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ABSTRACT We designed a novel approach to determining extent of distribution and area of occupancy for wolverines (Gulo gulo) by using

aerial surveys of tracks in snow and hierarchical spatial modeling. In 2005 we used a small, fixed-wing aircraft with pilot and one observer to

search 575 of 588 survey units for wolverine tracks in approximately 60,000 km2 of boreal forest in northwestern Ontario, Canada. We used

sinuous flight paths to scan open areas in the forest in the 100-km2 survey units. We detected tracks in 138 (24%) of the 575 sampled units.

There was strong evidence of occurrence (probability of occurrence .0.80) in 30% of the 588 survey units, weak evidence of occurrence (0.50–

0.80) in 12%, weak evidence of absence (0.20–0.50) in 15%, and strong evidence of absence (,0.20) in 43%. Wolverine range comprised 59%

of the study area and area of occupancy was 33,400 km2. With information on probability of occurrence and core areas of occupation for

wolverines in our study area, resource managers and others can examine factors that influence wolverine distribution patterns and use this

information to formulate best management practices that will maintain wolverines on the landscape in the face of increasing resource

development. Comparing future survey results with those of our 2005 survey will provide an objective way to assess the efficacy of management

practices. ( JOURNAL OF WILDLIFE MANAGEMENT 71(7):2221–2229; 2007)
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In 2004 the Ontario Ministry of Natural Resources
(OMNR) listed the wolverine (Gulo gulo) as threatened on
the Species at Risk list for the province, in part because
historic accounts, fur-trapping records, and incidental
observations (sightings and animals killed on roads)
indicated that wolverine range had receded from southern
portions of the province by about 1900 and from portions of
northern Ontario, Canada, since about 1955 (Dawson
2000). However, fur-trapping records may not reflect actual
distribution of wolverines because of a number of factors
including uneven distribution of trappers and differences in
trapping effort. Moreover, historic records and unverified
sightings are often unreliable and may overestimate species
distribution (Frey 2006, Aubry et al. 2007). Concerns about
the possible effects of proposed resource development on
wolverine distribution in northern Ontario (Dawson 2000)
prompted us to develop a method for modeling distribution
of wolverines using aerial surveys of tracks in snow, the only
feasible means of detecting wolverines over large, remote
regions of northern Ontario. Unlike other methods that
require tracking wolverines in winter from aircraft (Becker
1991, Becker et al. 2004), a survey technique for northern
Ontario must be efficient and economical to apply over large
areas (.50,000 km2) of forested habitat and cannot require
that all fresh wolverine tracks be detected and followed
forward and backward. Furthermore, the modeling approach
must deal with imperfect detection of tracks and autocorre-
lated data. Because we knew of no published method of

surveying wolverines that fit these specifications, we
designed a new aerial survey technique and used readily
available software to implement a hierarchical spatial model
that estimates probability of occurrence. Specifically, our
objectives were to 1) model probability of occurrence of
wolverines using tracks in snow in forested habitat in
northwestern Ontario, 2) produce a map of wolverine
distribution in our study area, and 3) define extent of
occurrence and area of occupancy as objective metrics of
distribution. This information would serve as a baseline
reference with which to compare future patterns of
wolverine distribution following large-scale habitat change
as human developments expand farther into wolverine
range.

STUDY AREA

Our study area (approx. 60,000 km2) was located in the
Boreal Shield Ecozone of northwestern Ontario (49–518 N
and 90–968 W; Fig. 1a). Mean elevation in the study area is
390 m (SD ¼ 29; range ¼ 300–520 m). The main tree
species were white and black spruce (Picea glauca and Picea
mariana, respectively), jack pine (Pinus banksiana), balsam
fir (Abies balsamea), tamarack (Larix laricina), birch (Betula
papyrifera), trembling aspen (Populus tremuloides), and
balsam poplar (Populus balsamifera). Lichens, shrubs, or
forbs dominated the ground cover, depending on the forest
community. Water bodies comprised approximately 20% of
our study area, and other open habitat types included open
fen, treed fen, open bog, treed bog, sparse coniferous forest,
sparse deciduous forest, recent cutovers, and recent burns.1 E-mail: amagoun@ptialaska.net
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Figure 1. Location of our wolverine track survey in northern Ontario, Canada in 2005 showing (a) location of the study area in relation to wolverine
distribution based on fur-trapping data (Ontario Ministry of Natural Resources) from 1980–2005, and (b) land classifications and human footprint in the
survey area.
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These open habitats where wolverine tracks were detectable
were well-distributed across our study area and comprised
.50% of the area (OMNR Ontario Provincial Land Cover;
Landsat Thematic Mapper imagery compiled in 2000).
Forest stands with canopies dense enough to block the view
of the forest floor from survey aircraft comprised ,25% of
our study area. These stands were mature jack pine or a mix
of jack pine and white and black spruce with trees .10 m
tall and a stocking density .70%. Roads, logging, mining,
and other human developments were most numerous in the
southwest portion of the study area (Fig. 1b). Mammals,
other than wolverine, for which tracks in snow were
detectable from survey aircraft included moose (Alces alces),
caribou (Rangifer tarandus), white-tailed deer (Odocoileus

