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Predation is a fundamental ecological and evolutionary process that varies in space,
and the avoidance of predation risk is of central importance in foraging theory. While
there has been a recent growth of approaches to spatially model predation risk, these
approaches lack an adequate mechanistic framework that can be applied to real
landscapes. In this paper we show how predation risk can be decomposed into
encounter and attack stages, and modeled spatially using resource selection functions
(RSF) and resource selection probability functions (RSPF). We use this approach to
compare the effects of landscape attributes on the relative probability of encounter, the
conditional probability of death given encounter, and overall wolf and elk resource
selection to test whether predation risk is simply equivalent to location of the predator.
We then combine the probability of encounter and conditional probability of death into
a spatially explicit function of predation risk following Lima and Dill’s reformulation
of Holling’s functional response. We illustrate this approach in a wolf�/elk system in
and adjacent to Banff National Park, Alberta, Canada. In this system we found that
the odds of elk being encountered by wolves was 1.3 times higher in pine forest and 4.1
times less in grasslands than other habitats. The relative odds of being killed in pine
forests, given an encounter, increased by 1.2. Other habitats, such as grasslands,
afforded elk reduced odds (4.1 times less) of being encountered and subsequently killed
(1.4 times less) by wolves. Our approach illustrates that predation risk is not necessarily
equivalent to just where predators are found. We show that landscape attributes can
render prey more or less susceptible to predation and effects of landscape features can
differ between the encounter and attack stages of predation. We conclude by suggesting
applications of our approach to model predator�/prey dynamics using spatial predation
risk functions in theoretical and applied settings.
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Ecologists are increasingly recognizing that predation

risk can have as important an effect as the direct effects

of predation on structuring communities (Abrams et al.

1996, Schmitz 1998). Experimental studies have demon-

strated that risk avoidance can increase energetic costs

(Abrahams and Dill 1989), modify habitat selection

(Gilliam and Fraser 1987), and change trophic flows by

altering diet selection (Schmitz 1998). In most experi-

mental studies predation risk is defined as the addition

of predators to a predator-free system (Abrahams and

Dill 1989). Lima and Dill (1990) suggest, however, that

predation risk is more than just predator presence, and

Lima (2002) criticizes experimental approaches because

they often ignore the spatial and temporal variation in

predation risk that prey face. Lima and Dill (1990)

provide a mechanistic approach to understanding pre-

dation risk by decomposing Hollings’ (1959) disk

equation of the predator functional response into its
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two fundamental components: the probability of being

encountered (a) and the conditional probability of being

killed given an encounter (d). Similar decompositions of

predation risk have been presented by Wrona and Dixon

(1991) for an aquatic planarian�/trichopteran predator�/

prey system and by Hebblewhite and Pletscher (2002) for

a wolf (Canis lupus ) �/elk (Cervus elaphus ) system, but

neither of these studies focused on the spatial variation

in the components of predation risk.

Several recent studies have explicitly linked predation

risk to landscape attributes. Kunkel and Pletscher (2000)

compared landscape features where wolves killed moose

(Alces alces ) to those at random sites, and found moose

were more likely to be killed closer to roads and trails

and farther from forest cover. Thogmartin and Schaeffer

(2000) compared where turkeys (Mellagris gallapavo )

lived in relation to roads to the distance at which they

were killed from roads, and found they were more likely

to be killed farther from roads. Cresswell and Quinn

(2004) showed distance to cover influenced the success of

predation by sparrowhawk (Accipter nisus ) predation on

redshanks (Tringa totanus ). All three studies attributed

these results to habitat covariates that modified vulner-

ability to predation. Yet, in the first two examples, these

patterns could have arisen simply because of prey habitat

use, and not necessarily due to landscape features

because only kills and available landscape characteristics

were compared. In modeling resource selection of

caribou (Rangifer tarandus ), Johnson et al. (2002)

