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Abstract

Despite track survey efforts, the inability to identify individuals from survey data impedes accurate density estimates and density
indices for large carnivore species. We present a track classification method for mountain lions Puma concolor using discriminant
function analysis that improves and validates the method presented in Smallwood and Fitzhugh (1993) (Smallwood, K.S., Fitz-
hugh, E.L., 1993. A rigorous technique for identifying individual mountain lions Felis concolor by their tracks. Biological Con-
servation 65, 51-59) and further discussed in Grigione, Burman, Bleich and Pierce, 1999 (Grigione, M.M., Burman, P., Bleich,
V.C., Pierce, B.M., 1999. Identifying individual mountain lions Felis concolor by their tracks: refinement of an innovative technique.
Biolkogical Conservation 88, 25-32). Artificial tracks, made from molded casts of the feet of 13 lions, were used to simulate
variability from field conditions in a controlled laboratory setting. We tested the effects of multiple track recorders and two soil
depths on linear and angular measurements of the entire paw and shape measurements of the heel-pad. We identified six track
measurements that correctly matched 96% of track tracings to known individual mountain lions, even with variability from mul-
tiple track recorders and soil depths. Model validation, performed on lab and novel field data in which the number of individual
mountain lions was unknown, illustrates the efficacy of the method. Following the field-based study by Smallwood and Fitzhugh
(1993), this study provides support for the utility of the discriminant analysis method for track data and outlines future application
of this method to field data. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Managing and conserving carnivore populations
depends on reliable methods of monitoring population
trends. Because of the challenges associated with locat-
ing and directly handling carnivores, many researchers
have explored indirect methods of assessing carnivore
densities (Kutilek et al., 1983; Van Dyke et al., 1986;
Van Dyke and Brocke, 1987; Karanth, 1987; Becker,
1991; Smallwood, 1994; Smallwood and Fitzhugh, 1995;
Zielinksi and Truex, 1995; Foresman and Pearson,
1998; Sargeant et al., 1998). These studies use animal
sign (e.g. tracks or feces) as indices of abundance and
distribution within a given area, quickly and inexpen-
sively. However, the ability to identify individuals from
animal signs remains problematic (Panwar, 1979; Gore,
1993; Smallwood and Fitzhugh, 1993; Das and Sanyal,
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1995; Karanth, 1995; Riordan, 1998; Grigione et al.,
1999; Zalewski, 1999; Grigione and Burman, unpub-
lished manuscript, but see Ernest et al., 2000). In addi-
tion to mountain lions, these authors have attempted to
develop track classification techniques for tigers (Pan-
thera tigris), snow leopards (Pathera uncia), and pine
martens (Martes martes). A similar approach has also
been adopted for track identification of black rhino-
ceros (Diceros bicornis, Z. Jewell, personal communica-
tion). Thus, although this study focuses on mountain
lions, the importance of the basic technique of track
identification applies to a larger number of difficult-to-
study species.

Recent studies (Smallwood, 1997; Smallwood and
Schonewald, 1998) suggest that mountain lion density
indices derived from track surveys may overestimate
actual densities as a result, in part, of survey biases
towards areas in which animals are known to occur.
One solution to this is to randomly survey for lions
throughout an area of interest. Track surveys can be
randomized over large areas, but require substantial

0006-3207/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0006-3207(00)00197-X



314 R. Lewison et al. | Biological Conservation 99 (2001) 313-321

time and personnel. Data from such surveys (Small-
wood, 1994; Smallwood and Fitzhugh, 1995) are limited
to the number of transects included and the total num-
ber of tracks found. If individual lions could be deter-
mined based on tracks, survey precision would improve.
However, a reliable and powerful method that can
identify individual mountain lions from tracks has not
been fully developed.

