-
vide optimal substrate for tracks. Current lion populations (July
2015) are estimated at ~120 individuals in HiP (M. J. Somers
et al., unpubl. data) and ~40 individuals in TEP (C. Hanekom,
TEP’s Ecologist, unpubl. data).

Paw and track sampling

Twenty lion paws were opportunistically sampled during noc-
turnal captures in TEP (Fig. 1a). The captures were part of
management activities unrelated to this project (Animal Popula-
tion Control plan, proposed by Tembe Management Team and

accepted by EKZNW Board). Twenty clear lion tracks were
sampled in HiP after a direct observation, in front of a camera
trap (Cuddeback Attack, Green Bay, WI, USA) or after identi-
fication by means of a tracking book such as Liebenberg
(1990b) and Gutteridge & Liebenberg (2013) (Fig. 1b). Both
paw and track samplings consisted of (1) directly measuring
the length and width of the main pad and toes with the help
of a 0–150 mm vernier calliper (Tork Craft, Midrand, South
Africa) (Fig. 1b), and (2) taking photographs to create digital
3D models using close-range photogrammetry. The same
manipulator, A.F.J.M., did all the sampling and two different
digital single-lens reflex cameras were used: Nikon D7100
(24.1 megapixels) with Nikkor 18–70 mm f/3.5–4.5 and Nikon
D80 (10 megapixels) with Nikkor 50 mm f/1.8 (Nikon Cor-
poration, Tokyo, Japan) for photographing the paws and tracks.

(a)

(b)

Figure 1 Paw and track sampling. (a) During the paw sampling, the

motionless paw is positioned on a stand with a clamp holding the

ruler and orientating the paw upward. (b) A vernier calliper was used

for the direct measurements of paws and tracks.
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The sampling was carried out following the guidelines pro-
vided in the photogrammetric package’s user manual (Agisoft
LLC, 2014a), as well as those described in De Bruyn et al.
(2009). The manipulator took 10–15 photographs of the object
(i.e. paw or track) with the same focal length from different
angles and distances (Fig. 2). During image acquisition, the
paw was positioned off the ground on a stand with a clamp
making it strictly motionless (Fig. 1a). The photographs have
to cover each side of the object to avoid blind spots and they
have to overlap with each other (Fig. 2). The object must fill
the frame but a feature can be absent in one photograph pro-
vided that it appears in others. A ruler, that needs to be visible
on at least three photographs, was positioned near the object
and remained motionless between photographs to provide a
scaling measure (Fig. 1a).

3D modelling and re-projection error

The 3D modelling was performed with Agisoft PhotoScan Pro-
fessional Edition version 1.1.4 build 2021 (Agisoft LLC, Saint
Petersburg, Russia) (hereafter PS). PS is an image-based 3D
modelling solution that can process arbitrary photographs taken
in either controlled or uncontrolled conditions and that can
reconstruct any visible object from at least two photographs
(Verhoeven, 2011; Agisoft LLC, 2014a). PS implements both
‘Structure-From-Motion’ and ‘Dense Multi-View 3D Recon-
struction’ (DMVR) algorithms (Verhoeven, 2011). The recon-
struction of a 3D model comprises three main steps: camera
alignment (building sparse point cloud) (Figs 2 and 3a), build-
ing dense point cloud (Fig. 3b) and building polygonal mesh
(Fig. 3c). The mesh can then be exported to external pro-
grammes for further analyses (Fig. 3d). The camera alignment
step applies the ‘bundle adjustment’ method to search the fea-
ture points (i.e. key points) and match them between pho-
tographs (i.e. providing the tie points), find the external

orientations (i.e. camera positions and orientations) and esti-
mate the internal orientations (i.e. camera calibration parame-
ters) (Figs 2 and 3a) (Triggs et al., 2000; Szeliski, 2010;
Agisoft LLC, 2014a). The second step applies DMVR algo-
rithms on the aligned image set by operating on the pixel val-
ues (Scharstein & Szeliski, 2002; Verhoeven, 2011). The
outcome is a dense point cloud (Fig. 3b) that can then be
transformed into a polygonal mesh (Fig. 3c). Following the
alignment step, PS estimates the ‘camera error’ or ‘re-projec-
tion error’ in pixels that can be defined as the ‘root mean
square re-projection error calculated over all feature points
detected on the photograph’ (Agisoft LLC, 2014a). The re-pro-
jection error is basically the distance between a projected point
and the measured one (Gargallo, Prados & Sturm, 2007). This
error provides crucial information about the quality and accu-
racy of the alignment step (Verhoeven et al., 2012).