virginianus), wolf (Canis lupus), coyote (Canis latrans), red
fox (Vulpes vulpes), lynx (Lynx canadensis), river otter (Lontra

canadensis), fisher (Martes pennanti), marten (Martes amer-

icana), mink (Neovison vison), beaver (Castor canadensis), and
snowshoe hare (Lepus americanus). Tracks of fisher, which
were most similar to those of wolverine, were concentrated
in the western half of the study area and particularly in the
southwest quadrant. Details on vegetation, physiography,
climate, forest succession, and other ecological attributes of
the region are provided in Perera et al. (2000).

METHODS

In January–March of 2005, we used a PA-18 Super Cub
(Piper Aircraft Corporation, Lock Haven, PA) equipped
with wheel-skis, with a survey team comprised of the pilot
and one observer, to search for wolverine tracks. We chose
this 2-seat, tandem aircraft because of its proven suitability
for wolverine track surveys in Alaska, USA (Becker 1991,
Becker et al. 2004) and the ability of both pilot and observer
to see the ground on both sides of the aircraft. The aircraft
was highly maneuverable with a tight turning radius and
slow stall speed. Groundspeed was usually 110–140 km per
hour. Survey altitude was approximately 200 m above the
ground but varied between 100–300 m over hilly terrain. We
waited �24 hours before flying survey routes after wide-
spread snowstorms that deposited �3 cm of fresh snow or
after windstorms with average wind gusts of .50 km per
hour. We flew on days with sunny or bright overcast skies
when wind conditions were favorable for circling over tracks
and safely maneuvering the aircraft at low levels. We had no
upper limit for number of days after a fresh snowfall and we
considered all detected wolverine tracks as evidence of
occurrence regardless of track age or condition.

We divided the study area into a tessellation of 100-km2

hexagons, which allowed for up to 6 neighboring units of
equal distance from the sampled unit and with boundaries of
equal length. We based our survey unit size on what we
considered a minimum home range size of resident female
wolverines in Ontario. A radiocollared resident female in
our study area had a home range of about 300 km2 (95%
min. convex polygon) in 2004 (F. N. Dawson, OMNR,
unpublished data) but home ranges of resident females in
other study areas averaged 100–400 km2 and were smaller

than those of resident males or young transient animals
(Banci 1994). Use of larger survey units would have resulted
in higher occurrence probabilities given the same occurrence
distribution (MacKenzie et al. 2006) but would have
provided lower resolution of spatial characteristics of
occurrence. Given our survey unit size, all home ranges
had the potential to be included in a survey route. Prior to
beginning the surveys, we plotted flight routes through the
centers of survey units and determined the coordinates of
the centers (ArcGIS Version 9.0). A flight route entered one
side of a unit, passed through the center, exited another side
(not necessarily the opposite side), and then entered the next
unit on a heading toward the center of that unit. Because of
the hexagonal shape of the units, we had 6 compass
headings to choose from when establishing flight routes.
Whenever possible, we aligned routes along a long line of
survey units to avoid having to frequently adjust headings
during the survey. The distance across a survey unit was
about 10 km but pilots used a sinuous flight path to
maneuver the aircraft over open habitats or forest stands
where the forest floor was visible, minimizing time over
forest canopies where track detection was not possible. The
mean and median sizes of these stands were only 45 ha and 8
ha (SD ¼ 338), respectively, so circumventing the stands
during the survey flights did not cause large deviations from
the designed flight paths. Deviations were not .1 km and
were usually much less because of the amount and
distribution of openings where tracks could be detected.
We recorded the location of wolverine tracks using the
Global Positioning System (GPS).