The development of a method to reliably identify
individual mountain lions from track data has been
hampered by (1) the few track sets and tracks per track
set that field surveys typically yield, and as a result (2) a
minimal ability to determine track measurements that
allow for individual differentiation. Although variation
in field conditions, like multiple track recorders and soil
depths, is believed to impair lion identification methods,
it is impossible to test the effects of these field conditions
without sufficient track replications (Gore et al., 1993;
Smallwood and Fitzhugh, 1993; Riordan, 1998; Gri-
gione et al., 1999; Grigione and Burman, unpublished
manuscript). Field data from track or radio-collar sur-
veys may also be limited by an inability to positively
link a track to an individual lion due to home range
overlaps (Smallwood and Fitzhugh, 1993; Grigione et
al., 1999; Zalewski, 1999). Smallwood and Fitzhugh
(1993) were able to assign 92% of tracks from a track
survey to putative individual lions, but due to small
sample size were unable to test for the impact of track
recorders and soil depths, or to determine the most
powerful track measurement variables. However, the
identity of each lion could not be verified; these authors
assumed each track set was made by an individual lion
because of substantial geographic distance between
track collection sites. Subsequent studies have also been
unable to systematically test or improve classification
methods, in part, due to insufficient track replications
from known individuals (Grigione et al. 1999; Riordan
1998).

We use tracks generated in the laboratory from
known individual lions to determine the most effective
track measurement variables, and the effect of multiple
track recorders and soil depths on individual mountain
lion identification. Using this laboratory-generated
track database, we propose a combination of track
measurements that can be used to identify individual
mountain lion from unclassified track sets. We deter-
mine the variation created by two soil depths and five
track recorders, and we assess the impact of this varia-
tion on track measurements and, ultimately, on the
identification method. To test method efficacy, we per-
formed a validation test on unused lab track tracings,
using a double blind experimental design. We then tes-
ted the method on an independent field data set. This
study also demonstrates the feasibility of using an image
measurement computer program once a track has been
traced in the field.

2. Methods

We made plaster casts from the rear, right foot of 13
mountain lions. Eleven of the 13 lions were killed under
depredation permits from the California Department of
Fish and Game taken from six locations in two counties
in California. This depredated sample included 10 males
and one female, ranging in age from 2—7 years. Plaster
casts were then used to create a silicone mold with the
same dimensions as the actual foot. Two other silicone
molds were made directly from tracks in soil; one mold
was from another county in California and the second
was from Florida. A mold refers to a complete replica of
the lion paw, including the heel pad and four toes.

2.1. Track generation

We created a mold imprint by pressing molds into
sandy loam soil, 67% clay, 23% silt, 10% sand (Gee
and Bauder, 1979), that was spread on a rectangular
pan and leveled to two depths — deep (=7 mm) and
shallow (1-3 mm). Five track recorders then measured
the the mold imprint, the track.

Fitzhugh trained all track recorders in track mea-
surement protocol (Fjelline and Mansfield, 1989) prior
to data collection. To ensure that all recorders main-
tained the same protocol and techniques throughout the
study, each recorder traced the same practice track and
compared tracings among recorders at the start of each
measurement session. All five recorders traced all 13
tracks during each measurement session. The order in
which the tracks were traced was randomized for each
session. Each track was made seven times in deep soil
and eight times in shallow soil over approximately a 2-
month period. The five recorders traced each track on
acetate sheets, which rested on glass plates raised
approximately 8 mm above the imprints. The traced
outline included the entire track — the heel pad and
four toes.

2.2. Track data

Using the 13 molds, we generated 797 track tracings.
We analyzed subsets of these data to investigate the
discriminatory ability of seven linear/angular measure-
ments (Fig. 1), and 10 shape measurements (see Appen-
dix). These 17 measurements describe dimensions of the
entire paw or heel pad.

To find the fewest number of track measurements that
maximized individual discrimination while allowing the
method to be applied to smaller data sets, we selected
the measurement variables from the separate linear and
shape analyses that classified the highest number of
track tracings into known groups. From these two ana-
lyses, we selected six measurements, three linear and
three shape. These measurement variables were selected
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Fig. 1. Linear and angular measurements that describe the entire paw
(from Smallwood and Fitzhugh, 1993). 4, angle between toes (ABT);
B, heel to lead toe length (HLTL); D, heel width (HW); E, third toe
length (TTL); F, lead toe length (LTL); H, outer toe spread (OTS); 1,
midline width (MW), a line parallel to and 25 mm from the baseline
(see K); K, baseline used to draw midline. These measurements were
used in Smallwood and Fitzhugh (1993) and are similar to those used
by Grigione et al. (1999). Measurements were made directly from the
acetate tracings to 0.5 mm and 1° precision using standard rulers and
protractors.

based on the absolute magnitude of the standardized
discriminant function coefficients, accounting for corre-
lations among measurements (Section 2.5.).