attempted to account for these differences in predation

risk by weighting kill-site locations twice that of

predator telemetry locations. However, they had little

empirical support for these weights. More recently,

Kristan and Boarman (2003) documented the spatial

pattern in predation risk to common tortoises (Gopherus

agassizii ) from ravens (Corvus corax ) by comparing

attributes of sites where ravens attacked model tortoises

with attributes at random sites, but they also did not

account for the distribution of prey nor decompose the

components of predation. In the case of tortoises, it

could be argued that spatial attributes associated with

encounters are similar to where they are attacked

because tortoises have few antipredator strategies once

encountered (Kristan and Boarman 2003). For other

prey species, habitats where individuals are most likely to

be encountered may not be where they are most likely to

be killed. For example, deer (Odoicoleus spp.) frequent-

ing open slopes can often evade predators if the slope is

steep (Lingle and Pellis 2002, Kunkel et al. 2004).

Therefore it seems that Lima and Dill’s (1990) critique

of experimental definition of predation risk is warranted,

and that an approach to describe spatial and temporal

variation in predation risk is required.

Here, we demonstrate how to spatially decompose the

components of predation risk as a function of landscape

attributes using resource selection functions (Manly et

al. 2002). We combine spatial risk of encounter and kill

to estimate spatial predation risk following Lima and

Dill’s (1990) derivation of predation risk from Hollings

disc equation. We illustrate our approach for gray wolf

predation on elk (wapiti) during winter in and adjacent

to Banff National Park, Alberta, Canada. We address

two specific questions: (1) do landscape features asso-

ciated with where wolves occur differ from where wolves

encounter and kill elk? (2) In which predation stage

(i.e. search, encounter, kill) do landscape features express

their greatest effects on predation risk? We discuss

common sampling and statistical issues for applying

this approach to a variety of predator�/prey systems,

and conclude with examples of the importance of

spatially decomposing predation risk, and applications

to predator�/prey models in conservation and theoretical

settings.

Towards a spatial decomposition of predation risk

Since Hollings’ (1959) seminal work, most workers have

recognized two main components of predation across

systems. These are the instantaneous risk, or probability,

of encounter, a, and the conditional risk of death, given

an encounter, d (Fig. 1). While some authors decompose

these components further, for example splitting a into

the probability of detection and evasion (Lima and Dill

1990), we consider a and d to be the basic components

that include finer divisions (Taylor 1984). Lima and

Dill (1990) reformulated Holling’s (1959) functional

response to operationally define predation risk P(k), or

the risk of being killed per unit time, as a function of a
and d by:

P(k)�1�exp�(adT) (1)

where a is Holling’s (1959) encounter rate or probability

of encounter, d is the conditional probability of the

attack being successful given an encounter, and T is the

time interval over which predation risk is being inte-

grated. Equation 1 bounds predation risk, P(k), between

0 and 1, even where a and d are relative probabilities

(below). For the risk of being killed per unit time, we

adopt P(k) instead of Lima and Dill’s (1990) P(d) for

clarity; P(k) avoids having P(d) and the conditional risk

of being killed, given encounter, d, in the same function.

To make P(k) spatially explicit, spatial functions for a
and d need to be derived and substituted into Eq. 1.

Data required to estimate the spatial risk of encounter,

a, and conditional risk of death, d, will depend on the

predator�/prey system. Typically, the most difficult

component will be estimating a not d, for many

predator�/prey systems. Locations of killed prey are

often conspicuous and can be readily quantified, and

functions describing spatial variation in mortality sites

have already been developed in many systems (Kunkel
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and Pletscher 2000, Nielsen et al. 2004). To estimate the

spatial risk of encounter, a simple approach could be

based on elementary set logic developed for measuring

spatial habitat overlap for two species (Minta 1992).

Extending Minta’s (1992) approach to spatial models,

the product of spatial predator and prey models would

represent the joint probability of co-occurrence, which

should be proportional to the probability of encounter

(Manly et al. 2002). However, the joint probability

assumes independence between predator and prey, a

problem identified but not resolved by Minta (1992).

