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Summary

1. Assessing spatial distributions of threatened large carnivores at landscape scales poses formida-

ble challenges because of their rarity and elusiveness. As a consequence of logistical constraints,

investigators typically rely on sign surveys.Most surveymethods, however, do not explicitly address

the central problem of imperfect detections of animal signs in the field, leading to underestimates of

true habitat occupancy and distribution.

2. We assessed habitat occupancy for a tiger Panthera tigrismetapopulation across a c. 38 000-km2

landscape in India, employing a spatially replicated survey to explicitly address imperfect detec-

tions. Ecological predictions about tiger presence were confronted with sign detection data

generated from occupancy sampling of 205 sites, each of 188 km2.

3. A recent occupancymodel that considersMarkovian dependency among sign detections on spa-

tial replicates performed better than the standard occupancy model (DAIC = 184Æ9). A formula-

tion of this model that fitted the data best showed that density of ungulate prey and levels of human

disturbance were key determinants of local tiger presence. Model averaging resulted in a replicate-

level detection probability �̂ptðSÊ½�̂pt�Þ = 0Æ17 (0Æ17) for signs and a tiger habitat occupancy estimate

of ŵðSÊ½ŵ�Þ = 0Æ665 (0Æ0857) or 14 076 (1814) km2 of potential habitat of 21 167 km2. In contrast,

a traditional presence-versus-absence approach underestimated occupancy by 47%.Maps of prob-

abilities of local site occupancy clearly identified tiger source populations at higher densities and

matched observed tiger density variations, suggesting their potential utility for population assess-

ments at landscape scales.

4. Synthesis and applications. Landscape-scale sign surveys can efficiently assess large carnivore

spatial distributions and elucidate the factors governing their local presence, provided ecological

and observation processes are both explicitlymodelled. Occupancy sampling using spatial replicates

can be used to reliably and efficiently identify tiger population sources and help monitor metapopu-

lations. Our results reinforce earlier findings that prey depletion and human disturbance are key

drivers of local tiger extinctions and tigers can persist even in human-dominated landscapes through

effective protection of source populations. Our approach facilitates efficient targeting of tiger

conservation interventions and, more generally, provides a basis for the reliable integration of large

carnivoremonitoring data between local and landscape scales.

*Correspondence author. E-mail ukaranth@gmail.com

Journal of Applied Ecology 2011, 48, 1048–1056 doi: 10.1111/j.1365-2664.2011.02002.x

� 2011 The Authors. Journal of Applied Ecology � 2011 British Ecological Society



Key-words: conservation, density variation, detection probability, landscape ecology,

metapopulations, occupancy sampling, spatial models

Introduction

Large carnivores are among the most threatened mammals in

the world (Ceballos et al. 2005). The decline of the tiger

Panthera tigrisLinnaeus, 1758, typifies the challenges of recov-

ering large carnivore populations. Driven by synergistic

impacts of habitat fragmentation, prey depletion and direct

hunting (Karanth et al. 2004; Walston et al. 2010), tigers have

suffered a range contraction of c. 93% in the past two centuries

(Dinerstein et al. 2006). Global species recovery now depends

on effective management of the remaining c. 40 ‘tiger source

populations’ (see Walston et al. 2010 for details) that occur as

interconnected clusters within larger landscapes (Dinerstein

et al. 2006; Ranganathan et al. 2008). Therefore, rigorous

assessments of tiger populations are required at two spatial

scales: protected reserves of a few hundred square kilometres

each and wider landscapes of several thousand square kilo-

metres.

Within reserves, tiger demographic parameters can be

assessed reliably using intensive capture–recapture sampling of

photographs or faecal DNA from individuals (Karanth et al.

2004, 2006; Mondol et al. 2009). Such intensive methods

explicitly deal with the central problem of imperfect detections:

that a proportion of animals in the surveyed area go unde-

tected (Williams, Nichols & Conroy 2002). However, because

of logistical constraints, landscape-scale surveys typically can-

not employ intensive methods and depend on detecting tiger

signs such as tracks and scats (Miquelle et al. 1999; Smith et al.

1999a,b; Johnsingh et al. 2004; Carroll & Miquelle 2006; Bar-

low et al. 2008; Jhala, Gopal &Qureshi 2008; Jhala, Qureshi &

Gopal 2011). However, these ‘presence-versus-absence’ sur-

veys do not discriminate between nondetection of sign and true

absence of tigers, leading to underestimates of spatial distribu-

tion (MacKenzie et al. 2002). In past tiger surveys, environ-

mental covariates have been incorporated into analyses in

attempts to address this problem (Smith et al. 1999a,b;Mique-

lle et al. 2005; Barlow et al. 2008; Jhala, Gopal & Qureshi

2008; Jhala, Qureshi &Gopal 2011). Such results are, however,

difficult to interpret because the covariates used may influence

detection probability or occupancy or even both these quanti-

ties. More generally, investigators have used habitat suitability

models (Engler, Guisan & Rechsteiner 2004) of various kinds,

including regressions (Tyre, Possingham&Lindenmayer 2001;

Gu & Swihart 2004), resource-selection functions (Boyce &

McDonald 1999), ecological niche factor analysis (Hirzel et al.