The length, shape, and direction of a flight route
depended on local weather conditions on the day of the
flight, day length, location of airstrips with aviation fuel, and
number of times we had surveyed units previously. A priori
knowledge of wolverine distribution from trapping records
(Dawson 2000) suggested wolverines were less abundant in
the southern portion of our study area and possibly in the
eastern portion as well, so we aligned survey routes to
sample northern and southern or eastern and western
portions of the study area (or both) on the same day
whenever possible. In that way, regions of the study area
with different levels of wolverine abundance were likely to
be surveyed under similar tracking conditions, thereby
breaking any correlation with sources of variation in
detection probability caused by variable tracking conditions
(MacKenzie and Royle 2005). We determined potential
flight routes before beginning the survey, distributing them
evenly across the study area in space and time. Weather
conditions often dictated which route we could survey and
whether we could complete it on any particular day. If we
could not complete the survey route in its entirety, we noted
the GPS location where the flight ended and used it to
determine the last sampled unit for that route. We could
then select another survey route where conditions were
suitable. To use flight time efficiently and obtain the largest
possible number of samples (both sampled units and
repeated surveys of sampled units) given the time and
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money available for the survey, we minimized ferry time to
and from survey routes, using most flight time for surveys
and surveying all units along the routes, regardless of the
number of times we had surveyed units previously. When we
flew a unit twice on the same day (i.e., the route crossed
back over itself), we used a different heading through the
unit in order to survey a different area of the unit. We
surveyed up to 50 units per day and plotted track locations
only after we completed the route. While flying a particular
heading, we did not know which unit we were surveying
except for the first and last unit on that leg. Therefore,
previous track history in a sampling unit did not influence
detection on subsequent surveys of the unit.

Members of the survey team were experienced at locating
wolverine tracks from the air. The pilot (P. Valkenburg) was
a professional wildlife biologist with .25 years experience
snow-tracking wolverines and other wildlife from aircraft in
Alaska and 3 months experience tracking in forested areas of
northern Ontario in 2004. Both persons alternating as
observers (A. Magoun and J. Ray) had 2 seasons tracking
wolverines in the study area prior to the survey. To identify
tracks, we used a combination of track size, shape, depth,
and gait but most importantly track pattern, which included
changes in types and spacing of different gaits because of
different habitats and snow conditions. In addition, we used
body print patterns in deeper snow and behavior of the
animal to help identify tracks. We spent as much time as
needed to verify the identity of tracks, including circling
tracks, following tracks to observe changes in track pattern
or behavior, following fresh tracks until we saw the
wolverine, and landing the aircraft to investigate tracks on
the ground. For the experienced survey team, wolverine
tracks were usually easier to identify from the air than from
the ground, especially if tracks were not fresh or were
following or mixed in with tracks of other species. Long
segments of track were visible from the air making it easier
to discern track patterns, and tracks could be followed at a
rate of .1 km per minute to observe changes in track
patterns and behavior of the animal. The 33 lope (Half-
penny et al. 1995) with different stride lengths (depending
on rate of travel) is the most common gait that wolverines
use. Wolverines also use a 23 track pattern, a walking gait,
and, less commonly, a galloping gait and a bounding gait in
deep soft snow. When we observed the latter gaits, we
followed the tracks until we saw the characteristic 33 lope.
Fishers have a similar range of track patterns but tracks of
large male fishers in our study area were considerably smaller
than tracks of small female wolverines. We could also
distinguish fisher tracks from those of wolverines by more
frequent changes in track pattern by fishers, differences in
behavior (e.g., more frequent nonlinear travel by fishers),
and a generally narrower track pattern for fishers. If there
was any doubt about a track, we did not include it in our
analysis to avoid false positives (Sargeant et al. 2005). After
we investigated a track, we returned to the route heading.

