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Abstract

Dynamic appearance is one of the most important cues
for tracking and identifying moving people. However, di-
rect modeling spatio-temporal variations of such appear-
ance is often a difficult problem due to their high dimen-
sionality and nonlinearities. In this paper we present a hu-
man tracking system that uses a dynamic appearance and
motion modeling framework based on the use of robust sys-
tem dynamics identification and nonlinear dimensionality
reduction techniques. The proposed system learns dynamic
appearance and motion models from a small set of initial
frames and does not require prior knowledge such as gen-
der or type of activity.

The advantages of the proposed tracking system are il-
lustrated with several examples where the learned dynam-
ics accurately predict the location and appearance of the
targets in future frames, preventing tracking failures due to
model drifting, target occlusion and scene clutter.

1. Introduction

Tracking and identifying moving humans in video se-

quences is a challenging task because the visual appear-

ance of the targets changes dynamically due to their articu-

lated body structure, and due to viewpoint and illumination

changes. The performance of tracking algorithms often de-

pends on how well they can estimate the visual information

and efficiently handle its temporal variation. Several ap-

proaches have been introduced in the literature to address

these issues.

Color information is widely used for tracking target ob-

jects. Perez et el. [16] proposed probabilistic tracking based

on color histograms over time. Lim et el. [13] modeled dy-

namic variations of color histograms and predicted future
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color information using system identification techniques.

Different objects with similar colors, however, may intro-

duce ambiguities because local color and shape information

are not taken into consideration by these approaches.

Black and Jepson [3] learned a set of view-based rep-

resentation of the target objects using eigenspaces. Hager

and Belhumeur [8] tracked the target object by estimating

affine transformations of target templates. Neither of these

approaches incorporate temporal variations of the appear-

ance.

More recently, adaptive models incorporating both spa-

tial and temporal variations of the appearance have been

proposed. While these methods perform better than the pre-

vious approaches, in general, they lack accurate generative

models. Jepson et el. [12] developed the WSL tracker, in

which the appearance variation is divided into stable, lost,

and wandering components. Ho et el. [10] used linear sub-

spaces obtained by Gramm-Schmidt process and updated

the orthogonal basis over time to handle temporal variations

of local appearance information. Han and Davis [9] utilized

a mean shift based algorithm for sequential density estima-

tion of each pixel. All of these approaches search and val-

idate the target appearance based on previous observations.

They, however, may drift by incorporating the background

into the target template and can fail to track in the presence

of long term occlusion.

Figure 1. Generated walking sequence after the learn-
ing step, t = 38, 40, . . . , 48. Top: from constant accel-
eration dynamics; Bottom: from dynamics identified
using robust estimation

The work presented here is closely related to approaches
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Figure 2. Dynamic appearance and occlusion by a background object, t = 60, 75, 90, and 105. The white box is
the predicted appearance and the black box is the probability map based on the predicted appearance.

that attempt to model visual appearance in low dimensional

spaces. In the context of human appearance modeling, Lim

and Kriegman [14] and Dimitrijevic et el. [5] used a set of

prior learned templates which do not characterize individual

differences. Elgammal and Lee [7] learned human appear-

ance using LLE [20] and estimated the 3D pose of the target

from the appearance using a nonlinear mapping. However,

they did not provide a predictive mechanism. Rahimi et

el. [18] proposed to use second order dynamics on appear-

ance manifolds. While successful in many scenarios, this

approach suffers from the fact that a tracker must rely on

the assumed dynamics to produce estimates of the future

appearances, introducing a potential source of fragility. A

mismatch between this model and the actual dynamics will

lead to incorrect predictions [4] 1. This problem is illus-

trated in Figure 1 where it is seen that appearance templates

generated using constant acceleration dynamics on the ap-

pearance manifold, deteriorate much more rapidly than tem-

plates generated using a dynamic model identified by a ro-

bust identification technique on the same manifold. Fur-

thermore, it should also be noted that neither of the above

approaches identifies the dynamics of the target motion and

therefore do not produce accurate predictions of where the

target should be sought for in the next frame. This makes

trackers particularly fragile to clutter and occlusion as illus-

trated in Figure 2. Here, a Condensation tracker [11] using

dynamic appearance templates in conjunction with constant

velocity motion dynamics fails to find the target after the

person is occluded by the tree.

