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ABSTRACT

Biologists have repeatedly rediscovered classical models from physics predicting collision rates in an ideal gas.

These models, and their two-dimensional analogues, have been used to predict rates and durations of encounters

among animals or social groups that move randomly and independently, given population density, velocity, and

distance at which an encounter occurs. They have helped to separate cases of mixed-species association based on

behavioural attraction from those that simply reflect high population densities, and to detect cases of attraction or

avoidance among conspecifics. They have been used to estimate the impact of population density, speeds of

movement and size on rates of encounter between members of the opposite sex, between gametes, between

predators and prey, and between observers and the individuals that they are counting. One limitation of

published models has been that they predict rates of encounter, but give no means of determining whether

observations differ significantly from predictions. Another uncertainty is the robustness of the predictions when

animal movements deviate from the model’s assumptions in specific, biologically relevant ways. Here, we review

applications of the ideal gas model, derive extensions of the model to cover some more realistic movement

patterns, correct several errors that have arisen in the literature, and show how to generate confidence limits for

expected rates of encounter among independently moving individuals. We illustrate these results using data from

mangabey monkeys originally used along with the ideal gas model to argue that groups avoid each other.

Although agent-based simulations provide a more flexible alternative approach, the ideal gas model remains both

a valuable null model and a useful, less onerous, approximation to biological reality.

Key words: Cercocebus albigena, contact duration, encounter rate, fertilization kinetics, home range, line transect,

mangabey, predation rate, search theory, random walk.
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I. INTRODUCTION: A HISTORY OF REPEATED
REDISCOVERY

In 1860, the physicist James Clerk Maxwell worked out the
expected rates of collision among molecules in an ideal gas,
given the concentration of molecules in the gas, their mean
speed, and their ‘‘cross section’’, a measure of their size. His
formula assumes that the movements of the molecules are
independent, equally likely in all directions, and with speeds
drawn from a ‘‘Maxwell-Boltzmann’’ distribution [i.e. the
x and y components of their velocities are normally
distributed: e.g. Maxwell (1860); Kauzmann (1966, chapter
5)]. These assumptions have proven attractive to biologists,
who have repeatedly rediscovered Maxwell’s approach in
constructing models of encounter rates between moving
animals. The image of moving animals as molecules has
proven equally appealing, and in the biological literature
the term ‘‘ideal gas model’’ has come to be attached to ideas
that have developed from these assumptions.

One biological use of the ideal gas approach is as a null
model. For example, Waser (1975) used it to detect cryptic
behavioural attraction between adults in a ‘‘solitary’’ an-
telope species. Because observed rates of encounter among
individual bushbuck (Tragelaphus scriptus) were an order of
magnitude higher than expected if bushbuck behaved like
gas molecules in a two-dimensional bottle, he argued that
individual movements were not independent. Waser (1976)
subsequently applied the same null model to detect cryptic
cases of behavioural avoidance between social groups of
grey-cheeked mangabeys (Cercocebus albigena). Mitani et al.
(1991) used the approach to show that encounter rates and
association durations among some classes of orang-utans
(Pongo pygmaeus) were greater than expected by chance.
Similarly Schülke & Kappeler (2003) and Gursky (2005)
working on prosimians (Tarsius spectrum and Phaner furcifer)
demonstrated associations between members of social pairs
that had usually been considered to forage solitarily. Barrett

& Lowen (1998) and Sugiura et al. (2000) have used the ideal
gas model to ask why patterns of interanimal spacing
sometimes differ among primate populations at different
densities. Do individuals change their behaviour with den-
sity, or is it simply that encounter rates change with density,
and the same behavioural rules expressed at different rates
of encounter produce different spacing patterns?

Ideal gas models are readily generalized to investigate
patterns of encounter between, as well as within, species.
Thus Crowley et al. (1991) used this approach twice in the
same model of mating choosiness, once for encountering
predators and once for encountering mates. Waser (1982,
1984, 1987) used the ideal gas model to generate null
predictions regarding the frequency and duration of mixed-
species primate associations. Several other investigators
(Cords, 1987; Whitesides, 1989; Holenweg, Noë & Schabel,
1996) have subsequently used this approach.

In most of the above examples, and others (e.g. De Vita,
Kelly & Payne, 1982), the ideal gas model provides a null
hypothesis and interest focuses on deviations from its
predictions. In other cases, ideal gas assumptions are used to
estimate encounter rates as a component of some larger
model. For example, Rowcliffe, Cowlishaw & Long (2003)
recently modelled the effect of human hunting on
mammalian population density assuming that prey individ-
uals encounter snares at rates predicted using ideal gas
logic. Jetz et al. (2004) modelled how home range size scales
with body size, assuming that the proportion of resources
lost to neighbours is related to encounter rate; the ideal gas
model enabled the scaling of encounter rate to be estimated
from the known scaling relationships of speed of movement,
population density, and detection distance.

One context in which the ideal gas model has often been
applied is mate finding. Mosimann (1958) analysed the
probability of a female encountering no males during the
breeding season in low-density populations. In effect, he
quantified the suggestion of Allee (1938) that populations
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below some minimum density would decline because of the
difficulty of finding mates. Katona (1973) modelled the
effect of diffusible sex pheromones in reducing the time
taken for planktonic copepods to find mates. Manica &
Johnstone (2004) estimated the reduction in a male bug’s
encounter rate with females if he stopped moving around
so as to be able to guard a brood. Similarly, a series of
primatology papers have applied the ideal gas model to
compare mating success of a roving polygamous strategy
with that of monogamy (van Schaik & Dunbar, 1990;
Dunbar, 1995, 2000). Another application was to estimate
infanticide rates in great apes, under the assumption that
infanticide occurs if a male fails to encounter the female
during oestrus, but does encounter her while she is nursing
(Harcourt & Greenberg, 2001).

In the field of fertilization kinetics, and particularly
concerning the issue of the evolution of anisogamy, Scudo
(1967, p. 285) noted that ‘‘the adaptive value of various
modes of reproduction can be studied. . .using the same
tools which classical statistical mechanics applies to the
collision of particles’’. Research in this field continues to be
active (Randerson & Hurst, 2001; Dusenbery, 2002, 2006),
with most models taking as their starting point the ideal gas
model of encounter rate (e.g. Vogel et al., 1982; Cox &
Sethian, 1985; Dusenbery, 2000). One issue of recent
interest is the function and optimal thickness of the jelly coat
around some eggs; it increases target size but tends to
decrease sinking speed, which the gas model predicts to
have opposite, although unequal, effects on encounter rate
with sperm (Farley & Levitan, 2001; Podolsky, 2002).

Lotka (1924, p. 358) derived the mean free path of
a predator (the distance moved between successive
encounters with prey) from ‘‘the elementary kinetic theory
of gases’’. He went on to show that the frequency of
predator-prey encounters should be proportional to pred-
ator speed and ‘‘size’’, and to population densities of
predator and prey, using this result to justify the
multiplicative form of the predator-prey encounter term
in his famous equation. Laing (1938), following Stanley
(1932), used the same approach to show that parasitoids
found hosts at too high a rate to be explained by random
movement, generating one of the first quantitative argu-
ments in evidence of area-restricted search. Gerritsen &
Strickler (1977) re-derived formulae for encounter rates in
three dimensions and these have had ‘‘. . .considerable
influence in subsequent studies of plankton feeding’’ (Evans,
1989, p. 415). One instance is understanding rates and size-
selectivity of predation on the larvae of commercially
significant fish (e.g. Fuiman & Gamble, 1989; Paradis &
Pepin, 2001). Letcher et al. (1996) modelled predation and
starvation in larval fish using the ideal gas model twice, to
calculate encounter rate with both its predators and prey.

In a quite different context, Yapp (1956) suggested that
‘‘. . .encounters between a moving observer and the
individuals of a mobile species could be likened to the
collisions between a molecule of one kind and molecules of
another’’. Accordingly, Yapp (1956) and Skellam (1958)
applied the encounter-rate equation in reverse, to estimate
the density of a target species from the number of times an
observer walking a line transect encounters the species,

taking into account the observer’s speed, the average speed
of target individuals, and the distance at which the observer
can detect them. Estimates of seabird numbers are often
made from such data collected from ships or aircraft, but
curiously the literature seems to have largely lost sight of the
ideal gas approach. The modern theory of ‘‘distance
sampling’’ (Buckland et al., 2001) also estimates density
from transect data and has become a rather sophisticated
technique, but it assumes that the targets are stationary (and
claims reasonable accuracy only if they move at less than
half the speed of the observer: Buckland et al., 2001, p. 31).
Gaston & Smith (1984) and Spear, Nur & Ainley (1992)
independently redeveloped some aspects of the ideal gas
model to correct for biases when the birds predominantly
fly in a particular direction.

‘‘Search theory’’, originally developed to optimize the
search for submarines during World War II, leads to
the same encounter-rate predictions as ideal gas models in
the null case of randomly moving searchers and randomly
moving targets (Koopman, 1956; Dusenbery, 1992). This
literature was the inspiration for biologists to apply the ideal
gas model in a variety of situations: encounters between
zooplankton predators and phytoplankton prey (Gerritsen
& Strickler, 1977), the effect of prey aggregation on risk of
predation (Olson, 1964; Kiltie, 1980), encounters among
gametes of aquatic plants (Cox, 1983), and the evolution of
parthenogenesis in sparse populations (Gerritsen, 1980b).

During this long history of repeated rediscovery, two
limitations of the ideal gas approach have surfaced. First,
while many authors have developed similar approaches to
estimating expected encounter rate, there has been little
discussion of the confidence limits on the estimates (but see
Skellam, 1958). Thus it has not been the practice to com-
pare observations with predictions in a rigorous statistical
way (Schülke & Kappeler, 2003, provide an exception).

Second, the ‘‘random movement’’ assumption seems
unrealistic in many biological applications. This limitation
was noted by Lotka (1924, p. 360) in what was apparently
the first discovery of the ideal gas model by a biologist:
‘‘. . .the type of motion presented by living organisms
[unlike that shown by ideal gas molecules]. . .can be
regarded as containing both a systematically directed and
also a random element. . .mathematical treatment. . .may
appear to threaten formidable difficulties. It is to be hoped
that this will not altogether prevent its attack.’’

Maxwell’s model of an ideal gas may fit the movements of
dilute gas molecules rather closely, but animals’ movements
are almost certain to deviate from the assumptions in some
significant ways. In an ideal gas, molecules are randomly
distributed, move long distances in straight lines between
encounters, and the size of the bottle that contains them is
relatively very large. By contrast, real animals may spend
more time in some habitats than others, deviate frequently
from straight lines, and be restricted to partially overlapping
home ranges. Animal populations may further violate the
assumptions by showing anisotropy in the directions of
movement, or by the speeds not following a Maxwell-
Boltzmann distribution. Biologists need to know whether
such violations change the rate of encounter substantially,
and, if so, they might want to measure the relevant char-
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acteristics of the paths of real animals so as to incorporate
these parameters into more sophisticated models.

The goals of this paper are to review the basic results of
ideal gas models of animal encounter, to examine the
sensitivity of model predictions to some simple, but
probably common, deviations of real animals from model
assumptions, and to illustrate how some of these compli-
cations can be incorporated into the models. In addition,
we correct a number of errors in this literature, describe
how to estimate confidence limits on encounter rates, and
illustrate our approaches by reanalyzing the data set used by
Waser (1976) in his early application of the ideal gas model
to interactions among primate groups.