2002) and simulations (Manley et al. 2004) for the analyses

of animal presence ⁄absence data. Even these approaches,

however, do not explicitly model or estimate detection

probabilities.

On the other hand, habitat occupancy models (MacKenzie

et al. 2002, 2006;Royle&Dorazio 2008) do explicitly deal with

imperfect detections and are increasingly being favoured (e.g.

Magoun et al. 2007 for wolverines Gulo gulo Linnaeus, 1758).

If carefully designed, they can meet conservation needs (Mac-

Kenzie & Royle 2005) by explicitly confronting ecological or

management predictions with sign survey data without ignor-

ing imperfect detections. In practice, ‘replications’ necessary

for estimating occupancy probabilities can be either ‘temporal’

or ‘spatial’ (Kendall &White 2009).

In this study, we confronted predictions incorporating a

priori ecological andmanagement hypotheses about local (site-

level) tiger presence with data from a carefully designed,

spatially replicated survey of tiger signs across a c. 38 000-km2

landscape. This landscape currently harbours one of the largest

wild tiger populations globally (Walston et al. 2010) holding

an estimated 20% of India’s wild tigers (Jhala, Gopal & Qure-

shi 2008). Using simple sign survey data, we modelled the eco-

logical process of interest to us (tiger distribution and local

presence) as well as the observation process (survey method),

within a single inferential framework (MacKenzie et al. 2006;

Royle &Dorazio 2008).

Based on prior knowledge of tiger ecology in the landscape

(Karanth & Sunquist 2000; Karanth et al. 2004, 2006), we

hypothesized that tiger ‘source populations’ that reproduce

above replacement levels (Walston et al. 2010) would be con-

fined to a few well-protected reserves and that tigers would

occur at very low densities or be absent elsewhere. We further

hypothesized that abundance of large ungulate prey species

and protection from human disturbance (Karanth et al. 2004)

would be the key determinants of local tiger presence. Our spe-

cific objectives were two-fold: First, to design a practical, land-

scape-scale, spatially replicated sign survey method to generate

reliable estimates of tiger distribution that explicitly deals with

imperfect detection of signs. Secondly, to measure local tiger

habitat occupancy rates in the landscape and assess which key

ecological variables (e.g. prey abundance) and management

factors (e.g. human disturbances) influence these occupancy

patterns. We present a practical application of a new occu-

pancy model developed by Hines et al. (2010) specifically for

spatially replicated sign surveys. These results have wider util-

ity for monitoring of many other species of large carnivores

(andmammals in general) at landscape scales.

Materials and methods

THE STUDY AREA, ECOLOGY AND HUMAN IMPACTS

The Western Ghats region of India (see Das et al. 2006 for a descrip-

tion; Fig. 1) is globally important for tigers (Dinerstein et al. 2006;

Walston et al. 2010). Our survey was conducted in the central part of

this region, known as the Malenad–Mysore Tiger Landscape

(MMTL) in Karnataka State. The land cover is a matrix of natural

moist-evergreen, moist-deciduous and dry-deciduous forests, inter-

spersed with horticultural, agricultural and forestry crops covering

38 350 km2 (Krishnaswamy, Kiran & Davande 2003). In this matrix,
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potential tiger habitat consists of a forested area of 21 167 km2

(Fig. 1) that includes 14 wildlife reserves (5 500 km2). This landscape,

however, also supports �10Æ5 million people (Directorate of Census

Operation 2004) and is characterized by pressures from illegal hunt-

ing, forest product collection, livestock grazing and rapid economic

growth. Despite these pressures, tiger populations in better protected

reserves are at higher densities and reproducing above replacement

levels, facilitating dispersals through the wider landscape (Karanth

et al. 2004; K. U. Karanth unpublished data). The forest connectivity

appears to be sufficient (Das et al. 2006) for the tiger metapopulation

to persist.

The principal ungulate prey of tigers (as well as of leopards Pan-

thera pardus Linnaeus, 1758 and dholes Cuon alpinus Pallas, 1811) in

this landscape are as follows: gaur Bos frontalis Lambert, 1804; sam-

bar Rusa unicolor Kerr, 1792; chital Axis axis Erxleben, 1777; wild

pig Sus scrofa Linnaeus, 1758; and muntjacMuntiacus muntjak Zim-

mermann, 1780. Based on tiger: prey density ratios established byKa-

ranth et al. (2004), we expected the densities of wild ungulates to be

an important covariate of local tiger presence. The effectiveness of

official wildlife protection varies across MMTL, being high in Bandi-

pur, Nagarahole, Bhadra reserves, moderate in BR Temple, Ku-

dremukh and Dandeli-Anshi reserves and somewhat poor at other

locations (Fig. 1). Free grazing by livestock is widespread, often

accompanied by illegal hunting and depletion of wild prey (Madhusu-

dan & Mishra 2003; Rayar 2010). Because officials try to prevent

intrusions by humans and livestock in nature reserves, and herders

typically tend to stay within c. 10 km from their settlements, we

assumed that encounter rate with signs of livestock is an easily

detected surrogate for the intensity of negative human impacts (and

for lack of effective protection) at the site level.