We then tested the classification method with these six
measurements on a small sample of unused lab-gener-
ated track tracings. To provide an independent test of
the classification method, we then tested the method on
field data collected in two different counties from our

depredated lions. These field data included tracings of
the rear, right paw from five track sets taken from five
locations. Each track set had four track tracings.
Smallwood made the tracings directly over the track
using the same protocol as our track recorders.

2.3. Statistical analysis

This track classification and identification method
uses discriminant function analysis (DFA). Typically,
DFA is used to determine the variables that best cate-
gorize data into two or more known groups. Thus, a
traditional DFA uses the discriminant equation to yield
a suite of predictor variables that can correctly classify
the highest percentage of the data into known categories
(Tabachnick and Fidell, 1983). In addition to using the
discriminant equation to yield predictor variables that
maximize data classification into known groups, we
then use these known predictor variables to generate
groups of individual lions in unclassified data sets.
Thus, we employed two separate statistical procedures.
First, we identified the most effective linear and shape
track measurement variables that separate known tracks
into distinct groups using DFA. We then used this
known measurement variable combination on uncate-
gorized lab and field data in a second DFA.

All data were analyzed using STATISTICA (StatSoft,
1984) and were tested for normality, outliers, multi-
collinearity of predictor variables, and homogeneity of
variance-covariance matrix using Box’s M test.

2.4. Impact of multiple recorders and soil depths

To test the impact of multiple track recorders and soil
depths on our method, we performed multivariate ana-
lysis of variance (MANOVA) on all the track measure-
ment variables. To test whether potential statistical
significance was a result of the large number of track
tracings, we evaluated the effect sizes of both multiple
recorder and soil depth. To do this, we used a MAN-
OVA-type model to examine the amount of variability
described when incorporating the effect of different,
individual lions alone, both different lions and multiple
track recorders, or both different lions and soil depths.
We created a three-dimensional vector derived from the
first three canonical discriminant eigenvectors from the
track measurement variables in each analysis and used
this resultant vector as the dependent variable (Johnson
and Wichern, 1988). We compared the variability
explained by three models: (1) a model incorporating
the effect of different individual lions alone; (2) a model
with the effects of different lions and multiple track
recorders; and (3) a model with the effects of different
lions and soil depths. These MANOVA models, con-
structed to test effect size for multiple recorders and soil
depth across predictor variables, were evaluated based
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on the coefficient of determination (R?) values. R?
values were calculated using the standard Euclidean
distance between vectors. Euclidean distance between
any two vectors is calculated as:

Distance between vector u and vector v =

V(=) (=)

where (u—v)’ represents the transpose.
2.5. Variable selection

We used the absolute magnitude of the standardized
discriminant function coefficients, accounting for corre-
lations among measurements, to determine the relative
importance of predictor variables to the linear and
shape classification functions (Tabachnick and Fidell,
1983). Correlated, or redundant, predictor variables
were eliminated to avoid matrix ill-conditioning. We
also evaluated the variables’ sensitivity to multiple
recorders and soil depths (Section 2.3.). Our goal was to
find the fewest number of uncorrelated predictor vari-
ables that maximized individual discrimination, making
the method applicable to smaller data sets. DFA
assumes a maximum of n —2 predictor variables, where
n is the number of data cases in the analysis (Tabach-
nick and Fidell, 1983).

2.6. Method application: how it works

Once measurement variables are identified that best
classify the data into known groups, it is possible to
apply this method on unclassified data in which the
number of individual lions is not known. To apply this
method to new data, each track set is assumed to
represent a discriminant group. By evaluating the P
values from the squared Mahalanobis distances between
the group centroids, the Wilks’ lambda values, the clas-
sification matrices, and the scatterplot of the first two
discriminant roots (Fig. 2), the assumption that each
track set is from a different lion is judged to be true or
false.