Preferred reconstruction parameters

There are three reconstruction parameters that can influence the
camera alignment and that are tested here: (1) masking, (2)
calibration and (3) optimization. For scenario (1), the pictures
were either not masked (unmasked) or masked around every-
thing except the main pad and toes (pad-masked). In scenario
(2), the cameras were either automatically calibrated by PS
(auto-calibrated) or manually pre-calibrated (pre-calibrated) in
external software. For the third scenario, either we did not
apply an optimization step (non-optimized) or we did (opti-
mized). We selected three paw and three track datasets that
contain between 11 and 12 photographs and 10 to 15 pho-
tographs respectively. These datasets were representative of our
database and complete for the following testing procedures.
We manually discarded any blurred photographs and those of
lower quality (less than 0.5 units) by using the tool ‘estimate
image quality’ in PS. We then aligned the photographs using
the highest accuracy (i.e. using original size photographs) and
the default settings (Table 1). We positioned two markers (with
two projections per marker) by using the ‘guided marker place-
ment approach’ – placing the marker projections on a single
aligned photograph and the program automatically projects pre-
dictor rays onto the remaining photographs to reduce the
chance of misplacing a marker. For each scaled 3D model
originating from a specific dataset, we re-launched the align-
ment step three times for each possible combination of recon-
struction parameters (i.e. eight combinations; e.g. combination
1: unmasked/auto-calibrated/non-optimized) and recorded the
re-projection error.
Masking is a tool to exclude parts of the photographs, par-

ticularly the background, from the processing. The paws were
semi-automatically masked in Photoshop Creative Cloud
(Adobe, San Jose, CA, USA). After applying the options ‘shar-
pen edge’ and ‘auto-contrast’ to enhance the edges, we used
the ‘quick selection tool’ with an automatic edge refinement of
10-pixel-radius and 50% contrast (see Adobe Photoshop Cloud
Creative help file). The ‘quick selection tool’ was not success-
ful for the tracks as the colours and texture were too uniform.
Therefore, the tracks were manually masked in PS using the
tool ‘intelligent scissors’. For the pre-calibration, we manually

Figure 2 Placement of camera stations (blue frames) around the

object of interest. The sparse point cloud as well as the camera

positions and orientations are the outcomes of the camera alignment

step. Note the two markers and the scale bar.
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estimated the camera calibration parameters using the software
Agisoft Lens version 0.4.1 beta build 2021 (Agisoft LLC, Saint
Petersburg, Russia) that uses the computer screen as calibration
target. The calibration parameters were then imported into PS
and used for aligning the photographs through the unfixed cali-
bration mode. Aligning the photographs using image data only
(i.e. through the tie points) leads to non-linear deformations
originating from calibration errors (Agisoft LLC, 2014a). The
optimization step offers a refined bundle adjustment by adding
ground control points to the calculations. We used the ‘scale bar
based optimization’ with the default settings (Table 1) by using
the two markers as ground control points.

Direct versus digital measurements

To test for differences between direct measurements on the
actual paws and tracks (i.e. length and width of the main pad
and the four toes), and the same measurements on their digital

3D models, we reconstructed the 3D polygonal mesh of 20
paws and 20 tracks. The paw and track datasets contain
between 12 and 14 photographs and between 10 and 15 pho-
tographs respectively. After discarding blurred and lower qual-
ity photographs, we launched the camera alignment step using
the same settings as above, with two markers and two projec-
tions per marker, and using masking, auto-calibration and opti-
mization. Once the photographs aligned, we built the dense
point cloud with the highest accuracy (i.e. using full pho-
tograph resolution) and moderate depth filtering (Table 1).
Using the dense point cloud as a data source, we then built
the mesh with the highest possible details (i.e. highest face
count) for arbitrary surface type (i.e. non-topographic pho-
togrammetry) and without automatic interpolation (i.e. only
areas corresponding to dense point cloud are reconstructed)
(Table 1). We cleaned the meshes by gradually selecting and
removing all the patches that did not define the main pad or
any of the toes. After automatically closing all the gaps in the