FIELD SURVEY PROTOCOLS

Survey design

The proportion of habitat in MMTL occupied by tigers, occupancy,

w, was a key parameter of interest. Our 15-month-long survey (Febru-

ary 2006–May2006andDecember2006–May2007),with each sample

Fig. 1. Potential tiger habitat in Karnataka,

India. Inset map: Location of the study area

referred to as Malenad–Mysore Tiger Land-

scape (MMTL) in India.

Fig. 2. Diagram of a sampled site (grid cell)

depicting sequential coverage of a 1-km-long

spatial replicates.
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unit being surveyedwithin<12–36 h, reasonablymet the assumption

of ‘closure’ (MacKenzie et al. 2006). The total survey effort was 2021

man-days, involving 4 174 km of walks along trails, and lead to the

detectionof 403 tiger signs (223 scatdeposits and180 sets of tracks).

The sample units consisted of a grid of square cells (sites) superim-

posed on the land-cover matrix in MMTL (Fig. 1). Because our goal

was to measure true occupancy (proportion of area occupied) rather

than intensity of habitat use by tigers (MacKenzie&Royle 2005;Mac-

Kenzie et al. 2006), the cell size chosenwas, onaverage, larger than the

maximum expected tiger home range size. Because nonresident male

tigers have the largest home ranges (c. 80–90 km2; Karanth & Sun-

quist 2000), we used the cells of 188 km2 size, whose boundaries coin-

cided with graticules on our field maps (Fig. 2). Such ‘large’ grid cells

also enabledus to logistically deploy survey teamsmore efficiently.

Occupancy studies typically survey only a subsample of cells (Mac-

Kenzie & Royle 2005; MacKenzie et al. 2006) and thereafter try to

extend inference to the unsurveyed cells using covariate data from

surveyed cells. However, we surveyed all the cells in MMTL because

a key objective was to map tiger distribution to identify ‘source popu-

lations’ at higher densities and sufficient manpower was available.

We opted for spatial replication over temporal (Kendall & White

2009) primarily for logistical reasons (Hines et al. 2010). The survey

effort ⁄ cell was a compromise that considered sufficiency of sign detec-

tions, replications and spatial coverage achieved. Thus, we fixed the

total sampling effort (distance walked) in a cell with 100% habitat at

40 km, reducing the effort in decreasing proportion to habitat avail-

able. Cells with<10% tiger habitat (20 km2) and forest fragments of

<10 km2 size were excluded because tigers were unlikely to occupy

these. Advance planning ensured adequate spatial coverage of cells

(Kendall & White 2009) and field teams passed through one ran-

domly chosen location in each cell (Fig. 2).

Field protocol based on tiger behaviour and

environmental factors

The survey was conducted in dry seasons (October–May) tominimize

variations in animal sign detection probabilities induced by rainfall.

Because surveys targeted tracks ⁄ dung deposited along trails, varia-

tions in forest cover type did not influence sign detections.

Typically, tigers move c. 1–20 km day)1 along forest trails to hunt

or to locate, avoid or deter conspecifics (Karanth & Sunquist 2000).

Their passage is marked by tracks and occasional scat deposits (Sun-

quist 1981; Smith, McDougal &Miquelle 1989). Fresh signs of tigers,

leopards, dholes and major ungulate prey species in MMTL could be

identified by our trained observers. Only unambiguously identified

signs were recorded. Overall, the number of spatial replicates in a cell

(sampling effort) varied from 4 to 40, depending on the extent of

potential habitat in the cell.

Survey teams comprising of 2–3 skilled trackers walked the trails

from morning to dusk (Fig. 2). They photographed, georeferenced

and recorded signs of tigers, leopards, dholes and ungulate prey spe-

cies, as well as signs of livestock presence. Each type of sign detection

was assigned only once to each 100-m trail segment, thus yielding the

standard ‘1’ (detection) or ‘0’ (nondetection) histories required for

occupancy analyses (MacKenzie et al. 2006; Hines et al. 2010). These

sign detection data were aggregated at 1 km length to form ‘spatial

replicates’. At this replicate length, we were reasonably sure to detect

the signs of prey as well as of human disturbances if present. Further-

more, as these metrics were being used only as covariates influencing

tiger presence in our models, obtaining measures of their absolute

density using intensive methods addressing imperfect detection was

unnecessary as well as impractical at this spatial scale.