II. DERIVATION OF BASIC RESULTS

(1) The ideal gas model

In this section we state the standard analytic results from
the ideal gas model. Strictly speaking, the ‘‘ideal gas model’’
applies only to molecules moving in three dimensions with
a Maxwell-Boltzmann distribution of speeds and colliding
inelastically, but we will follow the biological literature in
applying the phrase more generally. So assume initially that
individuals are moving independently at constant speed n,
in a plane, in straight lines oriented randomly with a
uniform distribution. We focus on one individual and it is
helpful to consider the motion of all other individuals
relative to that focal individual (Fig. 1); in this perspective,
the focal individual appears stationary. By integrating over
all possible angles between the directions of movement, one
can calculate (Fig. 1) that the mean speed of the other
individuals relative to the focal individual is

4n=p: ð1Þ

We consider that two individuals encounter each other if
their centres approach within a detection distance D. We
assume that contact does not change their speed or
direction. Each non-focal individual sweeps out a strip
2D wide (Fig. 1C) such that if the focal individual lies
within the strip an encounter occurs (remember that we are
viewing motion relative to the ‘‘stationary’’ focal individual).
In time t the area swept out by each individual is on average
2D � 4n/p � t. If the density of individuals is r, an area A
should contain on average rA individuals; these will have
swept out strips of total area rA � 8Dnt/p. The number of
randomly positioned strips (¼ individuals) that cover the
focal individual follows a Poisson distribution, with mean
(rA8Dnt/p)/A ¼ 8rDnt/p. Thus the expected number of
encounters after moving a distance x is 8rDx/p, and an
individual’s encounter rate is

8rDn=p: ð2Þ

The Poisson distribution of encounter number implies that
the probability that an individual has no encounters in time
t is

expð[8rnDt=pÞ; ð3Þ

1

1

1

3

3

2

2

2

A

B

C

3

D

Fig. 1. (A) Trajectories of three individuals, each travelling at
the same speed n, over a period t, so the length of each
trajectory is nt. (B) The same trajectories as in A but viewed
relative to the position of individual 1, which thus now appears
to remain in the same spot. The dashed lines are the translated
vectors of individuals 1 and 2 from A used to construct the
relative trajectory of individual 2 (solid line); the length of this
relative trajectory is 2nt sin(q/2) (since the dashed lines form an
isosceles triangle with it). (C) The areas swept out by the
leading edge of a disc of radius D following the trajectories of
individuals 2 and 3 relative to 1. This shows that individual 1
comes within D units of individual 2 but never so close to
individual 3. The probability of an encounter with the focal
individual depends on the size of this swept-out area, which
for individual 2 is 2D � 2nt sin(q/2). The average area
for a randomly orientated individual (i.e. q evenly distributed
between 0 and p) is thus 2D�2nt

Rp

0 sinðq=2Þ dq=p ¼
2D�4nt=p ¼ 8Dnt=p: The 4nt/p term is the mean relative
speed.
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which can be subtracted from 1 to give the probability of
at least one encounter. Since encounters are random and
independent, the time between encounters has an expo-
nential distribution, with the mean interval between initial
contacts given by the reciprocal of the encounter rate:

p=ð8rDnÞ: ð4Þ

The mean distance between initial contacts (mean free
path) is speed � mean interval ¼ p/(8rD). If we are
concerned with the total number of encounters in an area
A, we can multiply the individual encounter rate by the
mean number of animals in the area (rA) divided by 2
(because each encounter is experienced by two individuals),
giving the expected number of encounters as

4r2ADnt=p: ð5Þ

So far we have assumed that the focal individual is the
same as any of the other individuals that it encounters, but
the ideal gas model has often been applied to encounters
between different classes (e.g. sexes) of individuals. In that
case the encounter-rate formula describes the number of
encounters of an individual of one class if r refers to the
density of the other class. For the total number of interclass
encounters within an area A, simply replace the term r2 in
(5) by rarb, the product of the densities of each class (cf. the
law of mass action from chemistry). When the classes move
at different speeds, the 4n/p term for mean relative speed
must also be modified, as discussed in the next section.

We have been predicting encounter rate assuming
knowledge of density, detection distance and speed.
Sometimes we might measure encounter rate and want to
estimate one of the other variables, such as when seeking to
estimate population density of pelagic seabirds from the
number seen from a ship. Similar strategies could be used as
rules-of-thumb by non-human animals. For instance, Pratt
(2005) shows how ants (Temnothorax albipennis) deciding
between two nest sites change their behaviour when
a critical quorum of scouts agree on one site, and this is
apparently sensed by encounter rate with other ants. When
the number of encounters counted is large, it is sufficient
simply to rearrange the above formulae to achieve the
estimation of density from observed encounter rate. But
when few encounters have been observed one should
specify a prior distribution of encounter rates and use
a Bayesian approach to estimate the true encounter rate. A
uniform prior may not be the most appropriate; in the
absence of further knowledge, for a Poisson-distributed
variable (like number of encounters) with mean m there are
theoretical arguments in favour of a prior distribution with
density proportional to m[0.5 ( Jeffreys, 1961, p. 186). Then,
if we have observed n encounters over a time t, an unbiased
estimate of density is calculated from an encounter rate of
(n ] 0.5)/t, rather than n/t.

It is straightforward to extend these lines of argument to ap-
ply to three dimensions. In that case the mean relative speed is

4n=3 ð6Þ

(Fig. 2). The trajectory of each individual relative to the
focal individual sweeps out a bullet-shaped solid with the
same volume as a cylinder of radius D and length 4n/3 � t.
So its volume is pD2 � 4nt/3, and the focal individual’s
expected encounter rate is

4prD2n=3: ð7Þ

Physicists have also derived equations for the rate at which
molecules of an ideal gas hit the walls of a container
(rate ¼ rn/4 per unit area; Kauzmann, 1966, p. 179); the
two-dimensional analogue giving hits per unit length is

rn=p; ð8Þ

which has been applied by Lowen & Dunbar (1994) to analyse
the defendability of primate territories of different sizes.

(2) Associations versus encounters; counts and
durations of associations

The ideal gas model predicts the number of initiations of
encounters in time t. Thus when testing predictions one

Fig. 2. Mean relative speed in three dimensions. Dashed lines
show the directions of two individuals at an angle q to each
other; without loss of generality the focal individual is shown
vertically orientated. The trajectory of the other individual
relative to the focal individual (thick solid line) has length
2nt � sin(q/2), as in the two-dimensional case (Fig. 1). However,
randomly orientated individuals now yield some values of q
more commonly than others: the probability of the angle lying
between q and q ] dq is the area of a strip of width dq
following the dotted line on the figure, divided by the surface
area of the sphere ¼ 2p sin q dq/(4p) ¼ sin q dq/2. Thus the
mean length of the relative trajectory is nt

Rp

0 sinðq=2Þ
� sin q dq ¼ 4nt=3:
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should ignore encounters that have already started at the
beginning of the period of observation. Fewer observed
encounters than predicted could occur because individuals
either avoid each other or persistently stay within contact
(Struhsaker, 1981). If, instead of following an individual
animal continuously, one made instantaneous observations
of it at n intervals, the expected number of ‘‘associations’’
(i.e. ongoing occurrences of other individuals within
a distance D, rather than instances of them crossing into
this region) is not given by the ideal gas model. Rather, the
appropriate formula in the two-dimensional case is

nrpD2: ð9Þ

This is simply the sum of the areas of nr disks of radius D
(think of a series of n disks replacing each of the 2D-wide
strips considered above: Fig. 3A). The formula assumes that
if on n successive sampling occasions the same pair of
individuals are together, that counts as n associations.

Unlike with the rate of encounters, the formula for the
number of associations is unaffected by speeds or by non-
uniform distributions of directions (cf. Section III). Conse-
quently there are times when this approach may be more
appropriate: for example, when estimating seabird densities
from counts from ships, it may be simpler and more reliable
to make periodic instantaneous counts of numbers occupy-
ing an area around the ship than to count the number of
new encounters over a period and apply the ideal gas model
(e.g. Tasker et al., 1984).

It is important not to confuse the two approaches.
Schülke & Kappeler (2003) made counts of observation
times (every 5 min) when individuals were in contact, where
two consecutive observations of the same individuals in
contact were counted as two ‘‘encounters’’. They should
have compared their observations against nrpD2, not the
8rDnt/p from the ideal gas model. Likewise, at any single
moment of observation, or summed over n such observa-
tions, the predicted number of individuals observed
between distances D [ dD and D ] dD from a focal
individual is directly proportional to D for small dD
(Fig. 3B). By contrast, the ideal gas model predicts that,
over a long period of observation, the number whose closest
approach lies within this range of distances is a constant
independent of D (Fig. 3C; cf. Gursky, 2005; different results
hold for three dimensions).

At any instant the mean number of other individuals with
which an individual is in contact is rpD2: in comparison
with Fig. 3A, each non-focal individual now is represented
by only one disc. If each individual’s position is independent
of the positions of others, how many discs cover the focal
individual is Poisson distributed. Thus the probability (or
proportion of time) that an individual is in contact with at
least one other is

1 [ expð[rpD2Þ; ð10Þ

this corrects the equations in Whitesides (1989) and
Holenweg et al. (1996).

The mean duration of an association is the mean number
of contacts at one moment (rpD2) divided by the rate at

D

1

2

A

B

C

3

Fig. 3. (A) A modification of Fig. 1C to describe the situation
when the number of occasions on which an association occurs
is counted (instead of the number of new encounters). The
expected number of associations is how many discs cover
a random spot, and is thus the product of the area of each disc
(pD2), the number of observations made (5 in this example),
and the density of individuals. Speed and direction make no
difference: the sum of the areas occupied by the discs is the
same for individual 2 (hatched) as individual 3 (solid shading).
For small values of q (the angle between trajectories) the
relative trajectories are shorter so that the discs overlap (as they
are also more liable to do if the sampling interval is short
compared to the speeds); an association may then persist from
one observation to the next and should then be counted more
than once to match with the model. (B) The number of
associations between D [ dD and D ] dD from a focal
individual is given by the area of the annuli (each has area
4pD dD ] dD2 ; 4pD dD for small dD, and is thus
proportional to D). (C) The number of encounters within
D ] dD, but not closer than D [ dD is given by the shaded
region. For long periods of observation the semicircles at each
end are a minor component, so the area is roughly 4 dD �
length of relative trajectory, and thus is independent of D.
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which encounters occur (given by the ideal gas model). So
with constant speeds in two dimensions, mean duration is
rpD2/(8rDn/p), which simplifies to

p2D=ð8nÞ: ð11Þ

This formula corrects that derived by Waser (1984) and
used by others (e.g. Holenweg et al., 1996); see Section V(1).

In three dimensions the mean number of other
individuals with which an individual is in contact at any
moment is

rð4=3ÞpD3 ð12Þ

(i.e. the volume of a sphere of radius D around each non-
focal individual � their density), and the mean duration of
an encounter is this divided by encounter rate, yielding

D=n: ð13Þ

III. ANALYTICALLY TRACTABLE
COMPLICATIONS: DEVIATIONS FROM
MODEL ASSUMPTIONS ABOUT DETECTION
DISTANCE, DENSITY, SPEED AND DIRECTION

(1) Detection distance

If the detection distance varies over the environment (e.g.
because visibility depends on the vegetation), it is still valid
to use the mean detection distance in the standard
encounter-rate formulae for two dimensions; but obviously
the variance in encounter rate will now be higher (the
distribution is no longer Poisson). In the three-dimensional
case, because of the D2 term in those formulae, variation
in detection distance about the mean does affect mean
encounter rate. Calculating the mean square of detection
distance sidesteps this complication.