(a) (b)

(c) (d)

Figure 3 General workflow in PhotoScan and contour lines. (a) Sparse point cloud (2812 points). (b) Dense point cloud (4 572 854 points). (c)

Polygonal mesh (916 402 faces). (d) 0.5 mm contour lines with non-axis-orientated bounding boxes computed in CloudCompare.
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meshes, we exported the five shapes. In CloudCompare, we
used the tool ‘Principal Component Analysis (PCA) fit’ to cre-
ate a bounding box that was not axis-orientated (Fig. 3d)
(CloudCompare, 2015). This allowed us to automatically
extract the lengths and widths of each shape.
To avoid the subjective manual masking of the tracks, we

reconstructed the 3D meshes from the same track pho-
tographs with the same settings as above but unmasked.
After using the tool ‘PCA fit’, we created the contour lines
starting at the minimum height (i.e. bottom of the track) with
a step of 0.5 mm (Fig. 3d). For each shape, we selected the
highest isolated (i.e. non-connected to another shape) contour
line as the shape delineation. As with the pad-masked 3D
models, the length and width were then automatically
extracted.
For the pad-masked paws, pad-masked tracks and unmasked

tracks, we calculated the mean geometric deviation as the dif-
ference between digital and direct measurements. We estimated
a correction factor to adjust the digital measurements using the
following equation: Direct = Digital–Digital 9 Correction Fac-
tor or Correction Factor = 1 � Direct/Digital.

Number of photographs required

To assess the minimum number of required photographs, we
selected three paw and three track datasets that all contained
more than 10 photographs. Same as for the reconstruction
parameters, these datasets were representative of our database
and complete for the following testing procedures. We reclas-
sified each dataset into subsets with an increasing number of
pad-masked photographs randomly selected with replacement.

In each subset, two photographs were always the same as
they were used to position the two markers and the scale
bar. Thus cancelling the influence of subjective marker posi-
tioning on the final 3D models. The random selection of
photographs was repeated three times per dataset and per cat-
egory of number of photographs. We reconstructed, cleaned
and measured the mesh of each subset using the same proce-
dure described above. For each category of number of pho-
tographs ranging from 5 to 10, we calculated the predicted
error as the percentage of the absolute difference between the
corrected digital and direct measurement. The total volume
was also recorded.

Data analysis

We processed all our statistical analyses with the program R
(R Development Core Team, 2014). We used a Mann–Whitney
U-test to analyse the difference between the mean re-projection
errors for the paw and track datasets taken separately, whereas
a Wilcoxon signed ranks test was used to study the effects of
the reconstruction parameters on the same error value. We
plotted both the direct versus digital and the direct versus cor-
rected digital measurements for each case (pad-masked paws,
pad-masked tracks and unmasked tracks) and we calculated the
coefficient of correlation using a Spearman’s rank-order corre-
lation test. We plotted the mean predicted error with 95% con-
fidence intervals against the number of photographs for the
pad-masked paws and pad-masked tracks. Using a Mann–Whit-
ney U-test, we estimated the category of number of pho-
tographs in which the asymptote is reached (i.e. when the
mean predicted error for that category is not significantly dif-
ferent from that of the category with 10 photographs). The
probability values are considered statistically significant at
P ≤ 0.05.

Results

Reconstruction parameters

There is a significant difference (Mann–Whitney U-test,
P < 0.001) between the mean re-projection error for the paws
(1.03 � 0.39 pix) and for the tracks (0.47 � 0.09 pix). Paws
and tracks were therefore considered independently for testing
the effects of masking, calibration and optimization on the 3D
model quality. Masking has a significant influence (Wilcoxon
signed ranks test, P < 0.001) on the alignment of paw pho-
tographs. Mean re-projection error is lower for pad-masked
(0.68 � 0.13 pix) than for unmasked (1.39 � 0.18 pix) paw
photographs. The same influence (Wilcoxon signed ranks test,
P < 0.001) is observed for the alignment of track photographs,
with a mean re-projection error that is again lower for pad-
masked (0.42 � 0.09 pix) than for unmasked (0.53 �
0.02 pix) photographs. Calibration does not have a significant
influence on the alignment of paw photographs (Wilcoxon
signed ranks test, P = 0.822). However, it has a significant
influence (Wilcoxon signed ranks test, P < 0.01) on the align-
ment of track photographs, with a mean re-projection error that
is lower for auto-calibrated (0.46 � 0.07 pix) than for