2.7. An example

In the example in Fig. 2, the DFA was performed
with four track sets as the grouping variables and the six
combined track measurements as the predictor vari-
ables. As is evident from the scatterplot, track set 1 is
distinct from the other three track sets and thus, is a
putative individual lion. Track sets 24, however, have
considerable overlap and require additional investiga-
tion. The next step is to make pairwise and three-way
comparisons of the P values associated with the dis-
tances between groups, the classification matrices, and
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Fig. 2. A scatterplot of the discriminant functions illustrates pairwise
and three-way comparisons necessary to distinguish track sets, which
may represent the same lion. Here, track set 1 is clearly an individual
lion. After additional analysis, track sets 2—4 were found to represent
the same lion.

the Wilks’ lambda values. The pairwise and three-way
comparisons of these values on track sets 2—4 concur
with the trend suggested in Fig. 2; indeed, track sets 2—4
all come from the same lion.

2.8. Model validation

We used lab and field data to test the method on
unclassified, or non-categorized, data in which the
number of individual lions is unknown a priori. For the
first validation test, previously unused lab data (177
track tracings) were divided into 72 groups. Each group
had four track sets representing two to four different
lions. A track set is multiple track tracings that come
from the same lion. To create the track sets, we ran-
domly sampled without replacement all track tracings
from an individual lion, including tracings from both
soil types and all recorders. The four tracks sets used in
each of the 72 groups were also randomly chosen using
a double blind experimental design such that the num-
ber of individual lions represented by the four track sets
(two to four lions) was known only to the data sampler
not the data analyzer.

Previous track analyses have suggested that at least
four tracings should be used per track set (Smallwood
and Fitzhugh, 1993; Zielinski and Truex, 1995; Grigione
et al., 1999). We used the lab data validation test to eval-
uate the effect of the number of tracings per track set. We
created track sets that contained four, six and eight track
tracings. The double blind method was used to create 24
groups for each track set size (four, six, and eight track
tracings per track set) to yield a total of 72 groups.

A similar protocol was used to test the classification
method on a field data set collected in Northern Cali-
fornia in 1987 by S. Smallwood. These data included 20
track tracings from five track sets. All tests had two to
four individual lions represented with four tracings per
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track set. Due to the limited number of track sets and
tracings per set, we were unable to test the impact of
tracings per track set on the field data.

3. Results
3.1. The impact of variability from recorders and soil depth

MANOVA suggested that multiple recorders and soil
depth did influence the track measurement variables
that best classified the data into known groups (Table 1).
As seen in Table 1, there are statistically significant dif-
ferences in means among track recorders and soil depths
for several track measurements. However, the MAN-
OVA models constructed to test effect size for multiple
recorders and soil depth across predictor variables indi-
cated that the percentage of variability accounted for by
models with or without multiple track recorders or soil
depths are similar (Table 2). Thus, although the stan-
dard MANOVA models suggest that recorder and soil
depth effects are significant for some individual track
measurement variables, their overall effects on the com-
bination of track measurements appear to be negligible.

3.2. Measurement variable selection

Six measurements, three linear and three shape, were
chosen as the most powerful suite of track measurements
(Angle between toes, Outer toe spread, Heel to lead toe
length, Perimeter, Shape factor, Major axis length) based
on the absolute magnitude of the standardized dis-
criminant function coefficients, accounting for correlations
among measurements, and their sensitivity to multiple
track recorders and soil depths (Table 3).

The discriminatory ability of the measurement vari-
ables from all data was evaluated by the percentage of
tracks correctly classified or grouped by an individual
lion. Linear and angular variables result in better classi-
fication of individual tracks than did shape measure-
ments, but the two types of measurements combined were
superior to either type alone (Table 4). Shape variables
performed better in shallow soil, whereas linear/angular
variables performed better in deep soil. The percentage of
tracks correctly classified by both linear and shape vari-
ables was higher for tracks in deep soil (97.4%) and
dropped slightly for shallow soil tracks (93%).