Assuming independence might be reasonable for alter-

nate prey in a two-prey, one-predator system where the

predator specializes on the primary prey and predation is

essentially independent for alternate prey. Assuming

independence also might be justified for primitive

predators with random or limited searching behavior.

Independence could also be tested for by extending

Minta’s (1992) approach. However, for many predator�/

prey systems, independence may be biologically unrea-

listic because of dynamic feedbacks between predator

and prey.

The problem of independence may be circumvented in

cases where we can estimate spatial encounters directly

from field data. Examples include where encounters

between predators and prey can be observed directly

(Fanshawe and Fitzgibbon 1993, Cresswell and Quinn

2004), or where they can be estimated indirectly, for

example, via snow tracking (Hebblewhite and Pletscher

2002). New technology, such as GPS collars on pre-

dators and prey, may provide additional means to

estimate encounters. Encounters also could be estimated

in experimental settings such as with predation trials on

prey or with artificial baits or nests (Kristan and

Boarman 2003, Forstmeier and Weiss 2004). Estimating

encounters directly also avoids problems of differential

sampling bias between predator and prey habitat use

(Rettie and McLoughlin 1999). Where the above ap-

proaches provide estimates of spatial locations of

encounters and kills, all that remains is to estimate

spatial functions of a and d, and then substituting these

in Eq. 1 to estimate a spatial predation risk function.

Application of resource selection functions to

modeling predation risk

Resource selection functions provide an efficient frame-

work for quantifying the spatial probability of encounter

and kills in ecological landscapes. A resource selection

probability function (RSPF) is defined as any function

that equals the probability of use of a resource unit, and

is easily adapted to spatial data (Boyce and McDonald

1999, Manly et al. 2002). Logistic regression has become

one of the most common statistical approaches to

estimate habitat selection models with used units char-

acterized as 1 and unused units characterized as 0. In

designs with used and available units, a resource selec-

tion function (RSF) is estimated using logistic regression

that is proportional to the probability of use (Manly

et al. 2002). The used-available design results in a relative

probability because the intercept or b0 coefficient is

incorrectly scaled. This problem arises because the true

population-sampling fraction is unknown (Boyce and

McDonald 1999). Because the RSF is only proportional

to an RSPF, the odds-ratio is also only a relative

probability ratio. Recent statistical discussion highlights

another potential problem with the used-available design

in logistic models when the ‘contamination’ rate, or false-

negative rate (units that were used but misclassified as

available due to sampling) is high (�/20%, Keating and

Cherry 2004). However, in geographic information

system (GIS) applications contamination rate is unlikely

to be large enough to affect logistic models because of

the typically large numbers of available resource units

(pixels) relative to the sample of used resource units.

Moreover, Manly et al. (2002, p. 177) show the assump-

tion that an RSF is proportional to an RSPF is often

valid, and used-available designs are useful in a wide

array of applications (Boyce and McDonald 1999).

While resource selection approaches typically have

been used for predicting the probability of use (Manly

et al. 2002), they also can be used for other spatial

events, such as encounters or kills. Predation is a series

of discrete stages that can be characterized by binary

responses. Searching predators are either successful (a)

or unsuccessful (1�/ a) at encountering prey, and given

an encounter, are either successful (d) or unsuccessful

(1�/d) in making a kill (Fig. 1). Thus, components of

predation risk can be modeled in a sequential framework

Fig. 1. Schematic representation of the spatial decomposition
of the three main stages of predation, search, encounter, and
kill, in our wolf�/elk system over time, T. All elk inside the
territory are available to be encountered when wolves are
searching for prey, but only some of these at any particular
time are successfully encountered with probability a. Condi-
tional on encounter, elk are killed with probability, d. We
randomly sampled wolf search paths with radio telemetry
locations, encounters through snow tracking, kills through
telemetry and snow tracking, and we characterized elk locations
through telemetry during winters 1997 to 2001, Banff National
Park, Alberta, Canada.
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using logistic regression (e.g. logit form of [(p)/(1�/p]). If