MODELL ING AND ANALYSIS OF DATA

We used a recent refinement of the standard occupancy model (Mac-

Kenzie et al. 2002) developed by Hines et al. (2010), which explicitly

deals with Markovian dependence of animal sign detection events on

spatial replicates. General model notations are provided elsewhere

and additional notations are provided under specific model descrip-

tions. Analyses were performed using the program presence (Hines

2006).

Model structure and spatial dependency

The standard occupancymodel is based on two key parameters:

w is the probability that a cell is occupied by tigers.

p is the probability of detecting tiger presence in a replicate,

given that the cell is occupied by tigers.

The likelihood formulation for this model has been presented else-

where (see MacKenzie et al. 2002 for details). However, occupancy

models of MacKenzie et al. (2002) assume that replicate surveys can

be modelled as statistically independent Bernoulli trials. Our repli-

cates were aggregations of 100-m trail segments at 1 km. Because

tigers might walk longer than 1 km along trails (Smith, McDougal &

Miquelle 1989; Karanth & Sunquist 2000), we assumed that sign

detection events on successive spatial replicates could potentially lack

the statistical independence required by the occupancy models of

MacKenzie et al. (2002). Therefore, we also considered the model

developed by Hines et al. (2010), which explicitly accounts for such

potential dependency using a first-order Markov process (Gillespie

1992). Of the two variants of the Hines et al.’s (2010) model imple-

mented in program presence, we chose the variant that assumes that

surveys can begin on any randomly chosen replicate (Fig. 2). In

<10%of the cells surveyed, when teams encountered unsuitable hab-

itat along the trail (e.g. human settlements, large reservoirs) the result-

ing disjointed trail segments were combined sequentially (Fig. 2). The

general computing expressions adapted from Hines et al. (2010) for

probabilities associated with such sign detection histories are given in

Appendix S1, Supporting Information.

The global model and ecological determinants of

tiger presence

We first compared the models of MacKenzie et al. (2002) and Hines

et al. (2010) without additional covariates, to choose the appropriate

model type for conducting further analyses. All model comparisons

were based on Akaike Information Criterion (AIC) values (Burnham

& Anderson 2002), because sample size of cells was adequate (>200,

with 4–40 spatial replicates per cell).

We used program presence (Hines 2006) to estimate the overall

occupancy rate, w, with the inference applying to the entire landscape

matrix of 38 350 km2 framed by the 205 surveyed cells (Fig. 1)

including potential tiger habitat of 21 167 km2. To estimate overall

tiger habitat occupancy within MMTL, the cell-specific occupancy

parameter, w, was weighted by the area of potential tiger habitat in

each cell (Bevington & Robinson 2003; see detailed computations in

Appendix S2, Supporting Information).

Based on earlier work (Karanth et al. 2004), which demonstrates a

tiger: prey density ratio of c. 1 : 500, we hypothesized that local tiger

presence would be positively influenced by the density of wild ungu-

late prey. We further wanted to test whether prey in certain body size

classes influenced tiger presence. These ‘prey-density covariates’ for

each cell were proportions of 1-km-long replicates that contained

signs of each prey species.We thus considered 12 plausible alternative
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occupancy models, incorporating the following covariates: density of

all prey species combined and density of only larger ungulate species.

To assess whether tiger presence is influenced by human disturbance,

the proportion of replicates with livestock sign was used as an addi-

tional covariate in our models. Further, we also incorporated propor-

tion of tiger habitat ⁄ cell (or sampling effort) as a covariate

(Appendix S2, Supporting Information).

Model selection and parameter estimation

The ecological process parameter of interest was the cell-level tiger

habitat occupancy rate w. We were also interested in the important

covariates that influenced this site-level tiger presence. The sampling

process parameters of interest were the replicate-level occupancy

parameters h and h¢ that demonstrate the degree of dependence

between replicated samples. However, we expected that some of the

covariates influencing tiger presence may also contribute to variation

in tiger abundance and thereby influence sign detection probability pt
(Royle & Nichols 2003). We also expected that other unknown factors

could also influence the detectability of tiger signs. Thus, the nuisance

parameter pt had to be explicitly accounted for in ourmodelling process.

Consequently, our model selection process initially focused on deter-

mining a suitable covariate model structure for pt and subsequently on

using thismodel structure to estimate cell-level occupancyw.
We defined a global occupancy model based on the recommenda-

tions of Burnham & Anderson (2002) and MacKenzie et al. (2006)

and formulated 12 alternative plausible models to identify a covariate

structure for the replicate-level detectability pt, using the Hines et al.’s

(2010) model structure. No covariates were included for replicate-

level occupancy parameters h and h¢ in the global model described

below:

w (all prey + livestock + proportion of habitat), h (.),h¢ (.), pt(all

prey + livestock + proportion of habitat).