3.3. Model validation

The results from the lab validation tests suggest that
the six track measurements we present consistently and
correctly discriminate individuals from a data set of
unclassified lions. This method identified the correct
number of lions in 96% of the lab track groups; in three
out of the 72 track groups the number of individual

Table 1
Multivariate analysis of variance results with effects of multiple track
recorders and soil depths on combined linear and shape measurements

Variable Effects Type I M.S. F@f1,2) P
M.S. error error
Angle between Recorders ~ 32.72 10.23 3.20 0.01

toes
Soil depth 0.516 10.23 0.05 0.82

Heel to lead Recorders  152.73 7.78 19.55 0.00
toe length
Soil depth 5.90 7.79 0.76 0.38
Outer toe spread Recorders  96.78 2.81 34 0.00
Soil depth  56.35 2.81  20.05 0.00
Major axis length Recorders  687.99 9.72  70.75 0.00
Soil depth  111.87 9.72 11.5 0.01
Perimeter Recorders  95.24 179.18 53.15 0.00

Soil depth 6361.71 179.18  35.50 0.00

Recorders 0.34 0.003 114.96 0.00
Soil depth 0.003 0.003 1.12 0.29

Shape factor

M.S., mean square.

Table 2

Evaluation of the effect size of multiple recorders and soil depths on
track measurement variables on linear, shape, and linear and shape
measurements

Evaluating effect size coefficient of determination
(R?) values?
Main effects included in model

Data Lion only  Lion-recorders  Lion-soil depths
Linear 0.898 0.903 0.898
Shape 0.551 0.601 0.564
Linear and shape 0.964 0.967 0.966

2 R? values represent the amount of variability described by each of
the models when incorporating the effect of different individual lions
alone, the effect of both different lions and multiple track recorders, or
the effect of both different lions and soil depths.

lions was misidentified. There was no difference in clas-
sification errors between track groups with four, six, or
eight tracings per track set. The model validation tests
indicate that even with small data sets in which the
number of lions is not known a priori, the method per-
forms well in correctly identifying individual lions. The
classification method was equally effective in identifying
individuals using the unclassified field data. In nine of
10 track groups, the correct number of individual lions
was identified.

4. Discussion

4.1. Discriminatory ability

The discriminant analysis method we present is more
effective at identifying individual lions by their tracks
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Table 3

Selection of track measurement variables was based on the absolute
magnitude of the standardized discriminant function coefficients for
Root 1 and Root 2 of the discriminant function analysis for the linear
and shape analyses®

Standardized function coefficients

Linear measurements Shape Measurements

Outer toe spread (OTS) 0.94 Shape factor 2.1
Heel to lead toe length (HLTL)0.72 Major axis length 1.3
Angle between toes (ABT) 0.68 Perimeter 1.3
Third toe length (TTL) 0.25 Area 1.1
Heel width (HW) 0.19 Minor axis length 1.1
Lead toe length (LTL) 0.16 Compactness 0.98
Midline width (MW) 0.15 Major axis slope 0.52

Center of mass, X 0.37
Center of mass, Y 0.14
Minor axis slope 0.11

4 We also accounted for correlations among measurements, and
sensitivity to multiple track recorders and soil depths. Only six of the
17 measurement variables were used, in bold italics, to maximize the
discriminatory ability of the method and ensure method applicability
to smaller data sets.

Table 4

The percentage of tracks correctly classified into known groups using
discriminant function analysis on linear, shape and a combination of
track measurements®

Track measurements % Correctly classified

Complete data set  Shallow soil  Deep soil
Linear 89.9 89 92.3
Seven variables (620) (327) (293)
Shape 75.3 83.3 67.5
Ten variables (473) (234) (239)
Linear and shape 96.2 93.3 97.4
Six variables (239) (119) (120)

2 The number of track tracings used in each analysis is shown in
parentheses.

than any technique to date. We identified a combination
of six track measurements that correctly matched 96%
of the lab-generated tracks into known groups of indi-
vidual lions. Using two smaller, unclassified data sets,
with lab data and then with independent field data, we
tested this method using a DFA in which the number of
individual lions in each analysis was unknown to the
data analyst. The DFA method also performed well on
the unclassified field data.

4.2. Track measurement variables
Although there are potentially an infinite number of

track measurements from which to choose, the mea-
surement variables chosen here for the most effective

analysis describe relevant, non-overlapping dimensions
of the entire paw and heel pad. Thus, the variables have
biological meaning as well as effective discriminatory
ability.