(2) Density

If individuals are distributed patchily so that density is
consistently higher in some regions, the mean density can
be used in the standard formulae, but again the variance
in encounter rate will be higher than for the Poisson
distribution. Note that mean density must be calculated by
integrating over the time spent in each region, not over
area. For instance, suppose that there are two habitats of
equal area, and that the population is three times as dense
in one habitat, so the densities are 0.5r and 1.5r. If the
focal individual spends equal time in the two habitats, the
mean density that it experiences is r, so the formula for
encounter rate is unchanged. If instead it spends three times
as long in the high-density patch (such a tendency in the
population might itself have generated the higher density),
the mean density that it experiences is 1.25r, so the
expected encounter rate is increased by a factor of 1.25. If
the density is higher in one habitat simply because the
animals move more slowly there, then the mean encounter

rates within the two habitats are the same (the product of
density and speed is what matters). Gordon, Paul & Thorpe
(1993), working on the ant Lasius fuliginosus, explained
a lower than expected increase in encounter rate with
density as resulting from a tendency to aggregate at low
densities. Without knowing how the aggregation is produ-
ced—reduced speed in the area of aggregation or a reduced
tendency to head away from it—one cannot predict
whether a tendency to aggregate will affect encounter rate,
but there was evidence for the latter mechanism in this
example.

The ideal gas model has often been applied when
individuals are confined to home ranges. In cases where two
individuals share the same home range, their expected
encounter rate is obtained by setting r ¼ 1/(home range)
(e.g. Schülke & Kappeler, 2003). If a male home range is
considered to enclose the complete home ranges of several
females, his expected encounter rate with them is obtained
by setting r ¼ (number of females)/(male home range)
(e.g. van Schaik & Dunbar, 1990). If home ranges of
two individuals overlap only partially, the situation should
be analysed as in Section V(3); it is wrong simply to set
r ¼ 1/(mean home range size) (cf. Gursky, 2005).

In some two-class systems an individual disappears from
the system after one encounter, as when a sperm sticks to an
egg or when a predator meets a prey item and the latter
either is eaten or hides. If these disappearing items do not
replenish, their density will decrease with time, so that
encounter rate also decreases. Suppose that the mean
relative speed of predator and prey is w, that the initial
density of prey is rp and that of predators rP. The
probability of a prey item meeting no predator in time t is

expð[2wrPDtÞ; ð14Þ

so that in a large area A the number of encounters would be
Arp[1 [ exp([2wrPDt)] distributed randomly over ArP

predators. Hence the mean rate of encounter for a single
predator is

ðrp=rPÞ½1 [ expð[2wrPDtÞ� ð15Þ

and the probability of a predator encountering no prey is

expð[ðrp=rPÞ½1 [ expð[2wrPDtÞ�Þ: ð16Þ

This last formula is particularly relevant in calculating the
probability of an egg not having been fertilized by a sperm,
an approach developed in Vogel et al.’s (1982) ‘‘Don
Ottavio’’ model.

A related complication modelled by Nicolis, Theraulaz &
Deneubourg (2005) occurs when individuals that have met
stay together immobile while they interact, but after some
time split up. Such is what often happens in ants. The
temporary immobility obviously lowers the encounter rate
but Nicolis et al. (2005) further showed that with long
interaction periods individual encounter rate tends towards
being proportional to density1/2 rather than the linear
relationship of the ideal gas model.
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(3) Speed

If individuals vary their speed or if speed varies among
individuals, the ideal gas formulae must be amended. In the
two-dimensional case, for instance, the term 4n/p must be
replaced by a revised mean relative speed between the focal
individual and other individuals from the population. To
calculate this it is necessary to know the distribution of
absolute speeds, not just their means, and then to integrate
over the range of speeds of the focal individual, over the
range of speeds of the other individuals, and over all
possible differences in their directions. The formula thus
becomes

ðN

u¼0

puðuÞ
ðN

n¼0

pnðnÞ
ðp

q¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 ] n2[2un cos q

p
dq dn du=p;

ð17Þ

where pu(u) ¼ probability of the focal individual having
speed u, pn(n) ¼ probability of a non-focal individual having
speed n, and q ¼ the angle between trajectories. The central
term is the cosine formula to calculate the length of the
third side of a triangle if two sides and the angle between
them are known. The extension to three dimensions
requires only replacing the factor 1/p by 0.5 sin q within
the integral, so as to weight the average according to the
non-uniform distribution of q (Fig. 2). The integration must
be done numerically except in some special cases of analytic
tractability.

One tractable case, of widespread applicability, occurs
when speeds in the population follow a Maxwell-Boltzmann
distribution. In the two-dimensional case its probability
density function is

2n
r2

expð[ðn=rÞ2Þ; ð18Þ

and in the three-dimensional case is

ffiffiffiffiffiffi
27
2p

r
r[3n2 exp

�
3
2
ðn=rÞ2

�
; ð19Þ

where r ¼ root-mean-square speed. These skewed distribu-
tions are reasonable approximations to several observed
speed distributions (Okubo, 1980; De Vita et al., 1982;
Waser, 1984; Mitani et al., 1991), and are the speed
distributions expected if animals are following a fine-scale
random walk but speeds are measured on a coarser scale. In
a population of animals with a Maxwell-Boltzmann
distribution of speeds, the mean relative speed is

ffiffiffi
2

p
�n; ð20Þ

where �n is the mean speed.
This result assumes that each individual’s speed is

independently drawn from the distribution. Suppose instead
that the variation in speed was to a large extent an effect of
time of day (for instance, mites running around on a paving
stone might all speed up as the temperature increases in the

afternoon). In the extreme case of all individuals travelling
at the same speed n at any particular time of day, the mean
relative speed would be 4n/p at any one time and thus 4 �n/
p averaged over the whole period.

If we know the speed of the focal individual, we can
refine our predictions. This is relevant when calculating
encounter rates between two classes of individual, such as
predators and prey, that move at different speeds. In many
examples one class of individual is stationary (e.g. eggs,
when predicting their rate of fertilization by more motile
sperm), which simplifies the encounter-rate formula to
2rD�n for two dimensions, or prD2�n for three dimensions.
If the two classes of individual travel consistently at two
different non-zero speeds, in three dimensions the encoun-
ter rate for an individual of one class is

prD2ðu2]n2=3Þ=u ð21Þ

(e.g. Gerritsen & Strickler, 1977), where r is the density of
the other class and n is the speed of whichever class is
slower. Unfortunately in two dimensions the term for mean
relative speed when u 6¼ n involves an elliptic integral. But if
both predator and prey have Maxwell-Boltzmann distribu-
tions of speeds, with mean speeds �u and �n, then the mean
relative speed is simply

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�u2]�n2

p
: ð22Þ

[Skellam (1958) proves this for the two-dimensional case
and it also holds in three dimensions; see also Evans (1989)
for a neat extension to include turbulence in the media.]

Small inter-individual differences in speed have rather
little effect on encounter rate. For instance, Gursky (2005)
was interested in contact rates between male and female
partners; males moved up to 1.49 times as far as their
partners. In that case Gursky’s use of the mean speed of
partners is liable to underestimate encounter rate by a factor
of only 0.95 if each individual’s speed was constant, or 0.98
assuming Maxwell-Boltzmann distributions.

An increase in a predator’s speed increases its rate of
encountering prey; the relationship is approximately linear
when the predator moves faster than the prey, but becomes
more curved at slower speeds (Fig. 4). This pattern has
biologically interesting consequences. For example, in the
two-dimensional case, if prey all move with speed n, and
the predator moves at 2n, the mean relative speed is 2.13n;
but if the predator moves at n/2, the mean relative speed is
only 1.06n. So a predator moving at half the speed of its
prey gains only a 6% increase in encounter rate over that
had it remained motionless, which, supposing some costs
to moving, suggests advantages of a sit-and-wait tactic.
Gerritsen & Strickler (1977) developed such optimality
arguments quantitatively by introducing trade-offs relating
speed to power requirements and detection distance.
Similarly in the optimality model of Dusenbery (2006)
larger gametes benefit from their faster speed (as well as
from increased encounter distance and longevity), but fewer
can be produced.

Sometimes what matters is the number of encounters not
per time, but per distance moved. For instance an auk
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carrying fish from its feeding grounds to its nest is seeking to
reduce the total number of encounters with kleptoparasites
over the course of the journey, not the rate at which they
occur. The number of encounters per distance moved by
the focal individual is obtained by dividing formulae for rate
of encounter by the speed of the focal individual. The
number of encounters is then a decreasing function of its
speed.

(4) Direction

The formulae also must be amended if the directions of
movement are not uniformly distributed, again because this
affects the mean relative speed. This might be relevant for
animals on a migration or for a population of animals that
all tend to avoid moving directly upwind or against a water
current. Particular attention has been paid to this issue by
researchers estimating densities of seabirds from sightings
seen from ships or aircraft, because, for instance, birds
commuting between feeding sites and nesting colonies are
often predominantly headed in a common direction. Spear
et al. (1992) proposed recording the heading and speed of
each bird seen so as to correct density estimates individually.
The estimated density is then the observed encounter rate
divided by

2D
X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2i ]n2i [uini cos qi

q
; ð23Þ

where ui and ni are the speeds of observer and the ith bird,
and qi is the angle between their directions of travel. Spear

et al. (1992) tabulated how the effect of q on expected
encounter rate depends on the ratio of speeds.

As another example, consider a stream of migrating
wildebeest within which a male is attempting to intercept
receptive females. Imagine that within the migrating
column females are moving in parallel, that their speeds
follow a two-dimensional Maxwell-Boltzmann distribution,
and that the male travels consistently at their mean speed �n;
then his mean speed relative to females is 0.39 �n if moving
with the flow, 1.38 �n if perpendicular to the flow, and 1.89 �n
if against the flow. So he encounters more females by
moving perpendicular to the flow than moving alternately
with and against it (even ignoring the tendency to re-
encounter the same females in the latter case). Gerritsen
(1980a) applied similar arguments to the three-dimensional
world of plankton, for instance predicting that predators
should move horizontally in response to vertical migrations
or ‘‘hop and sink’’ locomotion of their prey. Anderson,
Gurarie & Zabel (2005) developed the ideal gas model in
terms of two components to movement, a directed
component and a random component, and applied it to
model predation of migrating salmon.

IV. TRACKS THAT ARE NOT STRAIGHT

Many of these results break down if individuals do not
always travel in straight lines, for instance if they take some
sort of random walk. The reason is that bent paths, unlike
straight ones, can cross one another more than once. More-
over, random-walking individuals sometimes backtrack,
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so one encounter with another individual is relatively likely
to be followed by a second encounter with the same
individual before they have had a chance to move far apart.
The number of encounters among random-walking indi-
viduals no longer follows a Poisson distribution, with more
chance of many encounters or very few. This invalidates
formulae of the form exp([kwrDt) for the probability of
encountering no items [e.g. as applied when a single
encounter suffices to remove a prey item or gamete from
the population: Section III(2)]. Nor do the intervals between
encounters remain exponentially distributed.

Perhaps surprisingly, expected encounter rates are
identical whether or not individuals move in straight lines.
However, for random-walking individuals many encounters
are recontacts between the same individuals, separated by
only brief periods apart. Observers might overlook brief
periods apart and thus underestimate encounter rate. For
instance, Holenweg et al. (1996) introduced a bias into their
test of the ideal gas model by explicitly ignoring any change
of association status lasting less than 30 min.