We used a hierarchical spatial-modeling approach (Baner-
jee et al. 2004) to map probability of occurrence of wolverine

tracks, which was similar to that of Sargeant et al. (2005) for
modeling species distribution using ground-based track
surveys. We also used a subset of our survey data to model
the effects of reduced sampling effort (�2 surveys/sampled
unit) on pattern of occurrence. Because of similarities in
modeling framework to that of Sargeant et al. (2005), we
used the same notation for corresponding model compo-
nents in the following description:

The variable xi denotes the true presence or absence of a
wolverine track in sampling unit i¼ 1, . . . , S (takes values 1
or 0, respectively). Rather than assume occurrence was
constant (i.e., wolverine tracks were either always present or
always absent in the sampling units during the survey), we
assumed movement in and out of a sampling unit was
random (MacKenzie et al. 2006). We also assumed that
permanent immigration or emigration to and from the study
area did not occur during the survey; none of 7 wolverines
that we radiotracked in 2004 left the study area during the
January–March period in 2004 (F. N. Dawson, unpublished
data). Spatial association is expected to occur in the joint
distribution of x ¼ (x1,. . .,xS) for 3 reasons. First, it is
possible that wolverine tracks cross over into neighboring
survey units and are detectable in .1 unit because a
wolverine home range might overlap several units. Second,
it is likely that survey units close in space share similar
environments making it more likely that they will also
possess or fail to possess wolverine tracks. Finally, offspring
of resident females may live in or near their mother’s home
range for up to 28 months before dispersing (Magoun 1985,
Vangen et al. 2001).

Sargeant et al. (2005) modeled spatial association in the
joint distribution of x through use of an autologistic model
(Besag 1974). We took a slightly different approach that is
computationally simpler but similar in spirit. Instead of
directly modeling the conditional distribution of xi given
occurrence values at all other sites, x�i , as in the autologistic
model, we incorporated a latent continuously valued
auxiliary variable vector z ¼ (z1,. . .,zS). The vector z can
be thought of as a combination of several unobserved
environmental covariates, such as cover type or prey density.
(We used the term ‘‘auxiliary’’ because it can also be thought
of as simply a tool to construct a distribution model for x,
which is easy to sample in a Markov Chain Monte Carlo
[MCMC] context). Conditional on a realization of z, we
modeled the xi as independent Bernoulli random variables
with parameter logit ni ¼ a þ rzi. To induce spatial
association in x, we modeled the vector z with a condition-
ally autoregressive (CAR) distribution. The CAR model is
defined by the conditional normal distributions

zijz�i ; N ðli; s
2
i Þ;

where

li ¼
b
jnðiÞj

X
j2nðiÞ

zj and s2i ¼
1

jnðiÞj :

The set n(i) is the set of neighbors for sampling unit i and
jn(i)j is the size of the neighborhood set. We defined
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neighbors as survey units that share a border. The parameter
b is a measure of spatial contagion between�1 and 1, with 0
indicating independence of the random effects. We assumed
that spatial association in wolverine occurrence is positive
due to the fact that environmental conditions in the sample
units are similar for neighboring units. We restricted b to
(0,1) to maintain positive spatial association. The complete
model for the random effects and true occurrence values is

Pðx; zja; b;rÞ ¼ Pðxja;r; zÞ3 PCARðzjbÞ;

where PCAR( ) is the joint normal distribution that results
from the defining conditional distributions (Banerjee et al.
2004). The spatial association within x results by integrating
over the latent process z to obtain the marginal density of x

Pðxja; b;rÞ ¼
Z
z

Pðxja;r; zÞPCARðzjbÞdz:

The marginal density of x will be spatially associated
because z is a spatial process. Due to the nonlinear
relationship of z to the distribution of x, the integral is
not obtainable in closed form. Using MCMC methods,
however, we can numerically evaluate the integral by
including z in the updating scheme and then ignoring it
when examining the results. The benefit of this model-based
or hierarchical spatial approach is that all of the variables in
the MCMC routine have tractable, and common, joint
distributions. Sargeant et al. (2005) needed to use an
approximation of the joint distribution for the autologistic
model in their MCMC routine.

Because detection of tracks is imperfect, we could not
directly measure the true presence or absence of wolverine
tracks (xi) in a particular sampling unit. Therefore, we used
multiple surveys of sampled units to obtain a correction for
detectability. The variable yij denotes whether we detected a
wolverine track in unit i on survey j (yij ¼ 1 if detected, 0
else). It follows that if xi¼ 0 then yij¼ 0 with probability 1
for all j. If xi ¼ 1, however, then yij may be either 0 or 1
depending on the probability of detection. Therefore, given
xi ¼ 1

yij jxi ¼ 1;Bernoulli ðhijÞ;

where hij is the probability that a wolverine track is detected
in unit i on survey j given there is one present. Unlike
Sargeant et al. (2005), we surveyed units repeatedly even
after an initial detection occurred, allowing the Bernoulli
model to be used where detection probability can vary
through time. The geometric data model of Sargeant et al.
(2005) assumes a constant detection probability through
time.