Using program presence (Hines 2006), we selected the highest

ranked 12 alternative models based on AIC values, to fix the model

structure for pt (Table 1). Thereafter, we kept this model structure

component unchanged and ran further occupancy analyses for com-

paringmodels involving different covariate structures for w. We com-

puted the final estimates of cell-specific occupancy rate ŵi, the total

fraction of area occupied ŵ and the replicate-level occupancy parame-

ters ĥ and ĥ0 and other parameters by model averaging using the top

10 models, all of which had similar support (DAIC <2 units; Burn-

ham & Anderson 2002). We note that the current version of presence

(Hines 2006) does not facilitate any goodness-of-fit test for the spatial

dependencemodel (Hines et al. 2010).

Results

MODEL SELECTION

In the first step of model selection, we compared the standard

occupancy model of MacKenzie et al. (2002) which assumed

statistical independence among tiger sign detections made on

1-km-long spatial replicates, with the Hines et al. (2010) model

that provides for a first-order Markovian dependence among

detections (See Materials and methods). These comparisons

very clearly showed a lack of independence in sign detections

on 1-km-long replicates. The Hines et al. (2010) model per-

formed significantly better (DAIC = 184Æ9) in comparisons

with the standard model (MacKenzie et al. 2002). Therefore,

all further occupancy analyses were performed using Hines

et al. (2010) modelling approach implemented in program

presence.

In the second step, we compared the adequacy of 12 plausi-

ble alternative occupancy models, which describe the expected

influence of different combinations of covariates (seeMaterials

and methods) on tiger occupancy as well as on detection prob-

ability parameters at the replicate as well as cell levels

(Table 1). In these comparisons, a general model structure for

the covariates likely to influence w remains fixed, whereas the

covariates associated with replicate-level detection probability

pt are varied. Based on these comparisons, a model that incor-

porates the influence of combined abundance of larger prey

(gaur, sambar, chital andwild pig), human disturbance (via rel-

ative abundance of livestock signs) and proportion of habitat

surveyed (sampling effort) on replicate-level detection proba-

bility pt emerged as the top-ranked model (AIC

weight = 0Æ309). We note that the covariate structure for the

detection probability in the top-ranked model is the most

parameterized, thus limiting bias on occupancy estimates.

Therefore, in all subsequent occupancy analyses, this basic

Table 1. Model selection results; role of covariates in determining probability of detecting tiger sign pt on 1-km-long replicates, based on

covariates for probability of tiger occupancy from the global model (see Materials and methods), using the Hines et al.’s (2010) model. Number

of sites = 205. Covariates considered all prey (AP), large prey (LP), livestock (LVS) and proportion of available habitat (PH)

Model AIC DAIC

AIC

weight

Model

likelihood

Number of

parameters Deviance

w (AP + LVS + PH), h (.), h¢ (.), pt (LP + LVS + PH) 1446Æ84 0 0Æ309 1 10 1426Æ84
w (AP + LVS + PH), h (.), h¢ (.), pt (AP + LVS + PH) 1447Æ43 0Æ59 0Æ230 0Æ745 10 1427Æ43
w (AP + LVS + PH), h (.), h¢ (.), pt (LP + LVS) 1447Æ66 0Æ82 0Æ205 0Æ664 9 1429Æ66
w (AP + LVS + PH), h (.), h¢ (.), pt (AP + LVS) 1447Æ89 1Æ05 0Æ183 0Æ592 9 1429Æ89
w (AP + LVS + PH), h (.), h¢ (.), pt (LP + PH) 1452Æ37 5Æ53 0Æ019 0Æ063 9 1434Æ37
w (AP + LVS + PH), h (.), h¢(.), pt (LP) 1452Æ44 5Æ6 0Æ019 0Æ061 8 1436Æ44
w (AP + LVS + PH), h (.), h¢ (.), pt (AP) 1452Æ47 5Æ63 0Æ019 0Æ060 8 1436Æ47
w (AP + LVS + PH), h (.), h¢ (.), pt (AP + PH) 1452Æ78 5Æ94 0Æ016 0Æ051 9 1434Æ78
w (AP + LVS + PH), h (.), h¢ (.), pt (LVS + PH) 1466Æ35 19Æ51 0 0 9 1448Æ35
w (AP + LVS + PH), h (.), h¢ (.), pt (LVS) 1468Æ51 21Æ67 0 0 8 1452Æ51
w (AP + LVS + PH), h (.), h¢ (.), pt (.) 1497Æ79 50Æ95 0 0 7 1483Æ79
w (AP + LVS + PH), h (.), h¢ (.), pt (PH) 1498Æ81 51Æ97 0 0 8 1482Æ81

1052 K. U. Karanth et al.

� 2011 The Authors. Journal of Applied Ecology � 2011 British Ecological Society, Journal of Applied Ecology, 48, 1048–1056



structure of the detection probability component of the occu-

pancy model was retained, with only the covariate structure

describingw being varied.