Table 1 Settings used in the camera alignment, optimization, build

dense cloud and build mesh step

Align photos

Accuracy High

Pair pre-selection Disabled

Key point limit 40 000

Tie point limit 1000

Optimization

Camera accuracy (m) 10

Marker accuracy (m) 0.005

Scale bar accuracy (m) 0.001

Projection accuracy (pix) 0.1

Tie point accuracy (pix) 4

Build dense cloud

Quality Ultra high

Depth filtering Moderate

Build mesh

Surface type Arbitrary

Source data Dense cloud

Face count High

Interpolation Disabled
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pre-calibrated (0.49 � 0.10 pix) photographs. Optimization has
a significant influence (Wilcoxon signed ranks test, P < 0.001)
on the alignment of both paw and track photographs. The
mean re-projection error of the optimized alignment for paw
photographs is lower (1.03 � 0.39 pix) than in the non-opti-
mized case (1.04 � 0.39 pix). Similarly, lower re-projection
error was observed when optimization was applied (0.47 �
0.07 pix) than when it was not (0.48 � 0.10 pix) for the track
photographs.

Direct versus digital measurements

The 3D models of both pad-masked paws and tracks present a
positive geometric deviation of 0.23 � 0.18 cm and 0.50 �
0.33 cm respectively (Table 2; Fig. 4a,b), whereas a negative
geometric deviation of �0.06 � 0.39 cm (Table 2; Fig. 4c) is
observed for the unmasked tracks. The calculated correction fac-
tor is 0.06 � 0.05 for pad-masked paws, 0.11 � 0.07 for pad-
masked tracks and �0.01 � 0.12 for unmasked tracks (Table 2).
These factors may be used in predictive equations to adjust the
overestimation in the case of the pad-masked paws and tracks,
and the underestimation in the case of the unmasked tracks
(Table 2). The use of the appropriate correction factor reduces
the geometric deviation to -0.03 � 0.20 cm for pad-masked
paws, �0.04 � 0.35 cm for pad-masked tracks and �0.01 �
0.39 cm for unmasked tracks (Table 2; Fig. 4). The coefficient
of correlation, Spearman’s r, is 0.98 for pad-masked paws, 0.96
for pad-masked tracks and 0.93 for unmasked tracks, with no
difference between non-corrected and corrected (Table 2;
Fig. 4).

Number of photographs

For both the pad-masked paws and tracks, the mean predicted
error decreases with an increasing number of photographs used
to reconstruct the 3D models (Fig. 5). For the paws, an asymp-
tote is reached between six and seven photographs, as the pre-
dicted error for seven photographs (5.15 � 4.05%) is not
significantly different from that of 10 photographs (4.22 �
3.75%) (Mann–Whitney U-test, P = 0.09) (Fig. 5a). The
asymptote is reached for the tracks between seven and eight
photographs (Mann–Whitney U-test, P = 0.06), with a pre-
dicted error of 6.00 � 3.37% for eight photographs and
5.07 � 3.20% for 10 photographs (Fig. 5b). Other than
observing an increasing predicted error when decreasing the

amount of photographs, the 3D model volume also shrinks
with a decreasing number of photographs. The mean volume
for five photographs represents 67.78 � 5.91% and
84.89 � 9.31% of the mean volume for 10 photographs for
the paws and tracks.