Two ways to deal with heterogeneity in detection
probability are to minimize its potential effect (MacKenzie
and Royle 2005) or to include covariates in the model
(MacKenzie et al. 2002). To avoid confounding the effects
of wolverine abundance and heterogeneity resulting from
differences in weather and snow conditions, we spread
survey effort across the study area spatially and temporally to
avoid surveying units where wolverines were more abundant

during only the best or only the worst survey conditions. We
minimized the effect of forest cover on detection probability
by flying over habitats where tracks were detectable
whenever possible. Finally, detection rate appeared higher
in the period after 14 February, possibly due to increased
activity of wolverines in late winter, increased density of
snow in late winter facilitating movement, or accumulated
experience of the tracking team. Therefore, we added this
covariate, employing the detection model

logit hij ¼ c0 þ c1dij ;

where

dij ¼
1 if survey j of hex i is conducted on or after 15

Feb
0 else

8<
:

If we assume that the observed occurrences yij are
independent given the true occurrence xi, we arrive at the
conditional distribution model for the observed occurrence

PðyjxÞ ¼
YS

i¼1

YNi

j¼1
ðxihijÞyij ð1� xihijÞ1�yij

" #
;

where y is the vector of all yij and Ni is the number of surveys
of the ith sampling unit.

We took a Bayesian MCMC approach to parameter
estimation due to a large amount of missing data, unknown
parameter values, and complex nonlinear dependencies
among data and parameters. The complete hierarchical
model for analysis results from combining the occurrence
model with the detection model to obtain

Pðy; x; zja; b;rÞ ¼ Pðyjx; cÞPðx; zja; b;rÞ;

where c is the vector of detection probability parameters and
z is the vector of latent spatial variables. The posterior
distribution of interest is

Pðx; a; b;r; cjyÞ}Pðyjx; cÞ
R

Pðx; zja; b;rÞdz
� �

pða; b;r; cÞ;

where p( ) represents the prior distribution of the model
parameters.

The hierarchical formulation incorporates the detection
model in order to produce an estimate of x, the occurrence
field. The missing data arise both from units that we never
surveyed (i.e., missing yij and xi) and from units in which we
never detected wolverine tracks (i.e., missing xi). The
MCMC routine updates the missing xi as if they were
parameters of the model. For sites where we observed tracks
(i.e., yij¼ 1 for some j), xi¼ 1 for all MCMC iterations. In
this way the algorithm updates elements of x that are
missing using the spatial association in the occurrence model
and the units where xi ¼ 1. Thus, we can construct a
seamless distribution map. Sargeant et al. (2005) provided a
detailed description of the use of MCMC in hierarchical
models for mapping occurrence. They needed to make use of
custom code in order to execute their MCMC routine due
to the intractability of the joint distribution of the
autologistic model. The hierarchical approach of our spatial
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model resulted in conditional distributions for the Gibbs
sampler, which were tractable. Therefore, we used the free
software program OpenBUGS (Version 2.2.0) in BRugs (R
interface to BUGS; Thomas 2004) to execute the MCMC
analysis. We provide some details and OpenBUGS code in
the Appendix. In each analysis, we chose the priors b ;

uniform(0, 1), r ; normal(0, 1.52), a ; normal(0, 1.52), c0

; normal(0, 1.52), and c1 ; normal(0, 1.52). Using
normal(0, 1.52) for a quantity defined on the logit scale
results in the transformed quantity that is distributed
approximately uniform(0, 1). We ran the MCMC simu-
lation for 50,000 iterations following a 10,000-iteration
burn-in period. The chains visually converged in approx-
imately 7,000 iterations. We based occurrence probabilities
in our distribution maps on the means from the posterior
distribution.

RESULTS

The pilot and one of the 2 observers flew 905 of 1,079
(84%) survey flights (total no. of flights resulting from
repeated surveys in 575 sampled units). The same pilot and
the other observer flew the remainder (n¼174) of the survey
flights, with the principal survey team repeating surveys in
the same sampled units. Because we used one survey team
for most of the survey flights, we did not use survey team as
a covariate in the model. We could not verify potential
wolverine tracks in 5 sampled units and we did not include
them in the analysis. Because fisher tracks that had melted
on southerly exposures in late March resembled wolverine
tracks when viewed from the air, the survey team checked
fisher tracks on the ground 3 times to verify their identity.
These were the only tracks checked on the ground during
the survey. The survey team also followed one track from
the air for visual verification of a wolverine. We terminated
the survey in late March because of frequent freeze–thaw
cycles and deteriorating tracking conditions.