encounter locations are known (used units), and areas

where prey were either not encountered (unused units) or

areas where prey could have been encountered (available

units) are known, then an RSPF or an RSF can be used

to describe the probability of encounter as a function of

landscape attributes. Examples of used-unused designs in

estimating probability of encounter might include ob-

servational studies where a predator is known to have

‘missed’ an encounter, thus representing an unsuccessful

encounter. In the example we present below, we consider

the more common case of used-available units for

observational studies where encounters are known and

compared to areas in which prey were available to be

encountered. Defining availability is crucial to the scope

of inference of RSF models (Manly et al. 2002). We

define availability for estimating the risk of encounter as

all areas in which either prey or predators occur (Minta

1992). By comparing attributes at sites where prey were

encountered to all areas available to predator and prey,

we estimate the spatial intersection, or overlap for a suite

of landscape covariates (Minta 1992).

Using a logistic regression the relative probability of

encounter, a(x), given availability of landscape covariates

(xi) used by both predators and prey, is equivalent to

Manly et al.’s (2002, p. 100) resource selection function

(w(xi)), and is proportional to;

a(x)�exp
�Xn

i�1

bixi

�
(2)

where i�/refers to landscape covariates 1 through n for

encounters and available locations. Following Manly

et al. (2002) we drop the denominator of the logistic

form and the intercept for this relative function. (Boyce

and McDonald 1999, Manly et al. 2002).

When both kill and encounter locations are known we

can estimate the second term in Eq. 1, d, the conditional

probability of death as a function of landscape attributes

using logistic regression where 1�/kill locations (used),

and 0�/encounter locations where no kill occurred

(unused). In the case with known encounters, the used-

unused design corresponds to a RSPF, or true prob-

ability function (equivalent to w*(xi) of Manly et al.’s

2002, p. 83), and the conditional probability of kill given

encounter is expressed as:

d(x)�

exp(b0 �
Xn

i�l

bixi)

1 � exp(b0 �
Xn

i�l

bixi)

(3)

where i�/refers to landscape covariates 1 through n for

kills and encounters. The intercept b0 is included because

the sampling probability is known and a true probability

function is estimated (Manly et al. 2002). Study designs

where encounter locations might include a kill location

would represent an RSF design, and would adopt Eq. 2

above.

In some situations, encounters may not be known

(Kunkel and Pletscher 2000) and decomposition of

predation risk components will not be possible. Compar-

ing landscape attributes of kill locations to locations

available to predator and prey using Eq. 2 may

approximate relative predation risk in Eq. 1 (Nielsen

et al. 2004). A spatial function of kill locations is an

improvement over assuming predator locations equal

risk but does not permit the derivation from Hollings’

(1959) functional response in Eq. 1. Moreover, by failing

to decompose predation, it is not possible to discern if

changes in risk arise at the encounter or kill stage, or are

due to predator or prey effects (Thogmartin and

Schaeffer 2000). Decomposing predation risk into its

components can reveal valuable insights into the me-

chanisms of predation risk.

Where we know both the spatial risk of encounter and

death, we can substitute a(x) and d(x) into Eq. 1 to

estimate a spatial predation risk function, P(k). When

RSPF models of both encounter and kill can be

estimated, Eq. 1 yields a true joint probability function

for predation risk. When either a or d are relative

probability functions, as in our example below, P(k)

remains a relative measure of predation risk bounded

between 0 and 1 (Johnson et al. 2004, p. 248). In a GIS

framework, because a(x) and d(x) are functions of

landscape covariates i�/1 to n, P(k) is spatially explicit

and maps of predation risk can be produced (Boyce and

McDonald 1999). A critical assumption is that the

predation risk function applies only over time period T

during which data were collected. Therefore, the en-

counter and kill functions must be modeled at the same

time scales, i.e. day, month, or season. As a useful

extension, time-varying functions could be developed to

test for temporal (seasonal, annual) variation in preda-

tion risk (sensu Manly et al. 2002, p. 118). Further, RSF

models are scale-dependent (Boyce et al. 2003); for

example between selection for location of a home range

(second-order selection), and selection within a home

range (third-order selection, Johnson 1980). Predation

risk components from one spatial scale would be

inappropriate to apply at another spatial scale.