In this paper, we present a robust human tracking sys-

tem which learns dynamical appearance and motion models

with accurate predictive power from a small set of initial

frames. The learning module employs a robust system dy-

namic identification technique based on Caratheodory-Fejer

(CF) interpolation [21]. The benefits of using this new iden-

tification method are multiple. Firstly, it does not require

prior knowledge of a state space realization of the dynamic

systems, or even their order. Secondly, it provides mecha-

nisms to invalidate a priori assumptions about the dynamics

and the noise characterization. Thirdly, it provides worst-

case estimates of the identification error that can be used

1This is the well known divergence phenomenon, see for instance [1],

page 133.

both to determine for how long the predictions of the system

state are valid and, in the context of robust filters such as

mixed H2/H∞ [19], to improve tracking robustness. Last

but not least, because CF interpolation finds a model to fit

the data instead of forcing an a priori model onto the data,

the identified model can accurately predict future appear-

ances and target position, even in the presence of long term
occlusions. As a result, the predicted appearances are very

effective as templates for robust tracking.

The remainder of the paper is organized as follows. Sec-

tion 2 gives an overview of the proposed approach. Section

3 and 4 describe the learning modules of the robust dynamic

appearance and motion model, respectively. Section 5 dis-

cusses how to use these models to track moving humans.

Section 6 demonstrates experimental results. Finally, Sec-

tion 7 presents conclusions and suggests future work.

2. Overview of the proposed approach
The overall tracking system is based on the following

ideas:

1. At each time t, the target is located in the image and

its current high dimensional appearance of the target

in image space is represented by a point on a low di-

mensional manifold found using a nonlinear mapping

that preserves the spatial and temporal neighborhoods

and where the time evolution is governed by piecewise

linear dynamics. This idea leads to a separation type
principle, that allows for separating and independently

identifying the appearance and target motion dynam-

ics;
2. this low dimensional point is the output at time t, of

a linear time invariant (LTI) dynamical system which

is identified from a small set of frames using a robust

identification procedure;
3. future outputs of the LTI system are accurately pre-

dicted by the dynamic evolution of the the system on

the manifold;
4. future high dimensional appearances of the target in

the image space are predicted by a nonlinear inverse

mapping applied to these predicted outputs;
5. the location of the predicted appearance in the image

space can be predicted by the output of a linear time
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invariant (LTI) system which is identified from mea-

surements of the target positions at the training images

using a robust identification procedure; and
6. the predicted appearances at the predicted locations are

used as dynamic templates for tracking, target identi-

fication, and occlusion detection in conjunction with a

Kalman or a Condensation filter.

Each of these ideas are described in detail in the sequel.

3. DAM: Dynamic Appearance Modeling

Figure 3. A generative model for learning and tracking
appearance. zt and yt represent the appearances in
the image and manifold space respectively.

The process of learning dynamic appearance models

consists of three steps: dimensionality reduction, dynam-

ics identification, and inverse mapping as illustrated in Fig-

ure 3. The proposed approach learns the dynamics in the

manifold space and predicts future appearances based on

the identified dynamics.

3.1. Nonlinear Dimensionality Reduction for DAM

Appearance changes due to human motions such as

walking or running can often be represented by a small

number of latent variables, which can be found by dimen-

sionality reduction. Principal Component Analysis (PCA)

is a simple and useful tool for dimensionality reduction.

However, it can project faraway high dimensional data

points to nearby points in the lower dimensional space if

the data do not lie in a linear subspace.

Nonlinear dimensionality reduction methods are de-

signed to preserve local neighborhood of the points by ana-

lyzing the underlying structure of the data. This is a highly

desirable property when modeling temporal visual appear-

ance since we would like to preserve temporal continuity in

the low level representation of the data. In this paper, we

utilize the Local Linear Embedding algorithm for nonlinear

dimensionality reduction proposed by [20] to obtain a low

dimensional appearance representation from a small video

sequence. Other possibilities include Isomap [22], Lapla-

cian Eigenmaps [2], and Hessian LLE [6].