We surveyed 575 of 588 survey units (98%) over 26 days,
with 9 days in January, 15 days in February, and 2 days in
March. Of the survey days, 46% fell on or after 15 February.

Weather conditions at the Red Lake weather station (Fig.
1b) in 2005 in January, February, and March, respectively,
were as follows: average temperature (8 C), �19.8, �13.1,
and �8.7; average snowfall (cm) per day, 2.8, 1.7, and 1.9;
number of days with snowfall, 20, 9, and 11; number of days
with �3 cm of fresh snow, 7, 2, and 2; and range of snow on
the ground (cm), 59–85, 70–75, and 57–74. Only one day
during the survey period had wind gusts .50 km per hour
(in Feb).

Of the 575 sampled units, we surveyed 204 (35%) once,
260 (45%) twice, 90 (16%) 3 times, 20 (3%) 4 times, and 1
(,1%) 5 times (Fig. 2). Flight time per sampled unit
averaged 10 minutes including verification of track identity.
We detected wolverine tracks in 24% (138 of 575) of the
units (Fig. 3a). In 88% of 138 units with detected tracks,
detection occurred within the first 2 surveys of the unit.
Cumulative units with detected tracks after the first, second,
third, and fourth survey flights in the sampled units were 65
(11% of the 575 sampled units), 121 (21%), 133 (23%),
and 137 (24%), respectively.

Units with detected tracks were in the northern portion of
the study area (Fig. 3a) and units with occurrence
probabilities .0.80 were concentrated in the north-central
portion of the study area (Fig. 3b). There was strong
evidence of occurrence (probability of occurrence .0.80;
Sargeant et al. 2005) in 30% of the 588 survey units, weak
evidence of occurrence (0.50–0.80) in 12%, weak evidence
of absence (0.20–0.50) in 15%, and strong evidence of
absence (,0.20) in 43%. Of the 588 units, 73% showed
either strong evidence of occurrence or strong evidence of
absence. Detection probability before 15 February was 0.23
(95% Bayesian CI (BCI) ¼ [0.18, 0.29]) and afterwards,
0.54 (95% BCI ¼ [0.42, 0.66]).

When we examined model results using �2 survey flights
per sampled unit, we detected tracks in 21% (120 of 575) of
the units and the highest occurrence probabilities were still
concentrated in the north-central portion of the study area
(Fig. 3c). The highest occurrence probability for units
without track detections was 0.87 (SD¼ 0.34) compared to
0.91 (SD ¼ 0.29) for the full survey. Detection probability
before 15 February was 0.25 (95% BCI¼ [0.19, 0.33]) and
afterwards, 0.62 (95% BCI¼ [0.46, 0.77]). This simulated
reduction in survey effort decreased occurrence probabilities
in 69% of the 588 survey units, but ,1% of the units
decreased by .0.20; there was an increase in occurrence
probabilities in 11% of the survey units, all by ,0.01. The
percentage of the 588 units with occurrence probabilities
.0.80 (strong evidence of occurrence) fell from 29% (n ¼
170) to 23% (n ¼135).

DISCUSSION

Our survey and modeling approach made it possible to
determine distribution of wolverines on a scale appropriate
to this wide-ranging species that naturally occurs at low
densities on the landscape (Banci 1994). The survey
technique allowed us to acquire large amounts of occurrence
data over a large area in a relatively short period of time (26

Figure 2. Distribution of survey effort (no. of survey flights/survey unit) for
wolverine tracks in our study area in northern Ontario, Canada in 2005.
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d in a period of ,3 months) and required a team of only 2
people. The technique was more flexible than other
published aerial surveys for wolverines (Becker 1991, Becker
et al. 2004) and used approximately 6 times less flying time
than those techniques would have required for our study
area (H. N. Golden, Alaska Department of Fish and Game,
personal communication). All flight time undertaken in
good survey conditions could be used for sampling and the
technique did not require that we survey only routes and
sampling units chosen a priori.