Table 2 Geometric deviation (non-corrected and corrected) and predictive equations to approximate the length and width of the main pad and

toes for the pad-masked paw, pad-masked track and unmasked track models. r values are the resultant linear regression fit of direct to digital

measurements and direct to corrected digital measurements calculated with Spearman’s rank-order correlation test

Model

Geometric deviation (cm)

Equation N

r

Non corrected Corrected Non corrected Corrected

Pad-masked paws 0.23 � 0.18 �0.03 � 0.20 Dr = Dg�Dg 9 (0.06 � 0.05) 200 0.98 0.98

Pad-masked tracks 0.50 � 0.33 �0.04 � 0.35 Dr = Dg�Dg 9 (0.11 � 0.07) 200 0.96 0.96

Unmasked tracks �0.06 � 0.39 �0.01 � 0.39 Dr = Dg�Dg 9 (�0.01 � 0.12) 194 0.93 0.93

Dr, direct measurements; Dg, digital measurements.
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Figure 4 Regression of direct versus digital measurements

(corrected and non-corrected) for (a) pad-masked paws, (b) pad-

masked tracks and (c) unmasked tracks. The line represents the true

regression line (intercept = 0, slope = 1) and r is the coefficient of

correlation using the Spearman’s rank-order correlation test.
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Sampling and processing time
considerations

The image acquisition (i.e. photography) of either the paws or
tracks took less than 1 minute per object. The manual masking in
PS took on average 1.50 min per photograph (range: 1.15–
2.14 min) and the semi-automatic masking in Photoshop took on
average 3.4 min (range: 2.42–4.20 min). For the processing of
datasets containing 10 pad-masked photographs, two paw and
one track datasets were computed with a laptop Mac Book Pro
OSX Yosemite 2.8 GHz Intel Core i7 8GB memory (hereafter
MAC), and one paw and two track datasets were computed with
a desktop computer Windows 7 Enterprise 3.60 GHz Intel Core
i7 16GB memory (hereafter PC). The MAC mean total process-
ing time for paws (tracks) was 53.03 � 22.86 min
(5.82 � 0.32 min) with the following breakdown in percentage
for the three steps: 2% (5%) photograph alignment, 55% (79%)
dense cloud building and 43% (16%) mesh building. Processing
with the PC reduced the mean total processing time for paws
(tracks) to 11.59 � 0.94 min (1.70 � 0.30 min) with the follow-
ing breakdown in percentage for the three steps: 3% (8%)

photograph alignment, 58% (77%) dense cloud building and 39%
(16%) mesh building. Using the same datasets but with only five
photographs, the total processing time for paws (tracks) becomes
22.12 � 1.27 min (2.68 � 0.38 min) using the MAC and
9.33 � 3.98 min (0.58 � 0.11 min) using the PC. Five track
datasets containing 12 photographs each were processed with the
PC in both unmasked and pad-masked condition. The mean total
processing time was 46.32 � 2.86 min for unmasked pho-
tographs and 2.25 � 0.64 min for pad-masked photographs.

Discussion

In ichnology (i.e. science studying the interaction between organ-
ism and substrate), dinosaur tracks have previously been sampled
using photogrammetry (Petti et al., 2008; Remondino et al.,
2010). To our knowledge, this study represents the first application
of close-range photogrammetry to record paws and tracks of extant
animals in 3D. This innovative field technique provides an objec-
tive and reliable solution to obtain digital 3D models of both paws
and tracks. The image acquisition time, less than a minute per paw
or track, is ideal for minimizing the interaction with immobilized

(a)

(b)

Figure 5 Mean predicted error (%) and 95% confidence interval (CI) for each category of number of (a) paw and (b) track photographs. The

predicted error is the percentage of the absolute difference between the corrected digital and the direct measurement. An asymptote is reached

between 6 and 7 paw photographs, and between 7 and 8 track photographs as the mean predicted error (%) for 7 paw photographs and 8 track

photographs is not significantly different from that for 10 photographs.
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individuals and for working with potentially dangerous species.
Furthermore, the necessary equipment for the field data collection
is essentially limited to a digital camera and a ruler.
The reconstruction parameters have a significant impact on the