Often of more concern than the number of encounters is
the number of different individuals encountered. Fewer
individuals will be encountered if paths are not straight, but
we know of no analytic formulae to make quantitative
predictions. However, so long as individuals are moving
independently, the number of different individuals encoun-
tered will follow a Poisson distribution. Also, doubling the
density of individuals still doubles the expected number of
different individuals encountered.

It may help to explain these results geometrically. When
deriving the formula for encounter rate, we envisaged
a strip swept out around the trajectory of an individual
relative to the focal individual (Fig. 1); the area of the strip
gave the probability of a randomly placed strip covering the
focal individual and thus of an encounter. Changes in
direction of the trajectory do not affect the area of the strip
if areas in which the strip overlaps itself are counted twice
(hence the number of encounters is still as predicted by the
gas model). But one must count areas of overlap only once
to calculate the probability of two individuals ever
encountering each other. If individuals move with a regu-
larly turning trajectory (e.g. the sinusoidal movement of fish
or the spiral trajectory of sperm: Rosenthal & Hempel,
1970; Farley, 2002) it may be feasible to calculate this area
or volume analytically, at least if the items encountered are
stationary [see Section V(6)]. Otherwise we must turn to
simulation.

(1) Monte-Carlo simulations

Almost fifty years ago, Skellam (1958, p. 398) noted,
‘‘Whereas the expected number of encounters does not
appear to depend on the shapes of the paths, the variance of
the number of encounters does. . .in order to provide
concrete support for the theoretical formulae given earlier
and the conjectures outlined above. . .[one approach is] to
set up laboratory experiments on Monte Carlo lines’’.
Skellam then proceeded to simulate animal movements by
moving coloured pins on a triangular lattice on graph
paper. Being in a position to set up ‘‘experiments on Monte

Carlo lines’’ with enormously more power than Skellam,
we have written a computer simulation to quantify the
consequences of animal paths deviating from straight lines.

In these simulations we consider the track of each
individual as a series of short straight-line steps of constant
duration. This is a flexible and widely used approach to
model meandering tracks, and simplifies the calculation of
whether two individuals come within range. Since we count
only encounters involving one focal individual, and since
each simulation run covers a finite time, we need consider
only those individuals that would have time to meet the
focal individual if they headed straight towards each other
at the specified maximum speed. Such individuals lie within
a circular arena centred on the focal individual; as the
simulation progresses, this circle gets smaller and many
individuals become safe to ignore. The initial number of
individuals in the arena is generated from a Poisson
distribution with mean given by density � arena area.
Their starting positions and directions are randomly
allocated assuming uniform distributions.

(2) Correlated random walks

A correlated random walk (successive steps have similar
directions) fits most real animal trajectories better than an
uncorrelated random walk (e.g. Bergman, Schaefer &
Luttich, 2000); one can imagine many reasons why animals
tend to avoid backtracking. Unsurprisingly, as the correla-
tion in direction between steps increases, the encounter rate
more closely matches predictions based on straight-line
trajectories.

To quantify this effect, we modelled the change in
direction each step as fitting a von Mises distribution, which
is roughly the equivalent of a Normal distribution for
angular data (Fisher, 1993). The parameter k alters the
dispersion of turning angle about a mean change of
direction of 0, but in Fig. 5 we measure this dispersion in
more intuitive terms as the percentage of times the direction
changes by less than 90° (‘‘50% steps forward’’ represents
an uncorrelated random walk and ‘‘100% steps forward’’
a straight line). Fig. 5A and B show that as individuals follow
more convoluted paths the distribution of the number of
encounters changes from a Poisson distribution to one with
the same mean but a greater variance. Fig. 5C shows the
accompanying decrease in the number of different individ-
uals encountered. Although the broad patterns shown in
Fig. 5 are consistent, it is apparent that turning angle
distribution, detection distance, step length and step
number all have interacting non-linear effects, so quantita-
tive predictions are possible only using simulations.

(3) Rebounds

So far we have assumed that individuals move indepen-
dently of each other. Another possibility is that when they
contact they ‘‘rebound’’ so as to avoid each other. For
simplicity, and to utilize results from physics, our assump-
tion here is that the separation distance that counts as an
encounter is the same as the distance at which rebounds
occur.
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After a collision, individuals are moving in different
directions and cannot contact each other again without
rebounding off further individuals, so one might suppose
that the ideal gas model would continue to fit well. In fact,
when rebounds occur the ideal gas model underestimates
encounter rate (Fig. 6). Physicists modelling dense gases
have concentrated on two effects (Chapman & Cowling,
1952, p. 274). One is that each particle excludes others from
its immediate surroundings, which has an effect of
decreasing the area available for movement and thus
increasing effective density. The other effect is that when
two particles lie close together each shields the other from
contact with a third particle; later models have considered
clusters of more than two particles screening each other.
In two dimensions, based on modelling clusters of O 4
individuals, the predicted rate of encounter 8rDn/p must
be multiplied by a polynomial function of rD2:

1]0:7820rD2ðp=2Þð1]0:5322rD2ðp=2Þð1
]0:3336rD2p=2ÞÞ

ð24Þ

[see van Rensburg (1993) for higher-order ‘‘virial coef-
ficients’’ and those for three as well as two dimensions].

Even formulae based on this approach still underestimate
encounter rates at very high densities. At the extreme,
individuals are packed in a crystalline fashion; the only
movement possible is a slight jostling back and forth from
one neighbour to the other; as density tends towards 2/
(O3D2) the collision rate tends to infinity. We produced
estimates of encounter rate at high densities using a refined
version of our Monte Carlo simulation in which individuals
encountering each other immediately head directly away,
but otherwise move in straight lines at constant speed
[Fig. 6A; cf. the simulation by Luding (2001) in which speeds
were Maxwell-Boltzmann distributed and collisions pre-
served momentum and energy].

Fortunately, biological situations to which the ideal gas
model has been applied are rarely so extreme. Suppose that
an encounter occurs when individuals are 100 m apart; then it
requires a density as high as 7.6 per km2 for the number of
encounters to exceed gas-model predictions by 10%. But
clearly the ideal gas model would be inadequate at the den-
sities of ants in a nest, for instance. For example Gordon et al.
(1993) studied encounter rates in ants kept at densities up to
0.72 per cm2. Even were detection distance as small as 0.6 cm
(the length of these ants), the expected number of encounters
is 40% more than predicted by the ideal gas model.
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However, ant encounters are often of interest because
they enable the transfer of information (Adler & Gordon,
1992). In this context what matters are contacts between
individuals that have not recently met one another. At high
densities our simulations demonstrate that the rate of novel
contacts is decreased by each individual becoming ‘‘boxed
in’’ by neighbours (Fig. 6B).

(4) Other forms of non-independence

In nature individuals are often aggregated and even simple
predators consequently adjust their foraging paths to tend
to remain within prey aggregations (area-restricted search).
Encounters with prey may stimulate adjustments of turning
angles, speed or both. This kind of non-independence
invalidates the ideal gas model; for instance we no longer
expect a linear relationship between density and encounter
rate (e.g. Travis & Palmer, 2005). The ideal gas model is
most useful in such situations as a null model of
independent movement against which to compare the
improvements in encounter rate achieved by more
sophisticated behaviours. The tendency for seabirds either
to follow ships or to turn away from them at distances
greater than observers can identify them also invalidates the
ideal gas model, which creates problems in calculating
densities from ship-based counts.

V. CORRECTIONS OF SOME ERRORS IN THE
LITERATURE

The papers that have made the errors considered below
have often also identified novel situations to which the ideal
gas model can be applied. It is thus worthwhile not only to
point out the mistakes, and to quantify how much they
matter, but to show how they might be corrected.

(1) Encounter duration

Waser (1984, 1987) calculated the expected duration of an
encounter under the assumptions of the ideal gas model.
This provided a null hypothesis against which to compare
observed durations, to test whether avoidance or other
interaction occurred. He calculated the probability distri-
bution of the relative speeds between random pairs of
particles and then integrated the product of probability and
the reciprocal of relative speed. What Waser neglected was
that encounters occur more often when relative speeds are
high. As we saw in Section II(2), the correct calculation is to
divide rpD2 by encounter rate. In the case of Maxwell-
Boltzmann distributions of speeds, the correct formula is

pD=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u2 ]�n2

p
Þ: ð25Þ

Waser’s formula overestimates this by a factor of p/2 ; 1.57,
which neatly explains why Waser’s (1984) predictions exceeded
his observations by about this factor. Other papers involving
this error are Cords (1987), Mitani et al. (1991), Holenweg et al.
(1996) and van Schaik (1999), although the error is insufficient
to have changed their qualitative conclusions. Whitesides
(1989) also followed Waser (1984) in using the wrong formula,
but relied more on the results of a simulation which were
immune to the error (he observed, but did not follow up, the
discrepancy between the two methods of prediction).

Calculations of the proportion of time spent in contact
with others that rely on multiplying encounter frequency by
Waser’s formula for encounter duration are also overestimates
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Fig. 6. Deviations from the ideal gas model when individuals
rebound. Density is measured as individuals per unit2 and
rebounds occur at a separation of 1 unit between centres.
Speeds are constant, with individuals heading directly away
after contact. At high densities, disks are initially arranged on
a triangular lattice on a toroidal surface; simulation continues
until collision rate has reached equilibrium. (A) Number of
encounters relative to ideal gas model. Dashed line shows the
analytically derived correction factor based on virial coeffi-
cients up to order 8 (van Rensburg, 1993). Solid line shows the
factor by which collision rate in our simulations exceeded
the gas-model prediction. The inflection is associated with the
‘‘phase change’’ to a crystalline form in which individuals are
unable to slip past one another (see Luding, 2001). Each point
is based on 20000–100000 simulations of 100 disks. (B)
Number of different individuals encountered in a travel
distance of 10 units. Solid line is from our simulations, dashed
line is that predicted by the gas model assuming straight-line
trajectories. Each point is based on 10000 simulations of
a minimum of 100 disks.
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by the same factor of 1.57 (Waser, 1987; Whitesides, 1989;
Mitani et al., 1991; Holenweg et al., 1996).

(2) D for spread-out groups

Waser (1976) realized that the ideal gas model might
usefully be extended to encounters between social groups,
but unfortunately introduced an error into the literature. If
the diameter of each group is s, and the maximum detection
distance between individuals is d, peripheral members of the
groups may detect each other when the group centres are
d ] s apart; this corresponds to D in our equations (Fig. 7).
However, instead of the 2(d ] s) that should have appeared
in his encounter-rate equation, Waser (1976) wrote 2d ] s.
His later papers applying the same technique (Waser, 1982,
1984, 1987) did not repeat the error, but it has propagated
in several doctoral theses (Bennett, 1984; Hill, 1991; Ham,
1994; see also Schülke & Kappeler, 2003). Also, a review
paper by Dunbar (2002) erroneously implies that D should
be taken as the distance between the edges of the groups (d ),
ignoring group diameter.

Barrett & Lowen (1998) were the first to point out that
the 2d ] s term used by Waser (1976) was wrong.
Unfortunately they corrected the encounter-rate formula to
4rn(s ] d)/p; this needs to be multiplied by a factor of 2.

(3) Partial overlap of home ranges

Barrett & Lowen (1998), following van Schaik, van
Amerongen & Mouton (1985), noted that the ideal gas
approach might introduce errors when home range overlap
between neighbouring individuals (or, in this case, primate
social groups) is not complete. They therefore introduced
a further factor x into the encounter-rate formula, which
represents the proportion of the group’s time spent in the
part of their range shared with other groups. They made
the additional assumption that the group spent half as much
time in the shared part as expected on the basis of its area,

because resources there were depleted by their neighbours.
However, this and similar analyses (e.g. Kinnaird &
O’Brien, 2000) are subject to several pitfalls.