The variables are also robust to the effect of multiple
track recorder and soil depths. Although recorder and
soil depth did influence some predictor variables inde-
pendently, when linear and shape variables were com-
bined the discrimination of the models was not impaired
by multiple recorders or soil depths. The results from
the MANOVA models suggests that although there
were statistically significant differences for individual
measurements, the effect sizes of soil depths and multi-
ple recorders have little practical significance for the
suites of linear, shape, or linear and shape measure-
ments we tested.

The analyses suggest that soil depth had a greater
effect on track classification than recorder effects, parti-
cularly with heel-pad shape measurements. This finding
is supported by previous work (Grigione and Burman,
unpublished manuscript). Although these authors were
not able to discriminate tracks in different substrates
directly from the field or from the lab using shape ana-
lysis of the rear outline of the heel-pad, we have found
that measurements of the entire heel-pad can help to
discriminate among track sets. Although heel-pad shape
variables alone classified only 75.3% of tracks correctly,
when combined with linear measurements, the shape
measurements  substantially increased the  dis-
criminatory power of the method, resulting in 96%
correct classification of tracks. In addition, the increase
in the percentage of tracks correctly classified in the
combined measurement analysis is noteworthy as it was
obtained despite a large reduction in sample size (239 vs.
797 track tracings) and fewer predictor variables.

4.3. Computer aid

Like other recent track identification work (Riordan,
1998; Grigione and Burman, unpublished manuscript),
this method used both hand measurements and compu-
ter digitization. The computer program we used, Sig-
maScanPro-4™, created accurate measurements easily
and quickly. The effect of multiple digitizers had no
effect on any of the dependent, independent or interac-
tion variables (Appendix). Although a calibration scale
must be entered, it is feasible that all track variables,
including linear, angular, and shape measurements,
could easily be measured using the digitized track tra-
cings.

Our findings suggest that a computer image measure-
ment program increases the efficiency and accuracy of
the method. The use of track photographs combined
with image-measurement software may further increase
method efficiency, by eliminating the need for track
tracing (Grigione et al., 1999). Galentine and Fitzhugh
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(1996) proposed a black box design that standardizes
light and photographic quality of track images. Analysis
is currently underway to test how effectively and accu-
rately both linear and shape measurements can be made
from these standardized photographs using SigmaScan
Pro-4™,

4.4. Application of the method

The application of a supervised classification method,
like discriminant analysis, to field-generated data sets of
unknown individuals has been criticized because of the
need for a priori knowledge of individuals (Riordan,
1998; Grigione at al., 1999; Grigione and Burman,
unpublished manuscript). However, as outlined in
Smallwood and Fitzhugh (1993) and illustrated here,
this method can be used effectively for track sets with no
prior knowledge of the number or identity of individual
lions. Using the measurement variables we present, it is
possible to accurately classify mountain lion individuals
given adequate tracings per track set (=4). We tested
this method on an unanalyzed portion of lab data in
which the number and identity of lions per test was
unknown and found that the method was highly effec-
tive in correctly classifying tracks — 96% of the tests
yielded the correct number of individual lions. It is
important to note that the validation test we performed
on the laboratory tracks was biased against our method,
as there were multiple recorders within track sets, which
is highly unlikely in a field track survey setting. The
method was also effective in classifying independent
field data from a 1987 track survey.

The validation tests performed here were first steps in
applying this method to complete track survey data. A
large, track survey data set would potentially include
other types of variation: flexibility of the live foot, var-
iations in substrate topography, impact of speed of tra-
vel, different substrate types, and potential
combinations of left and right tracks within a track set.
Previous work provides some insight into the effects of
this potential variation. Linear and angular measure-
ments are most likely more sensitive to changes in live
foot configurations than are heel-pad shape measure-
ments. Nonetheless, using only linear and angular mea-
surements, Smallwood and Fitzhugh (1993) were able to
correctly match 92% of the tracks to individual lions
with a field data set. Although the relatedness and
identity of these lions was unknown, the track sets were
found at distances that exceeded local movement of an
individual mountain. In addition, Riordan (1998)
demonstrated that six of the seven linear measurements
we used showed little variability between left and right
hind prints of other large carnivores. Thus, we expect
our findings to be applicable to track survey data with
only small changes to the discriminatory power of the
method.