Probability of occurrence showed strong spatial structure
with 73% of 588 survey units having either strong evidence
of occurrence or strong evidence of absence. Even with
reduced survey effort (�2 surveys/unit), the southern limit
of wolverine distribution in the study area was evident (Fig.
3c), but increasing the number of repeated surveys to �3 (at
a cost of approx. 10 min of flight time/surveyed unit) was
necessary to adequately deal with detection probability
(Mackenzie and Royle 2005) and to establish the general
pattern of wolverine occurrence throughout the study area.
To achieve a relatively unambiguous estimate of distribution
(Sargeant et al. 2005), we suggest that �70% of sampling
units should be units with either strong evidence of presence
(probability of occurrence .0.80) or strong evidence of
absence (,0.20). Otherwise, few (relative to the no. of
survey units), widely spaced units with detections will result
in weak evidence of occurrence in all units except the ones
with detections.

Wolverine occurrence based on our track surveys in the
study area generally agreed with occurrence patterns based
on OMNR fur-trapping records from 1980 to 2005 (Fig.
1a). Trapping data, however, spanned a relatively long
period, were only known at the scale of individual trap-lines
or community trapping areas, and were influenced by the
number and distribution of trappers. Our survey technique
allowed us to assign locations to particular sampling units
and provided an objective means to measure extent of
distribution and area of occupancy using data we collected
within a single year.

We defined the southern extent of distribution as a line
below the southernmost survey units with .0.20 probability
of occurrence. Using this definition, wolverine range
comprised 59% of the study area (347 of 588 survey units)
and no limit to distribution was evident in the north, west,
or east (Fig. 3b). We defined area of occupancy as those
survey units with occurrence probabilities .0.20, which
comprised 33,400 km2 (57% of the study area). We
considered survey units with occurrence probabilities
.0.50 (24,300 km2; 41% of the study area) to be the core
area of occupancy because clumping of units with high
occurrence probabilities can identify areas on the landscape
that are highly used (MacKenzie 2006, Wintle and Bardos
2006).

Populations of many wildlife species have intrinsic spatial
structure that influences their distribution on the landscape
(Wintle and Bardos 2006). In wolverine populations,
intrinsic spatial structure arises from offspring sharing their

mother’s home range and home ranges of resident male
wolverines overlapping those of resident females (Banci
1994). We suggest that relatively large groups of contiguous
sampling units (e.g., �10) with high occurrence probabil-

Figure 3. Results of the wolverine track survey in northern Ontario, Canada
in 2005 showing (a) survey units with detected wolverine tracks, (b) pattern
of occurrence probabilities based on all repeated surveys in the sampled
units (the bold line indicates the southern extent of occurrence based on
probabilities .0.20), and (c) pattern of occurrence probabilities when we
used data from �2 surveys to simulate reduced survey effort (we used the
first 2 surveys if there was .1 survey for the sampling unit).
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ities (.0.80) in the northern region of the study area
indicated areas with occupied home ranges. From a
radiotelemetry study we conducted in 2004, we had evidence
that wolverines were resident in the northern part of our
study area and reproduced, at least in the north-central
region of the study area where we located a natal den (F. N.
Dawson, unpublished data). In contrast, smaller groups of
contiguous survey units with occurrence probabilities .0.80
may represent areas where 1) transients were temporarily
active, 2) resident animals were occupying patches of
suitable but discontinuous habitat, or 3) immigrants were
colonizing new areas. Units with high occurrence proba-
bilities isolated from similar units may only provide
information on extent of distribution and location of
movement corridors.

Occupancy modeling must address heterogeneity in
detection probability (MacKenzie et al. 2002, MacKenzie
2005). In our survey, the most practical ways to minimize
the potential effects of heterogeneity on estimates of
occurrence, other than that caused by differences in
wolverine abundance, were to use one survey team for most
of the survey, repeat flights in sampling units even after the
first detection, and position survey routes and flight paths to
break any correlation with sources of variation in detection
probability (MacKenzie and Royle 2005). If multiple survey
teams are used for surveys, all pilots must be experienced at
identifying and tracking wolverines and experience of survey
teams should be roughly equivalent whenever possible. In
addition, teams should fly adjacent routes on the same days
whenever possible so that team differences in ability to
detect tracks are distributed similarly across the study area
under similar conditions. One of the benefits of our
modeling approach is that the model can accommodate
variability in skill levels of survey teams by including survey
team as a covariate, but it is best to minimize potential
effects of this variability on detection probability by
distributing skill levels equally across the study area and
alternating teams in repeated surveys of the same unit
(MacKenzie and Royle 2005). Finally, concentrating our
survey effort over habitat types where it was possible to see
wolverine tracks was an effective way to deal with potential
heterogeneity in detectability due to forest cover.