There is a typographical error in the equation Barrett &
Lowen (1998) printed to make their intended adjustment.
Their equation A7 should read x ¼ (c/2)/(b ] c/2) which
indeed yields the x value that they report. More
fundamental a mistake is that multiplying by x fails to take
into account that the neighbours, like the focal group, will
spend only some of their time in the shared area. Kinnaird
& O’Brien (2000), in a similar analysis, apparently realised
that it was the probability of groups being simultaneously in
the shared area that mattered, but did not allow for the
increased density when this occurs.

For simplicity suppose that suitable habitat is distributed
along a narrow strip 1 unit wide and that a large number N
of groups are spaced evenly along the strip (Fig. 8A). If the
strip is N units long, the density is one group per unit area,
but we specify that each group occupies a range of length
and area h, resulting in each group sharing a strip of width
and area h [ 1 with each neighbour. If density is not unity,
the results derived below still hold if h is defined as area of

. . . . . .............
............
............

. . . . . .............

............

............

. . . . ............

...........

...........

...........

. . . . ...........

..........

..........

..........

C

A B

D

h

1

Fig. 8. Configurations of overlapping territories in which home range � density ¼ h ¼ 1.56. Home ranges overlapping the stippled
home range are shown hatched. For configurations A, B and C, the correction factor assuming equal usage within a home range ¼
2(h [ 1)/h2 ¼ 0.46. For configuration D, the corresponding correction factor ¼ 4(Oh [ 1)(2Oh [ 1)/h2 ¼ 0.61.

s

d

D

Fig. 7. If each individual can detect another d away, and they
form groups of diameter s, then groups can detect each other
when their centres are d] s apart and so this should replace
D in the standard formulae.
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home range � density (i.e. as actual home range area
divided by the area if home ranges were reduced to cover
the region without overlapping).

The proportion of time that each group spends in each of
its shared areas is (h [ 1)/h if it visits all parts of its range
equally often. The probability that both the focal group and
the neighbour are in their shared area is (h [ 1)2/h2. When
that happens the density of the neighbour within the shared
area is one per h [ 1 of area, ¼ 1/(h [ 1). Note that to
calculate encounter rate of a focal group requires local
density to be calculated ignoring the focal group itself
(cf. Jolly et al., 1993). So the predicted rate of encounter
between two particular neighbours ¼ [(h [ 1)2/ h2]
� 1/(h [ 1) ¼ (h [ 1)/h2 times that given by the usual
encounter-rate formula. (Unfortunately, even this correction
factor is an underestimate, especially with large D, because
the centre of one group can be just outside the area of
shared use, but still lie within distance D of a neighbouring
group whose centre is within it.) Because each group has
neighbours on either side, the rate must be doubled to give
a group’s overall rate of encounter:

2ðh [ 1Þ=h2: ð26Þ

This lies between 0 and 0.5 if no area is to be shared by
more than two groups. If we instead assume that groups
visit shared resources half as frequently as resources in their
unshared home range centre, the correction factor becomes

ðh [ 1Þ=2 ð27Þ

[whereas Barrett & Lowen’s (1998) correction factor of x
corresponds to h [ 1; it happens that this error cancels out
their earlier error pointed out in Section V(2)].

These formulae still hold if the area of overlap with each
neighbour varies and regardless of the number of
neighbours with which each group shares its home range,
but only so long as every group still has an equal sized home
range, with the same proportion of it shared, and there are
no areas shared by three or more individuals (Fig. 8B, C);
these seem reasonable rough approximations for many
systems. Fig. 8D illustrates a configuration in which some
areas are shared by four groups; the correction factor,
assuming that each group utilises all parts of its range
equally, is then increased to 4(Oh [ 1)(2Oh [ 1)/h2, which
gets as high as 0.76 when h ¼ 2.

Thus when home ranges do not overlap completely,
expected rates of encounter will be decreased by an amount
that depends not only on how much home ranges overlap,
and on relative usage of those areas of overlap, but also on
some aspects of overlap configuration. Where the geometry
of home range overlap is more complex, the investigator
will need information on the ranges of neighbours as well as
that of the focal group, and accurate null predictions will
require simulation.

(4) Infanticide rate

The issue of how to correct for overlapping home ranges
also arises in a model of infanticide in the great apes

(Harcourt & Greenberg, 2001), but it is exacerbated by
further complications that we now discuss. To predict the
probability of infanticide, Harcourt & Greenberg (2001) used
the ideal gas model to calculate both the proportion of males
that would not meet a female when she was in oestrus, and
the proportion that would meet her later when she was
nursing (only males that do not mate with a female but do
encounter her while nursing are assumed to kill infants).
They took the product of these proportions to calculate the
probability of an infanticide: their formula is of the form
exp([2wDrtc) � (1 [ exp([2wDrtn)), where u is the mean
relative speed, D is the distance at which a male would detect
a female, r is the male density, and tc and tn the periods of
oestrus and nursing respectively (here we have corrected the
omission of a factor 2 in the encounter-rate formula).

Unfortunately, their formula becomes inappropriate when
more than a single male is present in the female’s range. To
understand why, consider the situation when the time spent
nursing is very long (as with the great apes), so that
exp([2wDrtn) ; 0 and Harcourt & Greenberg’s (2001)
formula reduces to exp([2wDrtc). This is the probability of
no encounters with any of the males during oestrus. But all it
takes for an infanticide is for one male not to have met the
female: it is unnecessary for all not to have met her. The
greatest danger are males who rarely encounter the female,
those whose home ranges overlap the female’s range only
a little. It should now be apparent why it becomes necessary
to consider range overlaps with each male individually. The
probability that each male commits infanticide can be
calculated as Harcourt & Greenberg (2001) did, but then
one must calculate the product of the probabilities that each
male does not do so to give the overall probability of no
infanticide. The correct formula for the probability of
infanticide is thus of the form

1[
YM
i¼1

½1[expð[2wDritcÞ�ð1[expð[2wDritnÞ�: ð28Þ

Here M is the number of males with ranges overlapping
a female’s home range and is usually greater than obtained
by multiplying male density by the area of female home
range [the apparent basis of Harcourt & Greenberg’s (2001)
calculation]. Crucially, now ri is not male density r, but
a quantity reflecting pairwise male-female range overlap as
well as density.

To illustrate this, we use Harcourt & Greenberg’s (2001)
parameters for the Virunga gorilla (Gorilla gorilla), under the
fictional supposition that females were solitary. Home range
¼ 7.5 km2 and adult male density ¼ 0.25 km[2, so h ¼ 7.5
� 0.25 ¼ 1.875. Let us suppose that the topology of male
home ranges is like Fig. 8C, and that the female’s home
range exactly matches the male home range marked with
spots. For that home range ri ¼ 1/7.5 km[2. For each of
the four other overlapping male home ranges ri ¼ r(h
[ 1)/(2h2) ¼ 0.031 km[2 [derived similarly to formulae in
Section V(3)]. The probability of infanticide is then 1 [ [1
[ exp([2 � 0.71 � 0.5 � 0.133 � 6.25)] � [1 [ exp([2
� 0.71 � 0.5 � 0.031 � 6.25)]4 ¼ 1 [ 0.45 � 0.134

¼ 0.9999. This is much higher than Harcourt & Greenberg’s
(2001) value. But note that the value would differ were
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the female home range to be superimposed differently on
the male home ranges or if the males had a different
configuration of home ranges; much more information has
to be specified for a reliable prediction, particularly about
males that enter the female’s home range only occasionally.
One complication not covered by the formula is that, if
during the few days of her oestrous the female is in the
corner of her home range where she is liable to encounter
one male, she is unlikely to wander into all the other corners
where she could meet the other males whose home ranges
overlap hers only slightly. This, as well as the typical
tendency to spend disproportionately less time in non-
exclusive peripheral parts of the range, will tend to increase
further the probability of infanticide.

(5) Mating benefits of an increased home range

There is another problem with Harcourt & Greenberg’s
(2001) study, and indeed with our corrected formula. It
arises also in several papers using the ideal gas model to
examine whether males, rather than being monogamous,
would profit from defending an enlarged home range
containing the home ranges of several females (van Schaik
& Dunbar, 1990; Dunbar, 1995, 2000). What is critical in
these latter papers is the number of different fertile females
that a polygamous male would encounter. This was
estimated as n(1 [ e[m), where n is the number of females
in the male’s territory and m is the expected number of
encounters with each female within three fertile periods, as
calculated from the ideal gas model. However, with non-
straight trajectories the number of encounters is not Poisson
distributed; therefore e[m (from the Poisson distribution)
accurately estimates how often no encounters occur only
if m equals the mean number of different individuals
encountered, not the mean number of encounters. The
predicted advantage in being polygamous is potentially
much diminished.

To gauge the magnitude of the error, we consider
a correlated random walk consisting of straight-line steps
each lasting 30 min and turning angles described by a von
Mises distribution with k ¼ 0.69, which is based on
observed movements of grey-cheeked mangabey groups
analysed in Section VII. We combine this with one set of
van Schaik & Dunbar’s (1990) figures for the gibbon
Hylobates lar: speed ¼ 0.108 km h[1, detection distance ¼
25 m, density of a particular female within the enlarged
male territory ¼ 0.75 km[2, and a female is fertile for three
consecutive days (¼ 72 steps of our random walk).
Simulations predict that the male would encounter a mean
of 1.00 different females, compared with 1.52 total
encounters, so the probability of not meeting a particular
female in his territory is (1 [ e[1.00) ¼ 0.63. If, following
van Schaik & Dunbar (1990), we allow three cycles for
a successful copulation, the probability of fertilizing
a particular female is 1 [ 0.633 ¼ 0.75. If a mean of 4.5
females remained within a male’s territory, the expected
number of females that he fertilizes is 0.75 � 4.5 ¼ 3.3
(assuming that, if females are territorial, they do not all
become fertile at the same time, so that encountering one
fertile female does not mean that the male is less likely to

encounter another). The original prediction was 4.5 (all
females mated); the corrected estimate remains greater than
the 1 expected under monogamy, but remember that we
used an estimate for the convolution of the path based on
a quite different species.

Note also that van Schaik & Dunbar (1990), as well as
Dunbar (1988, p. 309; 1995; 2000), apply the version of the
ideal gas model appropriate for interactions between
moving and stationary individuals to situations where all
individuals are moving, thus underestimating encounter
rate by a factor of at least 4/p¼ 1.27.

(6) Spiral trajectories of sperm

Errors in application of the ideal gas model are not confined
to primatology; here is an example from work on
fertilization kinetics. Usually sperm are so small relative to
the egg that the critical distance D is set simply as the radius
of the egg re. The term pD2 term in the three-dimensional
encounter-rate formula is thus pre

2, which equals the cross-
sectional area of the egg. However, Farley (2002) pointed
out that sperm trajectories are typically helical, so that it is
reasonable to consider the sperm as having a diameter that
of the outside of the helix (with a correspondingly slower
forward speed). In that case D should be set as the radius of
the egg plus the radius of the helix (rs), and pD2 becomes
p(re ] rs)

2. Instead Farley used p(re
2 ] rs

2), believing
mistakenly that adding the cross-sectional areas of the egg
and the helix was the appropriate procedure; his predictions
of initial encounter rate should be 1.5–1.8 higher.