In the third step of the model selection process, we had a

candidate set of 12 models by varying covariate model struc-

tures on cell-level occupancy parameter w while using our best

supported structure for replicate-level detection probability pt
(large prey + livestock + proportion of habitat). Compari-

sons between 10 higher-rankedmodels are reported in Table 2.

We note all these models fit the data well (DAIC <1Æ69), and
therefore, we used model averaging to derive final parameter

estimates (Burnham&Anderson 2002).

ESTIMATES OF OCCUPANCY AND OTHER PARAMETERS

We used parametric bootstrapping (Efron 1982) to derive the

estimates of variance for the total fraction of the area occupied

w for all models (see Appendix S2, Supporting Information).

The final parameter estimates derived for tiger habitat occu-

pancy and sign detection probabilities from model averaging

are reported as follows:

ĥ0ðSÊ½ĥ0�Þ, probability of tiger presence on the first repli-

cate = 0Æ418 (0Æ0787).
ĥðSÊ½ĥ�Þ, probability of tiger presence on a replicate, given

absence on previous replicate = 0Æ194 (0Æ0399).

ĥ0ðSÊ½ĥ0�Þ, probability of tiger presence on a replicate, given

presence on previous replicate = 0Æ730 (0Æ0857).
�̂ptðSÊ½�̂pt�Þ, the probability of detecting a tiger sign on a repli-

cate, given presence of tigers on the replicate = 0Æ17 (0Æ168).
ŵðSÊ½ŵ�Þ, the total fraction of area occupied by tigers in

MMTL = 0Æ665 (0Æ0857).
Thus, of the 21 167 km2 potential tiger habitat available in

MMTL, we estimate that tigers actually occupied 66%, or an

area of 14 076 km2 (SE = 1814 km2). In contrast, a naı̈ve

estimate derived from the traditional ‘presence-versus-absence’

approach is only 7 537 km2 and underestimated true occu-

pancy by c. 47%.

As hypothesized, tiger distribution appears to be patchy

across MMTL because of ecological as well as management-

related factors. Therefore, we examined the b coefficient values

for different covariates we expected to influence tiger habitat

occupancy. These coefficient values ⁄ signs, which express the

strength ⁄direction of their expected influence (MacKenzie

et al. 2006), are reported in Table 3. The b coefficient estimates

from 10 plausible models (Table 2) were similar. Relative den-

sity of all prey, and larger prey, and the proportion of available

tiger habitat were key determinants of tiger presence, indicated

by positive b values associated with these covariates (Table 3).

Moreover, relative intensity of livestock presence, our surro-

gate measure of human disturbance, proved to be a negative

Table 2. Model selection results; role of covariates in determining probability of tiger occupancy w inMalenad–Mysore Tiger Landscape, based

on modelling probability of detecting tiger sign pt on 1-km-long replicates using the Hines et al. (2010). Covariate structure for pt is obtained

from the top model in Table 1 (see Materials and Methods). Number of sites = 205. Covariates considered all prey (AP), large prey (LP),

livestock (LVS) and proportion of available habitat (PH)

Model AIC DAIC

AIC

weight

Model

likelihood

Number of

parameters Deviance

w (AP + PH), h (.), h¢ (.), pt (LP + LVS + PH) 1445Æ77 0 0Æ158 1 9 1427Æ77
w (LP + PH), h (.), h¢ (.), pt (LP + LVS + PH) 1445Æ99 0Æ22 0Æ142 0Æ896 9 1427Æ99
w (LVS + PH), h (.), h¢ (.), pt (LP + LVS + PH) 1445Æ99 0Æ22 0Æ142 0Æ896 9 1427Æ99
w (PH), h (.), h¢ (.), pt (LP + LVS + PH) 1446Æ71 0Æ94 0Æ099 0Æ625 8 1430Æ71
w (AP + LVS + PH), h (.), h¢ (.), pt (LP + LVS + PH) 1446Æ84 1Æ07 0Æ093 0Æ586 10 1426Æ84
w (LP + LVS + PH), h (.), h¢(.) pt (LP + LVS + PH) 1446Æ99 1Æ22 0Æ086 0Æ543 10 1426Æ99
w (.), h (.), h¢ (.), pt (LP + LVS + PH) 1447Æ34 1Æ57 0Æ072 0Æ456 7 1433Æ34
w (AP), h (.), h¢ (.), pt (LP + LVS + PH) 1447Æ35 1Æ58 0Æ072 0Æ454 8 1431Æ35
w (LVS), h (.), h¢ (.), pt (LP + LVS + PH) 1447Æ44 1Æ67 0Æ069 0Æ434 8 1431Æ44
w (LP), h (.), h¢ (.), pt (LP + LVS + PH) 1447Æ46 1Æ69 0Æ067 0Æ430 8 1431Æ46

Table 3. Model-specific b coefficient estimates for covariates determining tiger occupancy w in Malenad–Mysore Tiger Landscape (MMTL).