alignment step and therefore on the quality of the final 3D mod-
els. The comparison of the mean re-projection errors between the
different possible combinations showed that masking, auto-cali-
bration and optimization yielded more accurate 3D reconstruction
of both paws and tracks. Other than decreasing the processing
time, another advantage of masking is the delineation of the
object of interest (paw or track). However, it is important to use a
delineation process that is not affected by the manipulator’s sub-
jectivity. This was successfully achieved for the paws by means
of a semi-automatic masking tool in Photoshop. The tool could
easily pick up the interface between the pads and the hair due to
a high contrast in colour and texture. This clear contrast is not
present in the track photographs and the masking tool showed
limited success with the delineation between an imprint and the
surface that enables its existence. While subjective manual mask-
ing of tracks led to a significant overestimation of the digital mea-
surement (Table 2; Fig. 4b), the semi-automatic segmentation
using unmasked tracks and contour lines led to the lowest geo-
metric deviation (Table 2; Fig. 4c). Unmasked tracks present a
higher mean re-projection error compared to pad-masked tracks,
however, this error remains less than that of pad-masked paws
(see section Reconstruction parameters). In the case of the pad-
masked paws, we believe that the overestimation of the digital
measurement might in fact be due to an underestimation of the
direct measurement. Since the pads are made of a thick elastic
mass of connective tissue (Gutteridge & Liebenberg, 2013), the
manipulator tends to compress the calliper on the pads leading to
an underestimated measurement. The use of specified correction
factors for the measurement estimation from the digital 3D mod-
els reduces the geometric deviation by two decimals of a cen-
timetre (Table 2). The accuracy advertised by Agisoft for close-
range photogrammetry with PS is 0.1 cm (Agisoft LLC, 2014b).
For both paw and track 3D models, we showed that the predicted
error increases and the total volume decreases, as the number of
photographs used in the reconstruction decreases (Fig. 5). The
suggested minimum of seven and eight photographs for paws
and tracks, respectively, represents a theoretical minimum num-
ber of photographs to process the 3D models. From our experi-
ence, approximately 7% of the photographs were discarded due
to poor quality. Furthermore, it is not only the quantity of pho-
tographs that matters but also their position in the 3D space, as
they must overlap without any blind spots (Fig. 2). Since more
photographs make better models and to avoid a lack of 2D infor-
mation, we advise capturing twice as many photographs than the
theoretical minimum (i.e. between 14 and 16 photographs). We
further recommend masking the paws but not the tracks, and
using both the auto-calibration and optimization functions.
Previous studies using 2D have shown high accuracy

(>90%) for objective individual identification from tracks made
by black and white rhinoceroses (Jewell et al., 2001; Alibhai
et al., 2008), mountain lions (Smallwood & Fitzhugh, 1993;
Grigione et al., 1999; Jewell et al., 2014) and tigers (Sharma
et al., 2005). Felid tracks were mainly sampled on dusty roads
(i.e. producing shallow tracks) as other substrates, such as

sand, generated greater variability of the track contour. Unfor-
tunately, optimal dusty roads are not present everywhere. This
is particularly the case in our study sites as TEP largely com-
prises sandy roads while HiP’s unpaved roads are often too
hard. The above-mentioned studies of wild felids sampled a
limited number of individuals (from 3 to 17 individuals). In
addition, the identification accuracy was dependent on the
number of tracks per track set (i.e. tracks belonging to the
same individuals). Sharma et al. (2005) suggested a minimum
of ten tracks per track set. Recording techniques in 2D are
affected by the manipulator posture (Smallwood & Fitzhugh,
1993) and experience (Karanth et al., 2003) during tracing,
while photographs are affected by the time of the day and
cloud cover (Grigione et al., 1999). Furthermore, photographs
that are not aligned directly over the object can introduce a
parallax error. In the same way that 3D has improved facial
recognition methods (Chang, Bowyer & Flynn, 2003), we are
confident that it will enable a more rigorous, objective and
repeatable use of tracks in future studies. By providing more
information, 3D replicas of tracks should enable the correct
identification of more individuals on a greater variety of sub-
strates with fewer tracks required per individual. Analysing the
intrinsic properties of the paws will lead to a better under-
standing of the tracks they produce. The nature of the sam-
pling technique, which requires several photographs taken from
different distances and angles, is expected to be less affected
by manipulator bias. This paper shows that working with digi-
tal 3D models ought to improve the track segmentation and
feature extraction by decreasing the human input. Given the
results of our innovative technological approach, we are cur-
rently working on improving the technique (e.g. understanding
manipulator bias and using different types of cameras) and
applying it to identify individual lions from their paws and
tracks. Identifying individuals from their tracks would have
major implications in behavioural ecology, conservation biol-
ogy and wildlife management. Tracking is less invasive than
camera trapping, requires less investment and logistics while
not being prone to hardware failure and theft.
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