The corrected predictions turn out to exceed observed
encounter rates. One potential reason is that the revised
formula calculates the volume of a cylinder of radius re ] rs,
whereas the real probability of encounter is given by the
volume of a helix fitting exactly within this cylinder but not
fully filling it; the helix is constructed by dragging a sphere
of radius re along the sperm’s trajectory relative to the egg.
Because the egg is stationary, this relative trajectory is
a regular helix and thus the volume is feasible to calculate.
Sperm stop moving after encountering an egg, so the
relevant volume should be calculated by counting volumes
of overlap between consecutive turns of the helix once only.
With the parameter values of this example, the volume
turns out to be exceedingly close to that of the enclosing
cylinder. So the revised version of Farley’s (2002) calculation
is an excellent approximation and other explanations must
be sought for the disagreement with experiment. If we had
assumed that the sperm’s track was straight instead of
helical, the volume, and the predicted rate of encounter,
would have been a factor of 3.3–4.7 too high. We
recommend trying an analogous treatment of the wide
sinusoidal sweeping movements of the heads of some
predatory fish (Rosenthal & Hempel, 1970).

(7) Predation in the plankton

An example from this latter field concerns rates at which
jellyfish (Aurelia aurita) capture herring larvae (Clupea
harengus). To replace the assumption that the herring are
points or spheres, Bailey & Batty (1983) supposed that they
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were lines of length L. The detection distance between the
centre of the jellyfish (taken as a sphere of radius rj) and the
centre of the herring then depends on the orientation of
the herring relative to its direction of movement towards the
jellyfish. Bailey & Batty (1983) used an incorrect formula
for this, but more fundamentally they overlooked that—
because the absolute velocity of the herring is oriented along
its body, and the absolute velocity affects the orientation of
the relative velocity—the herring tends to be oriented close
to the direction of the relative velocity. The correct formula
for encounter rate is

r

ðp

0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 ] n2 [ 2un cosq

p
pr2j ] rj Ln sin q

�
sin q dq=2;

ð29Þ

where q is the angle between the absolute velocities of
herring and jellyfish, and u and n are their respective speeds
(see Fig. 9 for derivation). Over the size range of jellyfish
considered, Bailey & Batty’s (1983) formula overestimates
the correct predictions of encounter rate by factors of 1.17–
1.55; the corrected predictions worsen the fit to their
observed rates of predation in the laboratory. Unfortunately

the incorrect formula has been used by a number of other
authors (e.g. Cowan & Houde, 1992; Letcher et al., 1996).
Incidentally, it is easy to make the model a little more
realistic by replacing the line with a cylinder of radius rh and
length L capped with hemispheres (so total length ¼ L
]2rh). Then simply replace rj in (29) with rj ] rh.

Several papers copying the erroneous formula use it to
assess how predation affects the size-distribution of fish
larvae. Paradis, P�epin & Pepin (1999) and Paradis & Pepin
(2001) considered a cohort of larvae that as they grow are
predated by predators of a range of sizes. For each predator
species they apparently used its modal size to calculate the
probability of N encounters with a prey of each size. They
then randomly selected one predator size from a truncated
normal distribution (^c. 2S.D.) about this mode, and the
ratio of prey to predator sizes was used to calculate the
probability that each encounter led to predation. The po-
tential problem is with the use of the mean predator size to
calculate the number of encounters. Predators of above-
average size are disproportionately likely to encounter
a prey item, and their encounter rate is affected by prey size
to a different degree. We assessed how important this was by
using the parameter values of Paradis et al. (1999) but
considering predation only by crustaceans (115 per m3).
Our recalculations dividing the predator population into

L
ut

z

y

rj

z

rj

vt

BA

Fig. 9. Encounters between jellyfish moving at speed n at an angle q to herring moving at speed u. We assume that the herring has
length L but is infinitely thin. A shows this situation in the plane common to both movement vectors. The trajectory of the herring
relative to the jellyfish is shown by the thick vector and has length y ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 ] n2 ] un cos q

p
. The parallelogram outlined by

a dashed line shows those starting positions of an infinitely small jellyfish that would result in a new encounter within time t. The
width of this parallelogram perpendicular to the relative trajectory is z ¼ (Ln sin q)/y. However, instead the jellyfish are considered
to be spheres with radius rj, and the three circles show examples of positions that result in one part of the jellyfish just touching the
herring. The dotted outline marks the envelope of positions of the jellyfish centre that result in new encounters. B shows the cross
section of this space cut perpendicular to the relative trajectory. The area of the cross section is prj

2]rjz. This must be multiplied by
the length of the relative trajectory of the herring (y) to give the volume of the space: y(prj

2](rjLn sin q)/y) ¼ yprj
2]rjLn sin q.

Calculating the expected number of encounters then involves integrating this over q (see Fig. 2).
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multiple size classes increase mortality over the first day
from 2.8% to 5.0%, but the difference diminishes as the
prey grow larger than their predators, so mortality after 30
days increases only from 60% to 75%. (We failed to resolve
the discrepancy between the 60% figure and the consider-
ably lower mortality levels calculated by Paradis et al., 1999)
Reassuringly, the recalculations turn out scarcely to alter the
size distribution of survivors. Repeating the recalculations
using our corrected version of Bailey & Batty’s (1983)
formula decreases mortality to 48% (3.8% on the first day),
and results in a larger mean size of survivors, but by only
a third of a daily growth increment.

(8) Estimating seabird densities from ship- and
aircraft-based counts

Gaston & Smith (1984) and Gaston, Collins & Diamond
(1987) sought to quantify the error in estimates of seabird
density derived from counts of individuals flying within
a prespecified distance of a ship or aircraft. In particular
they examined the effect of the direction in which birds
were flying relative to the path of the observer. The effect
has two components, both of which Gaston & Smith (1984)
and Gaston et al. (1987) miscalculated. One component is
the increased relative speed when observer and birds are
travelling in opposite directions [see Section III(4)]. An
additional effect occurs if the area monitored is not circular.
Gaston & Smith (1984) considered a rectangular area
aligned with the observer’s absolute direction of movement
(Fig. 10); let the width be 2D and the length a. Consider
the bird as the focal individual and the ship as laying
down a strip along its trajectory relative to the focal
individual. The width of this strip depends on the direction
between the relative trajectory and the absolute trajectory,
which depends on the angle between the absolute
trajectories of ship and bird (q), and on their speeds
(u and n respectively):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4D2 ] a2Þ

p
sinðtan[1ð2D=aÞ ] jtan[1ððn sinqÞ=

ðu [ n cos qÞjÞ:
ð30Þ

This must be multiplied by the relative speed to generate
the expected rate of encounter divided by bird density.

Different shapes of area monitored require different
calculations. The algebra for the case of an ellipse aligned
along the direction of movement turns out particularly
neatly: the rate of encounter is

2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðan sin qÞ2 ] b2ðu [ n cos qÞ2

q
ð31Þ

(where u, n and q are as above, r is target density, the ellipse
has length 2a along the direction of movement and width 2b
perpendicular to it). An ellipse seems an appropriate way to
model the greater sensitivity of many organisms in a forward
direction (the algebra is unchanged if the observer is
positioned behind the ellipse centre). However, if the field of

sensitivity is not circular the rate of encounter increases
whenever the observer changes direction (or even turns its
head), so the method may not be readily applicable. See
Skellam (1958) for a discussion of this point.

One relevant situation largely avoiding this rotation issue
is of a primatologist or ornithologist conducting a census
along a path through thick vegetation. The area effectively
monitored may then often be keyhole shaped: a long
narrow rectangular area of clear visibility along the path in
front, combined with a circular area centred on the
observer. One approximation to modelling this would be
to calculate the number of encounters at the periphery of
the circular area (by the standard formula) and then to add
the number of encounters expected for the rectangular area
sticking out beyond this circle (calculated by the formula
developed in Fig. 10). Animals first crossing the rectangular
area and then the circular one would be counted twice by
such a calculation, but they might also often be in the field
(except for those that remained in view on the path).

If the path were narrow and the animals small, one might
reasonably consider the region monitored as one dimen-
sional, setting D to 0 in the formula derived from Fig. 10.

vt

a

D

ut

Fig. 10. Calculation of the number of birds entering a rectan-
gular area (2D � a) in front of a ship moving with speed u.
Consider the ship’s motion relative to a bird flying with speed n
at an angle of q to the course of the ship. Relative to the bird
the ship moves a distance t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 ] n2 ] un cos q

p
in time t

(shown as thick vector in the figure). The movement of the
rectangular area along this relative trajectory covers a strip with

sides of this length and with width

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2DÞ2 ] a2

q
sin(f ]|a|),

where f ¼ tan[1(2D/a) and a ¼ tan[1((n sin q)/(u [ n cos q)).
The area of the strip is the product of this width and length,
and the expected number of encounters is this area times bird
density (integrating over q if birds are not all travelling in the
same direction).
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The expected number of animals crossing the path ahead
within a distance a of the observer is then-t

r

ðp

0

ant sin qdq=p ¼ 2rant=p: ð32Þ

Note that this is independent of the speed of the observer.
The same formula is also applicable to counts of seabirds
crossing the bows of a ship within a specified distance in
front (assuming a uniform distribution of their directions of
flight, and that the ship is not turning).

Another procedure when estimating seabird densities is
to count only birds on one side of the ship, so that the area
monitored is half a circle. In that case it makes the
calculations much simpler to count only birds entering
the area across the curved side (i.e. ignoring those entering
the semicircle from the other side of the ship); the expected
number is then simply half that if one were looking round
the full 360° (assuming a uniform distribution of directions,
but otherwise the side of the ship monitored could be
alternated).

VI. HOW TO TEST THE PREDICTIONS?

In most of the earlier work that tested whether the ideal gas
model adequately described animal behaviour, conclusions
were based only on whether the predicted and observed
number of contacts seemed to differ substantially. More
rigorous statistical tests might be based on three different
approaches.

One approach relies on the assumption that the number
of encounters is Poisson distributed, which we know not to
be exactly true unless the trajectories are straight, but which
is a reasonable approximation in particular cases. Non-
straight trajectories increase the variance in the number of
encounters, so assuming the Poisson distribution will reject
the null hypothesis too often. When the predicted number
of encounters m is small, confidence limits are calculated
from the usual formula for a Poisson distribution:

probability ofOi encounters ¼
Xj¼i

j¼0

m je[m

j!
: ð33Þ

When m is larger it will be necessary to approximate this by
a normal distribution with variance m.

The second approach, originally suggested by Skellam
(1958), is to make several independent observations of en-
counter rate and then make use of the variance in these
observations, allowing a t-test to compare the mean of
these observations with the prediction. The distribution of
the observations can be more skewed than a Poisson distri-
bution (Fig. 5A), but, as a result of the central-limit theorem,
the distribution of the mean of m observations should
usually be well approximated by a t-distribution. A square-
root transformation will tend to improve the approxima-
tion, especially when the number of encounters is small.

The advantage of the t-test approach is that we need not
know whether the individuals are taking straight or
convoluted paths—the predicted number of encounters is
unaffected, and the test does not rely on assumptions of
a Poisson distribution. Note, however, that the assumption
of independent observations is violated if we use consecutive
periods of observation on the same animal or use
simultaneous observations of neighbouring animals. The
latter is a problem with the statistical test of Mitani et al.
(1991), which treats the encounter rates of each of a group
of neighbouring orang-utan with the others as independent,
but not with that of Schülke & Kappeler (2003), which is
based on encounter rates only within different male-female
pairs. Note also that the use of a c2 test to compare
observed and predicted number of encounters (Jolly et al.,
1993; Gursky, 2005) is inappropriate.