Models were used to determine tiger occupancy in MMTL. Number of sites = 205. Covariates considered all prey (AP), large prey (LP),

livestock (LVS) and proportion of available habitat (PH)

Model b̂0ðSÊ½b̂0�Þ b̂APðSÊ½b̂AP�Þ b̂LPðSÊ½b̂LP�Þ b̂LVSðSÊ½b̂LVS�Þ b̂PHðSÊ½b̂PH�Þ

w (AP + PH), h (.), h¢ (.), pt (LP + LVS + PH) )2Æ347 (1Æ173) 2Æ181 (1Æ162) – – 3Æ089 (1Æ469)
w (LP + PH), h (.), h¢ (.), pt (LP + LVS + PH) )2Æ257 (1Æ156) – 2Æ109 (1Æ163) – 3Æ057 (1Æ473)
w (LVS + PH), h (.), h¢ (.), pt (LP + LVS + PH) 0Æ108 (1Æ011) – – )1Æ561 (0Æ931) 2Æ928 (1Æ589)
w (PH), h (.), h¢ (.), pt (LP + LVS + PH) )0Æ712 (0Æ963) – – – 3Æ077 (1Æ747)
w (AP + LVS + PH), h (.), h¢ (.), pt (LP + LVS + PH) )1Æ325 (1Æ569) 1Æ527 (1Æ343) – )1Æ002 (1Æ020) 2Æ974 (1Æ439)
w (LP + LVS + PH), h (.), h¢ (.), pt (LP + LVS + PH) )1Æ212 (1Æ556) – 1Æ431 (1Æ349) )1Æ034 (1Æ022) 2Æ956 (1Æ444)
w (.), h (.), h¢ (.), pt (LP + LVS + PH) 1Æ218 (0Æ442) – – – –

w (AP), h (.), h¢ (.), pt (LP + LVS + PH) )0Æ244 (0Æ917) 2Æ009 (1Æ309) – – –

w (LVS), h (.), h¢ (.), pt (LP + LVS + PH) 1Æ815 (0Æ677) – – )1Æ537 (1Æ024) –

w (LP), h (.), h¢ (.), pt (LP + LVS + PH) )0Æ201 (0Æ908) – 1Æ986 (1Æ326) – –

Tiger occupancy modelling 1053

� 2011 The Authors. Journal of Applied Ecology � 2011 British Ecological Society, Journal of Applied Ecology, 48, 1048–1056



influence on local tiger presence (with negative b values;

Table 3).

Given variations in the densities of tigers and prey at some

sites (Karanth et al. 2004) and effectiveness of protection

across MMTL, we expected substantial variations in site-level

tiger abundances and consequently in site-level probabilities of

tiger occupancy.

We note that the two covariates contributed significantly

to the replicate-level variation in sign detection probability pt
(DAIC = 50Æ95 between the top-ranked model in Table 1

and the model that does not have a covariate model struc-

ture on pt). However, evidence for the effect of these covari-

ates on cell-level tiger occupancy w was not as strong

(DAIC = 1Æ57 between the top model in Table 2 and the

model that does not have a covariate model structure on w).
Furthermore, the covariate relationships were all in predicted

directions, suggesting that these covariates have a strong

influence on cell-specific tiger abundance. If these variations

in cell-specific tiger abundance are the key determinant of

variations in sign detection probabilities, then the estimated

cell-specific occupancy rates could potentially be linked to

variations in relative tiger abundance using some of the new

occupancy models proposed by Royle & Nichols (2003) or

Nichols et al. (2007). We also graphically mapped these vari-

ations in cell-specific occupancy probabilities across the

entire landscape (Fig. 3).

Discussion

OCCUPANCY MODELS FOR CARNIVORE SURVEYS

To address increasing threats to large carnivores (Ceballos

et al. 2005), substantial investments are being made on land-

scape-scale sign surveys. Although these surveys use sophisti-

cated GIS analyses (tigers: Wikramanayake et al. 2005;

jaguars: Sanderson et al. 2002; lions: Bauer & VanDerMerwe

2004), they are fundamentally rooted in the traditional ‘pres-

ence-versus-absence’ approach to inference. Our study showed

that such naı̈ve estimates of occupancy can be substantially

biased downward because detection parameters associated

with the actual sampling process not being reliably estimated

(in our case h, h¢, and pt being <1). Our results reaffirm the

value of using occupancymodelling approach to explicitly deal

with the difficult problem of imperfect detections. Similarly,

development of a specific probabilistic model of the process of

searching for tiger signs along trails (Hines et al. 2010) proved

important. Occupancy models using spatial replicates and

incorporating a priori hypotheses generated results that could

be reasonably interpreted in terms of ecological or manage-

ment factors (see Results).