Assume that a sequence of T frames of the target are col-

lected by tracking the target while it is initially unoccluded.

The frames are pre-processed and normalized to a size of

w × h where w and h represent the width and height of a

window capturing the entire target, respectively. The initial

tracking and pre-processing are discussed in more detail in

Section 6. Let zt, t = 0, . . . , T − 1 be a (w ∗ h) × 1 vector

obtained by rasterizing the window at time t and let yt be

the l×1 vector of its low dimensional representation, where

l is the dimension of the manifold.

The procedure to find the low dimensional representation

by LLE is summarized as follows.

1. Find a set of nearest neighbors zj for each vector zt.
2. Calculate the weights wtj to best reconstruct zt, mini-

mizing
∑

t ‖zt −
∑

j wtjzj‖2 where
∑

j wtj = 1.
3. Find the vector yi best reconstructed using the weights

wtj , minimizing
∑

t ‖yt −
∑

j wtjyj‖2.

The minimization in Step 3 can be efficiently solved by

calculating the eigenvectors of M = (I − W )T (I − W )
with the smallest eigenvalues, where I is the identity matrix

and W is formed with the weights wtj .

Figure 4. (a) Dynamic appearances of a walking mo-
tion for 37 frames, t = 0, 6, 12, . . . , 36. (b) Low di-
mensional representation of the walking sequence by
LLE. (c) 3 dimensional representation of the walking
sequence by LLE. Periodicity of walking cycle is ob-
served in the manifold space

Figure 4(b) shows the temporal evolution of the coor-

dinates of the points on the LLE manifold for the first 37

frames of the walking sequence. Figure 4(c) illustrates how

a set of collected appearances of a walking motion as the

one shown in Figure 4(a) can be represented in a 3 dimen-

sional space, such that the temporal ordering of the original
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data is preserved. In the next step, we will find a dynamical

model to predict future values of these coordinates, based

on their past measurements.

3.2. Robust Dynamics Identification for DAM

Assume that the low dimensional representation of the

target appearance at time t, yt is related to the previous ap-

pearance representations by an ARMAX model of the form:

yt =
m∑

i=1

giyt−i +
m∑

i=0

hiut−i (1)

where gi, hi are fixed coefficients and ut denotes a stochas-

tic input. This can be always assumed without loss of gener-

ality, since given m measurements of y and u, there always

exist a linear time invariant system such that (1) is satisfied

([21], Chapter 10). This system, in turn, can be represented

using a state space description of the form:

xt+1 = Axt + But

yt = Cxt + Dut

(2)

where

A =

⎡
⎢⎢⎢⎢⎣

0 0 . . . gm

1 0 . . . gm−1

0 1
. . . gm−2

...
... . . . g1

⎤
⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎣

hm

hm−1

hm−2

...

h1

⎤
⎥⎥⎥⎥⎥⎦

C =
[
0 0 · · · 0 1

]
D = h0

(3)

Note that this (minimal) realization is unique, up to a co-

ordinate transformation. In the sequel we will use the short-

hand F to denote the operator (A,B,C,D) that maps the

exogenous input u to the measured feature position y, and

use robust identification techniques to extract these matri-

ces from the experimental data. The main advantages of

this approach are the facts that (i) it fully exploits any a-

priori information available about the motion modalities of

the target, (ii) it does not necessitate making a-priori as-

sumptions about either the order or the specific structure of

the model, and (iii) it provides worst–case bounds on the

identification and subsequent prediction errors. In order to

apply this formalism, we will assume that the following a-

priori information is available:

1. A bound of the norm of the measurement and process

noises.
2. The operator F can be written as the sum of a paramet-

ric and a non-parametric component: F = Fp + Fnp

where Fp =
∑n

j=1 pjFj . Here Fj are known, given,

not necessarily �2 stable operators that contain all the

information available about possible modes of the sys-

tem2. This information can be obtained by performing

2If this information is not available the problem reduces to purely non–

parametric identification by setting Fj ≡ 0.

an FFT of the measured data or by learning appear-

ances off-line while observing persons performing rep-

resentative motions. The residual non-parametric op-

erator Fnp, which will be obtained as a by–product of

the identification, provides a measure of the quality of

the approximation Fp.