Simulation provides a third way to test predictions about
encounter rate. We advocate building tailored simulation
models based on the movement patterns of the species of
interest. The proportion of simulation runs in which the
number of encounters is equal to or more extreme than the
number observed provides directly a one-tailed p-value,
which can be doubled to provide a two-tailed value (Manly,
1997, p. 72). Or the quantiles of the distribution of
encounter number may be used as confidence intervals.

A simulation is easier to write and faster to execute if we
assume that trajectories are composed of straight-line steps
and that the changes in direction occur simultaneously in
all individuals. This may affect the best way to gather data:
for instance Waser’s (1976) recording of the position of
mangabey groups every half hour produces data that can be
put directly into such a model. By contrast, Barrett &
Lowen (1998) recorded time and position whenever the
group moved more than 10 m, which gives a more accurate
description of the trajectory but is more complicated to
incorporate in a simulation.

The simulation will select step lengths and turning angles
at random from the observed distributions; there is little
computational cost to incorporating any observed correla-
tions between these variables, or any autocorrelation. Such
modifications will not alter the mean number of encounters
from that predicted by the ideal gas model, but will broaden
the confidence limits. Hence, if our first approach of relying
on the Poisson distribution already fails to reject the null
hypothesis, there would be no need to develop such
a simulation. However, at some greater cost in computa-
tional time one might incorporate further details of the
biology as part of the null hypothesis, and these may affect
predicted encounter rate.

Restricted home ranges are one important violation of
the assumptions of the ideal gas model. The simple analytic
model in Section V(3) showed that the extent of home range
overlap affects encounter rate considerably. Two ways to set
up home ranges in a simulation are to restrict movements to
an area defined by the observed home ranges or to engineer
a biased random walk in which the directions of movement
are increasingly likely to lead back towards a central point
the further away the animals drift. Either could be
biologically reasonable, and both could be incorporated in
the same model. The choice does matter because it affects
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whether peripheral zones of a home range, which are likely
places for encounters, are less frequently visited than
elsewhere. Other possibilities that could be readily incor-
porated into a simulation model are a tendency to visit
a shared area less frequently because of the greater
competition for food there, or a tendency to spend more
time patrolling the edge of an exclusive territory.

The more such biological details that are incorporated
into a model the more confidence one might have that any
disagreement of observations and prediction is due to
interactions with other individuals, rather than to other
unconsidered complexities of the movement patterns. One
might even then incorporate hypothesised responses to
nearby individuals to test whether these are sufficient to
explain the discrepancies. However, it is unlikely that the
information for a full model will be available for anything
but a laboratory system. Such factors as difficulty of moving
through scrub may dominate an animal’s choice of path, yet
be hard to incorporate into a model.

One appealing alternative to simulating tracks is to use
real tracks made by animals in the same locality. The idea is
that animals following two sets of tracks made at different
times cannot have responded to each other, and thus the
number of fictional encounters between them provides
a prediction under the null hypothesis of no interaction.
This is a randomization procedure (Manly, 1997). The two
sets of tracks might even be from the same animal at
different times, an approach taken below in our worked
example. The time separation should be sufficient that the
animal could have moved anywhere else in its range within
that time, and ideally should be long enough to preclude
indirect interactions through scent marking or local food
depletion. In species in which individuals set up stable
territories that largely avoid the territories of others, the
procedure cannot exclude these long-term interactions from
the null hypothesis, unless the habitat is sufficiently uniform
that it would be reasonable to shift tracks in space as well as
time. However, it may often be a strength of the approach
to be able to test whether unexpectedly more or fewer

encounters occur between particular neighbours given their
observed home ranges. This is the approach of Doncaster
(1990) who compared the observed separation distances of
neighbouring foxes with those generated by taking distances
between random points (i.e. times) on their two tracks.

VII. AN EXAMPLE: GREY-CHEEKED
MANGABEY INTERGROUP ENCOUNTERS
REANALYSED

We have discussed a variety of ways to predict the number
of encounters and to test whether the observed number
differs statistically from the prediction. Here we illustrate
some of these approaches using data on grey-cheeked
mangabeys (Cercocebus albigena) in Kibale Forest, Uganda
(Waser, 1976). The location of the centre of a focal group
was recorded every 30 min, typically for 9–12 h each day,
for a block of 10 days each month, over a total of 12
months. We use Waser’s original estimates of a density of
0.25 groups km[2, and a group diameter of 90 m. Waser
observed four encounters within 200 m, and 11 within 500 m.
These encounters, rather than having already started
when observations began, all started during the course of
the day.

The total period of observation was 1130.5 h, during
which time the group moved 133.5 km. The simplest
version of the ideal gas model thus predicts (4/p) � 0.25
� 133.5 � 2(0.2 ] 0.09) ¼ 24.6 encounters within 200 m
and 50.1 encounters within 500 m (Table 1).

However, the distance moved in each half-hour (i.e.
speed) varied considerably. If we assume a Maxwell-
Boltzmann distribution of speeds, the predictions increase
by a factor of 1.11. But the Maxwell-Boltzmann distribution
is not a particularly close fit to the observed speed
distribution. Instead a x0.3 transformation produces a rea-
sonable fit to a normal distribution. If we truncate this at
the observed minimum and maximum and integrate
numerically, the mean relative speed increases further from

Table 1. Observed and predicted numbers of encounters for a mangabey group followed for 2261 half-hour intervals in Kibale
Forest, Uganda. We were unable to retrieve the data from 74 of the original 2474 data points used by Waser (1976) owing to loss
or degradation of the IBM cards. The models are explained in the text. The last column indicates the basis of the confidence limits:
t ¼ t-distribution, P ¼ Poisson distribution, s ¼ simulation

Encounters < 200 m Encounters < 500 m

mean 95% CL mean 95% CL

Observations 4 11 2 O x O 18 t

Predictions of Waser (1976) 22.5 50.0
Gas model: constant speed 24.6 50.1
Gas model: Maxwell-Boltzmann speeds 27.4 55.7
Gas model: observed speed distribution 29.7 21 O x O 38 60.5 48 O x O 73 P
Ditto, ] range overlap 13.5 27.5
Ditto, ] observed usage of overlap 12.5 25.5

Correlated random walk simulation 29.7 8 O x O 59 60.6 27 O x O 103 s
Ditto, > 1 h apart 19.7 5 O x O 39 38.9 17 O x O 66 s
Ditto, > 4 h apart 14.1 4 O x O 27 27.3 12 O x O 46 s

Intercept with own time-displaced trajectory 16.0 21.3
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1.41 to 1.53 times the mean speed, predicting correspond-
ingly more encounters (Table 1).

An alternative to fitting a distribution and integrating is
systematically to pair all observed step lengths (including
with themselves), and calculate the mean relative speed for
each pair by integrating (numerically or using elliptic
functions) over all possible angles between them:

ðp

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i ] x2j [ 2xixj cos q

q
dq=p: ð34Þ

The mean over all possible pairs is 1.54 times the mean
speed, very close to the figure using the transformed normal
distribution.

A closer look at the distribution of step lengths shows that
there is no systematic variation during most of the day, but
that the mean is lower in the last two evening periods,
because sometimes the group had already settled down for
the night. We repeated the systematic pairing of all step
lengths, but this time pairing step lengths recorded at each
of the latest two times of day only with others recorded at
the same time. In this example this refinement made very
little difference.

These calculations have all assumed that groups do not
have home ranges. In fact the mangabey group had
a roughly rectangular home range, bounded on its east
and west sides by unsuitable habitat. Very roughly, a central
area of 0.3 the length of the rectangle was used exclusively
by this group and each of the ends was overlapped by the
home range of another group. If we assume that usage over
the home range was even and that the areas of overlap
occupied a similar proportion of each neighbour’s home
range, then we can use formula (27) to revise our prediction
of encounter rate: 2(h [ 1)/h2, where h ¼ 1/(0.3 ] 0.35),
implies a correction factor of 0.46, considerably reducing
the predicted number of encounters (Table 1). A better
prediction would incorporate the observed proportions of
time that the focal group spent in the two areas of overlap:
they were 0.30 and 0.37. If we continue to assume that each
neighbouring group spent the same proportion of its time in
each area of overlap as did the focal group, the probability
of being in an area of overlap at the same time as that
neighbour is now (0.302 ] 0.372), compared with the
earlier calculation of 2 � 0.352. This slightly reduces the
correction factor to 0.42.

Now we consider how to test whether the observed
number of encounters differs significantly from these
predictions, which requires estimating the variance in the
number of encounters. We first illustrate the second of our
three proposed approaches, using the observed variation
from month to month. There were too few encounters
within 200 m to provide a reliable estimate of the variance.
With the 500 m detection distance, there were 5 months of
0 encounters, 4 months of 1 encounter, 2 of 2, and 1 of 3.
Very different distances were moved in some months, in
large part due to differing lengths of observation; therefore
we computed mean rate of encounter each month. A
square-root transformation served to make the distribution

more normally distributed. The standard error of the mean
was multiplied by the 95% confidence limit for the t11

distribution, added and subtracted from the mean, and
back-transformed to generate confidence limits of 2–18
encounters over the 2261 half-hours of observation. So
predictions outside this range should be judged as differing
significantly from observations.

The other approaches to statistical testing estimate the
variance from the model rather than the data. Assuming
a Poisson distribution of encounters and a mean number of
encounters of 29.7 or 60.5, yields 95% confidence limits of
21–38 and 48–73 for encounters at 200 and 500 m
respectively (Table 1).

Unfortunately it is not appropriate to assume a Poisson
distribution for the model involving overlap of home ranges;
if an animal is in an exclusive part of its home range, for
instance, it is likely to remain so for some time, increasing
the variance in encounter rate. In any case the Poisson
distribution will underestimate the variance because
trajectories are not straight. Our third approach, based on
simulating a more detailed model of movements allows
a more valid estimate of variance for non-straight
trajectories (but here we assume panmixis rather than
modelling the overlapping home ranges). We chose to
sample randomly from the observed step lengths and
changes of angle (rather than sampling from fitted
distributions). There was no need to incorporate a correla-
tion between these because it scarcely existed in our data.
Our model also matched the structure of the observations.
Observations were made in blocks of typically 10 days, and
since blocks were separated by typically 20 days, our model
took a new random starting configuration each block.
Otherwise, the initial location each day was taken as the
same as the night before, but the initial direction was chosen
at random. Our model matched the pattern of observation
periods exactly, so that some blocks had more days than
others. Similarly, although the random walk continued for
23 steps each day, on some days there were periods when
data had not been recorded and accordingly any encounters
in our model at the corresponding times were ignored.
Using this approach, the 95% confidence limits for the
number of encounters were much wider than the Poisson-
generated limits (Table 1).

The simulation also allowed us to investigate one source
of observer bias. Two groups that encounter each other
may shortly afterwards re-encounter each other, but
observers might easily not realise that there was a period
when the groups were apart. We could set our simulation to
ignore re-encounters starting within some period from the
end of earlier encounters between the same groups. Setting
this period to 1 h reduced the predicted number of 200 m
encounters from 29.7 to 19.7; setting it to 4 h reduced it
further to 14.1 (Table 1).