Overall, we demonstrate the benefits of designing carnivore

sign surveys based on species biology (e.g. tiger home range

size and movements on trails) as well as on field survey proto-

cols (e.g. distances walked and spatial coverage of cells). By

modelling just three key covariates (available habitat, prey

density and human disturbance levels), we were able to provide

reasonable explanations for the patterns of tiger distribution.

We note that tiger surveys sometimes sacrifice ecological clar-

ity and model parsimony by fitting many covariates relying on

omnibus statistical tools such as regressions (e.g. Jhala, Gopal

&Qureshi 2008).

MEASURING TIGER DISTRIBUTION AND ABUNDANCE

Local tiger presence is strongly governed by prey density and

protection effectiveness, which cannot be remotely sensed.

Landscape analyses not augmented by such field data (e.g.

Dinerstein et al. 2006;Ranganathan et al. 2008) therefore have

inherent limitations for modelling tiger distributions. Site

occupancy estimates fromourmodels permit rapid field assess-

ment of tiger population status across large landscapes

(Fig. 3). Temporal extensions of these models (MacKenzie

et al. 2003) can monitor tiger range contractions or expan-

sions. Overall, we suggest that occupancy modelling offers a

robust alternative to previous tiger sign survey methods, such

as effort-adjusted encounter rates (Johnsingh et al. 2004),

adjusted track count-based estimates (Hayward et al. 2002)

and extrapolations from sign encounter rates (Smith et al.

1999a,b; Wikramanayake et al. 2005; Carroll & Miquelle

2006; Barlow et al. 2008).

Fig. 3. Patterns of spatial variation in probability of site occupancy of tigers in the Malenad–Mysore Landscape of Karnataka (MMTL). (a)

Based on naı̈ve estimate derived from the traditional presence-versus-absence approach and (b) based on occupancy analysis under the model

developed byHines et al. (2010).
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We note, however, that recent reports by Jhala, Gopal &

Qureshi (2008) suggest that spatially replicated sign surveys

can estimate tiger distribution reliably without explicitly mod-

elling imperfect detections. On the contrary, our results show

replicate-level tiger sign detection probability can be as low as

17%, which, if ignored, would lead to underestimates of occu-

pancy. We find these differences puzzling and worth further

exploration.

Our survey did not fully meet the assumptions of abundance

models of occupancy (Royle & Nichols 2003; Nichols et al.

2007; Conroy et al. 2008). We are currently exploring further

applications of such abundance models of occupancy, which

can be integrated with rigorous site-specific tiger density esti-

mates from camera trapping to reliably estimate tiger numbers

across large landscapes.

IMPL ICATIONS FOR THE MANAGEMENT OF WILD TIGER

POPULATIONS

Prey depletion by human hunters was first hypothesized as a

critical factor driving local declines of tiger populations by

Karanth & Stith (1999). Although alternative models hypothe-

size a greater influence of direct hunting (Chapron et al. 2008),

the prey depletion model has since then been supported by rig-

orous field studies of tiger:prey density ratios (Karanth et al.

2004), as well as a long-term population dynamics study

(Karanth et al. 2006). This study finds support for the models

proposing that ungulate prey densities are strong determinants

of tiger presence at the landscape scale also (Karanth et al.

2010).

Our results (Figs 1 and 3) show that tigers have persisted

better inMMTL compared with far more extensively forested,

sparsely populated and economically underdeveloped land-

scapes in India, a pattern earlier reported by Jhala, Gopal &

Qureshi (2008). Their persistence appears to be dependent

upon a few effectively protected ‘source populations’ (Figs 1

and 3), which are reproducing above replacement levels

(Karanth et al. 2006). A recent global conservation analysis

(Walston et al. 2010) shows that about 70% of wild tigers now

survive in source populations occupying just 6%of the habitat.

These sources are currently identified based on anecdotal

evidence. Our survey approach can rapidly and objectively

identify such ‘sources’ for targeting conservation efforts.

Walston et al. (2010) are concerned that the widely pro-

moted ‘landscape approach’ to tiger conservation (e.g. Wikra-

manayake et al. 2005; Dinerstein et al. 2006) does not

adequately prioritize protection of source populations and

therefore may not help in arresting the current tiger decline.

The proponents of the ‘landscape approach’, however, insist

that conservation investments should continue to target wider

regions. The population assessment approach we present pro-

vides a basis for reliably monitoring tiger meta-populations by

integrating site-level, intensive, capture–recapture surveys with

cost-effective, landscape-scale sign surveys. Furthermore, this

approach of confronting alternative ecological ⁄management

predictions with survey data may also prove useful for future

adaptive management (Walters 1986; Williams, Nichols &

Conroy 2002) of wild tiger populations. We also believe these

methods are relevant to efficient monitoring of spatial distribu-

tions and abundances of many other wide-ranging large carni-

vores whose signs are relatively easily detected.
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