Figure 5. Dynamics Identification by CF interpolation
and prediction for next 38 frames.

It can be shown that the problem of finding the coeffi-

cients pj and a state–space representation of Fnp can be re-

duced to a tractable convex optimization problem and effi-

ciently solved using commercially available software. Fur-

ther details can be found in [21, 15, 4, 13]. Figure 5 il-

lustrates the interpolation and prediction of the three coeffi-

cients for the LLE manifold shown in Figure 4(b).

3.3. Recovering Dynamic Appearance from the
Manifold Space

An inverse mapping from the manifold to the image

space – estimating each pixel value at time t from the low

dimensional appearance representation yt – can be learned

from the training data by employing using Radial Basis

Function (RBF) [17]. Once the RBF network learns the

nonlinear mapping between pairs of manifold points and ap-

pearance pixels, intermediate and future image appearances

can be generated from points on the manifold correspond-

ing to the current/future state.

Let zk
t represent the value of the kth pixel of the appear-

ance vector zt at time t, k = 0, . . . , w ∗ h − 1 and let ye
t

be the estimated low dimensional representation for zt. The

mapping function from yt to zk
t is defined as fk(ye

t ) = zk
t

such that

fk(ye
t ) =

N−1∑
i=0

ck
i h(‖ye

t − yc
i )‖) +

M−1∑
i=0

dk
i pi(ye

t ) (4)

where
∑N−1

i=0 ck
i pi(ye

t ) = 0, h(·) is a radial basis function,

pi(·) is a linear polynomial, and yc
i are N centers of yt,

and the coefficients ci and di can be calculated by solving a

linear system [7, 17].

Figure 6 shows appearances for the walking sequence

of Figure 4(a) recovered by the interpolated and predicted

states on the manifold space. It is seen there, that the learned
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Figure 6. Generated walking sequence for 79 frames
by RBF, t = 0, 6, 12, . . . , 78.

RBF network successfully interpolates the unseen appear-

ances.

4. DMM: Dynamic Motion Modeling

Given a set of measurements of the position of the target

in image space, one can use the same techniques described

in section 3.2 to identify the motion dynamics of the target.

This dynamics in turn, can be used to accurately predict the

location of the target in future frames, even in the presence

of occlusion.

5. Human Tracking using DAM & DMM

Unlike other approaches, our approach utilizes the mo-

tion dynamics of the target in the image space to predict the

location of the target and the dynamics of the appearance

nonlinear projections on the manifold space to generate the

dynamic appearance templates that can be sought at the pre-

dicted locations. The advantage of our approach is that the

dynamics, which are identified on line from a small num-

ber of training frames, provide accurate location and visual

information of the target over time.

Once the target location and its appearance are predicted,

template-based tracking techniques such as Condensation

[11] or affine region tracking [8] can be used to follow the

target. In this paper we used a Condensation filter where the

likelihood of the target location and appearance was mea-

sured by evaluating the pixel-wise color similarity between

the tracked region and the predicted template.

5.1. Occlusion Handling

Two cases of occlusions are taken into account in this

paper; occlusion by background objects and occlusion by

other moving people. In the first case, occlusion is detected

by comparing the likelihood against a threshold. The ap-

pearance and position of the template are predicted based

on the identified dynamics. The predictions of the position

and appearance are conducted until the target person is de-

tected again using color similarity. As mentioned before,

the success of the proposed approach hinges on the close

fit of the system dynamics to the data provided by robust

identification [4].

In the second case, the occlusion is detected by the col-

lision of multiple templates of moving people. If the occlu-

sion is detected, the probability that the template is likely to

be the actual appearance within the region overlapping the

two templates decides between the front or rear layer. The

likelihood is measured by color similarity within the over-

lapped region. If the template is assigned to the front layer,

the tracker for that person continues to track. On the other

hand, if the template is assigned to the rear layer, the tracker

handles the occlusion as in the first case – e.g., the person in

the front layer is treated as a background object with respect

to the person in the rear layer.