In theory the random walk could be further modified to
make it more realistic. One modification that had almost no
effect on the confidence limits was to incorporate the
observed autocorrelation between successive step lengths
and turning angles. However, that version was based on
a first-order Markov process (i.e. only the immediately
preceding step influences the next; Root & Kareiva, 1984),
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not on consistencies in step lengths and directionality
persisting over several hours. In reality the group tended to
spend several days in succession feeding on the same
fruiting tree in the morning and exploring away from it
later in the day, whereas on other days it moved more
directionally to locate a new source of fruit (Waser, 1977a).
Simulating this would require much information on fruiting
patterns and foraging behaviour. An easier modification to
our simulation would be to simulate just the three
neighbouring groups observed, restricting each to their
observed home ranges.

We also tried the approach of counting intercepts with
the group’s own trajectory in other months (so separated by
P 14 days, enough for the group to traverse its home range).
This null model’s strength is incorporating any consistent
tendency to avoid regions, perhaps of unsuitable habitat,
within a home range. For the most southerly 0.35 of the
home range, we selected steps starting within this region,
then systematically paired all such steps from different
months, and found that 0.0239 of these pairings would have
involved a 200 m encounter. The focal group was in that
region 0.30 of the time, and so we assume (as above) that it
and its neighbour were there simultaneously 0.302 of the
time. A total of 2261 half-hour steps were observed, so we
predict 2261 � 0.0239 � 0.302 encounters in the southern
area of overlap, plus 2261 � 0.0358 � 0.372 in the northern
area of overlap, summing to 16.0 encounters. This figure and
the corresponding prediction for encounters within 500 m
are comparable with the predictions from the ideal gas model
when range overlap is incorporated (Table 1). Apparently any
tendency to avoid or prefer particular regions within the
home range is at the wrong scale, or otherwise insufficient, to
have much effect on the rate of encounter at these distances.

VIII. DISCUSSION

Our analyses indicate that when individuals do not interact
with each other the ideal gas model makes rather robust
predictions about the number of contacts, but less robust
predictions about the variance of this number or the
number of different individuals contacted. In addition, the
model will tend to overestimate the number of encounters
scored if multiple contacts within a short interval are
overlooked. The model must be modified when animals are
restricted to overlapping home ranges, but encounter rates
are still predictable if appropriate data on home-range
geometry and usage have been collected. When individuals
move away from each other on contact, the model
underestimates encounter rate, but not by much unless
density is very high.

Reanalysis of the data set used in an early application of
the ideal gas model to the investigation of grey-cheeked
mangabey intergroup encounters showed that the results
were insensitive to a variety of refinements (more realistic
speed distributions, and allowing correlation among steps in
the underlying random walk model of movement). On the
other hand, both a more realistic incorporation of home-
range overlap and filtering out multiple encounters over

a short interval lowered the predictions considerably, and
would do so further if these modifications were combined.
Also, our simulations indicate that the confidence limits
around predicted encounter rates are wide, making it difficult
to demonstrate statistically significant differences from
observations. The confidence limits would have been even
wider had we allowed for some uncertainty in the parameters
used, for instance in density or in speed of other groups.

This fundamental problem of wide confidence limits may
mean that counting encounters is not the best way to test
whether animals avoid or are attracted to each other; for
instance, Waser (1976, 1977b) relied not just on the ideal gas
model, but also observed how mangabeys responded to
playbacks of neighbours’ calls. For other purposes the ideal
gas model remains useful in providing estimates of en-
counter rate in a wide variety of biological interactions.
A particular benefit of this analytic approach is that
biologists are immediately alerted to the expected form of
the relationship between speed, density or detection
distance and the quantity of interest (not only encounter
rate, but encounter duration, the intervals between
encounters, etc.). The form of these relationships may
indeed be what matters most when the ideal gas model is
used as a component of larger models. However, simu-
lations provide a way to add biologically interesting
complications to the ideal gas model.

This may be a ripe time to reconsider the ideal gas model
and its variants, because the diminishing price and size of
tracking technologies (e.g. GPS data loggers and satellite
tracking: Kenward et al., 2002) now facilitate near-
continuous recording of position however widely the
animals range. These technologies not only provide
parameters for the model (speed distributions, home range
overlaps, etc.) but, because multiple animals can be tracked
simultaneously, they also provide a means to monitor
encounters themselves. In this latter context, another recent
technological advance is data loggers that record the
presence of other tagged individuals in close proximity
(Weihong, White & Clout, 2005).

In reviewing the many diverse applications of the ideal gas
model, we were surprised by several omissions. For example,
we failed to find its application among studies of commercial
fishing. The explanation appears to be that the models used
to predict fish capture rates are more sophisticated than the
ideal gas model, taking into account the avoidance behaviour
of the fish once they notice the approaching net, and the
consequent greater propensity for fish further from the centre
of the net to escape (Barkley, 1964; Laval, 1974).

More difficult to explain is that we found no mention of
the ideal gas model in epidemiology, despite the acknowl-
edged importance of contact rate in determining the spread
and prevalence of diseases and parasites (e.g. Gompper &
Wright, 2005). Epidemiology goes as far as borrowing the
law of mass action from chemistry (that the rate of contact
between two types of individuals is proportional to the
product of their densities; McCallum, Barlow & Hone,
2001; Begon et al., 2002). This result is a prediction of the
ideal gas model; what is extra in the ideal gas model itself,
besides the value of the multiplicative constant, is the
dependence of rate of contact on individual speeds and on
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the critical distance between individuals that defines
a ‘‘contact’’. As an example of the possible applicability of
the ideal gas model, consider the typical finding in
epidemiology that infection rate shows a non-linear effect
of density (Fenton et al., 2002). In some cases this might be
explained by looking at how individual behaviour depends
on density (Dwyer & Elkinton, 1993). For instance, it might
be that density affects speed of movement or the degree of
overlap of home ranges; application of the ideal gas model
would then allow a revision of the relationship between
contact or infection rate and density. The same sorts of
analysis might be used to improve models of information
spread in social animals (cf. Adler & Gordon, 1992).

The story described in the Introduction is of biologists
repeatedly and independently turning to physics to find an
equation for collision frequencies between moving particles.
An interesting twist to this tale is that James Clerk Maxwell,
the originator of the equation for collision rate in an ideal
gas, was himself inspired by research on populations of
animals (humans). In the social sciences, the statistical
approach had reliably described such phenomena as crime
rates and ages of marriage in large populations even though
behaviour of individual humans was obviously unpredict-
able, which stimulated both Maxwell and Boltzmann to take
the same statistical approach with molecules (Gigerenzer
et al., 1989, p. 62).

IX. CONCLUSIONS

(1) The ideal gas model applies to non-interacting
particles moving in randomly oriented straight lines. It
yields a simple equation linking the number of times
particles come within a specified distance of one another to
their speed and density. The formula is straightforward to
extend to encounters between two classes of individual
differing in their densities and speeds.

(2) This encounter-rate formula is quite different to that
predicting how many neighbouring particles lie within the
specified distance at a single moment of observation, or
summed over a series of such observations. Combining the
two different formulae allows calculation of mean duration
of an encounter, which published formulae overestimate.

(3) The model has been widely applied in biology to
analyse rates of encounters between individuals (e.g. males
and females, sperm and eggs, predators and prey, human
observers and the animals that they are counting) and
between groups of individuals. It has been used both as
a null model to detect avoidance or association, and as
a component of other models that analyse rates of events
dependent on encounters.

(4) There are different versions of the formula depending
on whether movement is in two or three dimensions and on
whether speeds are constant or follow Maxwell-Boltzmann
distributions. Versions for other speed distributions usually
require numerical integration to derive the multiplicative
constant. This is also the case if directions of movement are
anisotropic.

(5) Local variation in density has a different effect on the
predictions depending on whether it is due to individuals

avoiding low-density regions or moving faster within them.
Simple extensions of the model cover the situation when
density decreases progressively as a result of previous
encounters (e.g. predators and prey).

(6) When individuals are restricted to home ranges that
overlap, a simple correction factor may often be adequate,
but this differs from corrections given in the literature.

(7) If movement is not in straight lines, the formulae still
hold for mean number of encounters, but this is no longer
Poisson distributed (invalidating several published calcula-
tions of whether any encounter occurs in a specified time).
Many encounters will now be re-encounters with the same
individual, which field observations might well not
distinguish. We know of no analytic formulae for predicting
the number of different individuals encountered, although
this will be Poisson distributed and proportional to density.

(8) If individuals back away from one another following
contact, the encounter-rate formulae produce serious
underestimates only at high densities, such as might be
experienced by ants in a nest. Other forms of non-
independence of movement are generally not tractable.

(9) Tests of the significance of differences between model
predictions and observations may be based on three
approaches to estimating variance: (i) from a series of
observations at different times; (ii) from the Poisson
distribution (leading to too many rejections if paths are
not straight); and (iii) from simulations based on a correlated
random walk.

(10) A reanalysis of data on encounters between groups
of grey-cheeked mangabeys tends to support the initial
conclusion that groups avoid each other, but also suggests
three additional factors that might contribute to the low
number of observed encounters relative to predictions from
the ideal gas model: (i) restricted home-range overlap of
neighbours compared with panmixis, (ii) the possibility of
overlooking re-encounters within an hour of an earlier
encounter, and (iii) the wide confidence intervals calculated
from simulations of a correlated random walk.
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HOLENWEG, A.-K., NOË, R. & SCHABEL, M. (1996). Waser’s gas

model applied to associations between red colobus and Diana

monkeys in the Taı̈ National Park, Ivory Coast. Folia Primatologica

67, 125–136.

JEFFREYS, H. (1961). Theory of Probability (3rd edition). Clarendon

Press, Oxford.

JETZ, W., CARBONE, C., FULFORD, J. & BROWN, J. H. (2004). The

scaling of animal space use. Science 306, 266–268.

JOLLY, A., RASAMIMANANA, H. R., KINNAIRD, M. F., O’BRIEN, T. G.,

CROWLEY, H. M., HARCOURT, C. S., GARDNER, S. & DAVIDSON,

J. M. (1993). Territoriality in Lemur catta groups during the birth

season at Berenty, Madagascar. In Lemur Social Systems and Their

Ecological Basis (eds. P. M. Kappeler and J. U. Ganzhorn), pp. 85–

109. Plenum Press, New York.

KATONA, S. K. (1973). Evidence for sex pheromones in planktonic

copepods. Limnology and Oceanography 18, 574–583.

KAUZMANN, W. (1966). Kinetic Theory of Gases. Thermal Properties of

Matter. Volume 1. W. A. Benjamin Inc., New York.

KENWARD, R. E., RUSHTON, S. P., PERRINS, C. M., MACDONALD, D.

W. & SOUTH, A. B. (2002). From marking to modeling: dispersal

study techniques for land vertebrates. In Dispersal Ecology (eds.

T. M. Bullock, R. E. Kenward and R. S. Hails), pp. 50–71.

Blackwell, Oxford.

KILTIE, R. A. (1980). Application of search theory to the analysis of

prey aggregation as an antipredation tactic. Journal of Theoretical

Biology 87, 201–206.

KINNAIRD, M. F. & O’BRIEN, T. G. (2000). Comparative movement

patterns of two semi-terrestrial cercopithecine primates: the

Tana River crested mangabey and the Sulawesi crested black

macaque. In On the Move: How and Why Animals Travel in Groups

(eds. S. Boinski and P. A. Garber), pp. 327–350. University of

Chicago Press, Chicago.

KOOPMAN, B. O. (1956). The theory of search. I. Kinematic bases.

Operations Research 4, 324–346.

LAING, J. (1938). Host-finding by insect parasites. II. The chance of

Trichogramma evanescens finding its hosts. Journal of Experimental

Biology 15, 281–302.
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