Because earlier work based on field observations of
unknown lions required spatial separation to assume
that different lions were sampled, a logical question is
whether the method we propose can reliably dis-
criminate among related, but different individuals. Ele-
ven of the 13 mountain lion paw molds we used for this
study came from lions in three areas separated by
approximately 80-100 miles. Within each area, how-
ever, the collection region was only approximately 200
square miles. Thus, it is likely that there is a substantial
degree of relatedness between lions in our study.

This general classification technique may also prove
important for monitoring programs of other rare or
cryptic carnivores. Our approach of using artificially
created tracks from known individuals can provide a
systematic method to evaluate measurement variables
and field conditions without the limitations from small
sample size representing few known individuals. Similar
track measurements have been used with other carni-
vores in wild (Gore, 1993; Das and Sanyal, 1995;
Zalewski, 1999) and captive settings (Riordan, 1998).

Several authors (Van Sickle and Lindzey, 1992; Beier
and Cunningham, 1996; Smallwood and Schonewald,
1996; Smallwood, 1997) have outlined the problems of
extrapolating mountain lion density from localized
study areas to broader regions. One solution to this
dilemma is to conduct randomized surveys over an
entire region. This will require indirect population
assessment methods, such as track surveys. If larger, less
aggregated study areas need to be included to increase
the accuracy of density estimates, as previous work
suggests, an efficient and effective track identification
method is necessary. While incorporating the variability
inherent in field data, the discriminant classification
method we present yields a higher percentage of cor-
rectly identified individual lions than any method pre-
viously proposed. Thus, the method can improve the
relationship between track survey data and interpreta-
tion and, subsequently, lead to more accurate mountain
lion population estimates than are now possible.
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Appendix. Heel-pad measurements as defined by Sigma
Scan (SPSS Science, 1998)

These shape measurements were chosen to describe as
many relevant dimensions of the heel pad as possible.
Heel pad tracings were scanned and then were digitized
using SigmaScanPro-4™. Each image was calibrated
with a known linear measurement (HW) applied to the
same dimension in the digitized image. To ensure the
digitization process did not introduce additional recor-
der bias, we included two new recorders who each digi-
tized all the tracings in SigmaScanPro-4™, These new
recorders are referred to as digitizers. The effect of
multiple digitizers was not significant for any of the
independent variables or the interaction combinations
(P values = 0.98). All measurements are based on pixel
number or (x, y) coordinate location.

Area, sum of the number of pixels defining the object.

Center of mass, X and Y, the binary center of mass of an
object is the geometric center. This measurement locates
the X and Y coordinates of the geometric center. Where:

CM(X) =1 /nZﬂ X; CM(Y) = 1/ni Y
i=1 i=1

n is the number of pixels in the object and X; and Y; are
the coordinates of the ith pixel.

Compactness, numeric expression of the shape of an
object as it moves from a circle to a line, defined as the
perimeter squared, divided by the area. The minimum
compactness of a perfectly measured and digitized circle
is 4m. As an object tends towards the shape of a line, the
compactness tends towards infinity.

Major and minor axis length, the major axis is defined
by searching all the border pixels of an object and
picking the two pixels that are farthest apart. The minor
axis is drawn between two pixels defining the longest
perpendicular line to the major axis. These points are
defined by the endpoints of each of these lines: (MajXi,
MajY,), (MajX,, MajY,) and (MinX;, MinY,) and
(Mian, MlnYz)

The major and minor axes length measurements find
the distances between the two endpoints defining the
major and minor axes.

Major axis length =

J(MajX,—MajX,)? + (MajY,—MajY )?

Minor axis length =

J(MinXo—MinX, Y + (MinY>—MinY, )’

Major and minor axis slope, the angle of the major
axis from a horizontal line

atan(MajY,—MajY,)

Major axis slope =
ajor axis slope (ManZ_ManI)

atan(MinY,—MinY)
(Mian—MinXl)

Minor axis slope =

Perimeter, determined by the overall shape of the
object and is measured along the diagonal edges of the
object.

Shape factor, calculates how circular an object is.
Where:

47 x Area
Shape factor = ————
Perimeter

A perfect circle has a shape factor of 1.00 and a line
has a shape factor approaching 0.00. Theoretically, the
shape factor should never be greater than 1.
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