6. Experimental Results

The proposed approach was tested on several outdoor

scenes captured with stationary and moving color cameras.

In every case, the dynamic appearance of the target was

learned from frames from the beginning of the sequences,

where it was assumed that the target was not occluded and

that the camera was stationary while learning.

6.1. Implementation Details

The foreground regions were extracted by background

subtraction and morphological operations were applied to

the binary foreground to remove noise and fill in regions.

The target appearance was then obtained using this binary

mask. The meanshift algorithm was then applied to cap-

ture the appearance into a rectangular window, which was

normalized to a given size. To reduce the dimensionality of

the appearance vector, YCbCr 4:2:0 color compression was

applied to reduce the image data by a half while preserving

almost all color information. After applying color compres-

sion, the appearance vector zt at time t was obtained by

rasterizing the preprocessed window.

The corresponding 3 dimensional representation yt was

then obtained by applying the LLE algorithm using a

set of the appearances zt for T frames. Next, the dy-

namic evolution of the low dimensional representation

was identified using CF interpolation. For the experi-

ments reported here, the parametric component was set to

Fp ∈ span [ z
z+1 , z2−cos ωz

z2−2 cos ωz+1 , sin ωz
z2−2 cos ωz+1 ] where w =

[w0/2, w0, 2w0, 4w0]. The basis frequency w0 was found

from the Fourier Transform of yt for T frames.

Finally, a RBF network was used to reconstruct the

high dimensional representation. Each pixel zt
k was recon-

structed by nonlinear mapping from the 3 dimensional man-

ifold space.

6.2. Tracking Results

Three experimental results are reported here; tracking

moving people in the presence of occlusion by a scene ob-
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Figure 7. Handling occlusion by the background object, t = 60, 75, 90, and 105. The white box in the second row
is the predicted appearance and the black box is the probability map based on the predicted appearance.

Figure 8. handling occlusion by other moving people, t = 40, 60, 70, and 85. The layer is automatically selected
based the likelihood of each template to the observed appearance with the overlapped regions.

ject, occlusion by other moving people, and tracking using

a moving camera.

Figure 9. Layer selection by the likelihood to the ob-
served appearance in the overlapped region by two
templates. The higher likelihood represents the front
layer and vice versa.

Figure 7 shows again the video sequence introduced in

Figure 2 but using the proposed approach. It is seen that

in this case, the appearances and their location are accu-

rately predicted even during long term occlusion by the tree.

These predictions allow the tracker to “hallucinate” the tar-

get while it is occluded and to recover it after the occlusion

is over. It also should be noted that the template remains un-

corrupted by the occlusion, unlike all adaptive appearance

techniques, preventing tracking drift.

Figure 8 shows the use of the predicted appearances for

layer selection among people. As illustrated in the Figure

9, the likelihood of the person 0 is lower than the ones for

person 1 and 2, while they walk across each other, respec-

tively. Thus, person 0 is assigned to the rear layer and per-

sons 1 and 2 are assigned to the front layer while occluded.

Since the dynamic appearance is individually learned for

each person, the trackers can track and identify each target

person even during occlusion and in the presence of clutter.

Finally, Figure 10 shows that once the dynamic appear-

ance is learned, the tracker can track the target person even

though the camera moves.

7. Conclusions and Further Work

In this paper, we formulated dynamic appearance and

motion modeling for human tracking as a three step process:

dimensionality reduction, dynamics identification, and in-

verse mapping. The proposed approach predicts the loca-
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Figure 10. Moving camera after learning appearance, t = 170, 180, 190, and 225. The tracker robustly track the
target person even though the camera moves.

tion of the target and predicts its future appearance based

on accurately identified dynamics learned from a small

set of initial frames. The predicted appearances can then

be used as dynamic templates for tracking and identify-

ing moving people even in the presence of occlusion and

clutter. We are currently working on incorporating the

worst identification error bounds provided by CF to perform

model (in)validation and decide when the current appear-

ance model is not longer valid (e.g. if the target changes

activity from walking to running) and to decide when a new

model should be obtained.
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