MANAGEMENT IMPLICATIONS

Our survey method identified not only extent of wolverine
distribution in our study area but also core areas of
occupation, and it provided probability of occurrence for
each sampling unit including those not surveyed. Using this
information, resource managers and others can examine
wolverine–habitat associations across the study area by
comparing characteristics of occupied and unoccupied
habitats and can track changes in wolverine distribution by
comparing future surveys with our 2005 baseline survey.
With an understanding of how distribution changes with
changing habitat conditions, OMNR, conservation organ-
izations, forest management companies, trappers, and others
can cooperate in the development of best management

practices targeted at maintaining wolverines on the land-
scape in the face of increasing resource development in the
study area. We recommend repeating the survey in our study
area at intervals sufficient to inform forest management
plans (e.g., every 5 yr) and other resource development that
could potentially alter wolverine distribution patterns.
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APPENDIX

Details of the Markov chain Monte Carlo (MCMC)
routine and the OpenBUGS code follow.

MCMC Routine
OpenBUGS executes the MCMC in approximately the
following manner (exact order of update is unknown but
does not matter in obtaining a posterior sample), assuming
independent prior distributions for the parameters of the
model. Here the full conditional distributions for the Gibbs
sampler are denoted by P(parameter j . . .).

� Update missing yij (yi1 is enough), using dij ¼ 1, with a
draw from the conditional distribution P(yi1j. . .) ¼
(xihi1)yi1(1�xihi1)1�yi1. The actual Ni and dij used will
not matter to the posterior distribution of the parameters.
� Update ck with a draw from the conditional distribution

P(ck j . . .) } P(y j x)P(ck) for k ¼ 0,1. A Metropolis-
within-Gibbs draw is required here (see Sargeant et al.
[2005] for explanation). OpenBUGS uses a normal
proposal.
� Update missing xi (those sample units for which tracks

were never seen) with a draw from P(xij. . .) ¼
nxi

i ð1� niÞ1�xi .
� Update a with a draw from P(a j . . .) } P(x j a,z)P(a). A

Metropolis-within-Gibbs draw is required.
� Update zi, i¼1, . . ., N, with a draw from P(zi j . . .) } P(zi

j z�i,b)P(xi j a,r,zi). A Metropolis-within-Gibbs draw is
required.

� Update b with a draw from P(b j . . .) } P(z j b)P(b). A
Metropolis-within-Gibbs draw is required. Repeat this
step for r.

OpenBUGS Code
################################################
#TotObs ¼ sum_fi¼1ĝN N_i
# y[] ¼ (TotObs x 1) vector [y_fijg]
# d[] ¼ (TotObs x 1) vector [d_fijg]
# su[]¼ (TotObs x 1) vector of integer sample unit labels for
each element of y[]
# theta[] ¼ TotObs x 1) vector [theta_fijg]
################################################
model
f

# OBSERVATION MODEL P(yjx,gamma)
for(k in 1:TotObs)f

y[k] ; dbern(p[k])
p[k] ,- x[su[k]]*theta[k]
logit(theta[k]) ,- gamma0þgamma1*d[k]

g

# OCCURRENCE MODEL P(xjz,alpha,sigma)
for(i in 1:N)f

x[i] ; dbern(xi[i])
logit(xi[i]) ,- alpha þ sig*z[i]
mu.z[j] ,- 0

g

# LATENT SPATIAL PROCESS MODEL P(zjbeta)
z[1:Nplots] ; car.proper(mu.z[], C[], adj[],num[], M[], 1,
beta)

# DETECTION MODEL PARAMETER PRIORS
gamma0 ; dnorm(0, 0.4)
gamma1 ; dnorm(0, 0.4)

# OCCURRENCE MODEL PARAMETER PRIORS
alpha ; dnorm(0, 0.4)
sig ; dnorm(0,0.4)

# LATENT SPATIAL PROCESS PARAMETER PRIOR
beta ; dunif(0, 1)

# DERIVED PARAMETERS
sd.z ,- abs(sig)# standard deviation of the z process
logit(theta0) ,- gamma0# Early season theta
logit(theta1) ,- gamma0þgamma1# Late season theta
g
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