Methods

Study area

We illustrate our approach for a wolf�/elk predator�/prey

system in and adjacent to Banff National Park (BNP,

51815?/116800?), Alberta, Canada, during winters 1997 to

2001. We defined winter as 15 October to 15 April. BNP,

6641 km2 in area, is on the eastern slope of the

continental divide in the Canadian Rocky Mountains
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(1400 to 3400 m). Vegetation is dominated by closed

lodgepole pine (Pinus contorta ) forests interspersed with

riparian Engelmann spruce (Picea engelmanii ) �/ willow

(Salix spp.), aspen (Populus tremuloides ) �/ parkland,

and dry grasslands at low elevations. Engelmann spruce-

subalpine fir (Abies lasiocarpa ) forests dominate at

higher elevations, interspersed with willow-shrub mea-

dows, subalpine grasslands, avalanche terrain, and

alpine shrub-forb meadows (Holland and Coen 1983).

Elk are the most abundant ungulate and are the primary

prey of wolves, comprising 40�/70% of wolf diet (Heb-

blewhite et al. 2004). Wolf predation is equally important

to elk, accounting for 30�/60% of adult female elk

mortality (McKenzie 2001). To illustrate our approach

we use data from the Cascade wolf pack, which

established in 1991 inhabiting an area previously unin-

habited by wolves for up to 30 years (Hebblewhite et al.

2004). Winter wolf numbers stabilized around eight

wolves from 1997 to 2001. We used elk telemetry data

from elk within the Cascade pack territory. The Cascade

territory contained two primary elk winter ranges, the

Ya Ha Tinda and Bow Valley ranges, and several smaller

secondary ranges.

Wolf and elk predator�/prey data

Wolf and elk research and capture methods followed

approved and standard methods (Parks Canada Envir-

onmental Assessment B-1994�/29, Univ. of Alberta

Animal Care protocol ID# 35112). For more detailed

descriptions of wolf and elk monitoring see McKenzie

(2001) and Hebblewhite et al. (2004). For wolf monitor-

ing, we used systematic (weekly) aerial relocations of

radiocollared wolves to characterize the search stage

of predation and to start continuous tracking sessions

(Fig. 1). During continuous snow tracking of wolves we

recorded spatial intersection of the tracks of wolves and

elk groups (Hebblewhite and Pletscher 2002) and found

elk killed by wolves (Hebblewhite et al. 2004). We

defined the intersection of wolf tracks with elk tracks

as an encounter, and locations of wolf-killed elk as kills

(Fig. 1). Spatial differences between encounters and kills

were evident from the snow tracking sequence with

elk being chased an average of 262m (SD�/330.2, n�/96,

range 10�/1700 m, unpubl.) after an encounter. Our

definition of search and encounter assumed (1) wolves

always hunted while traveling (Mech and Boitani 2003)

and (2) spatial intersection of wolf and elk snow

tracks represented the spatial encounter location where

wolf and elk tracks overlap in space (Fig. 1; Hebblewhite

and Pletscher 2002). In reality, our measure of encounter

may not have represented the true spatio-temporal

encounter, yet for RSF models we were only interested

in spatial encounters. Future extensions of our approach

could include spatio-temporal encounters, but difficul-

ties remain in defining ‘‘true’’ spatio-temporal encoun-

ters. Resource selection of elk was determined by

relocating radiocollared female elk within the Cascade

territory weekly from the air or ground during winter

following standard techniques at the major winter ranges

in the Bow Valley and Ya Ha Tinda, and in secondary

winter ranges scattered throughout the Cascade territory

(McKenzie 2001, Hebblewhite, M., unpubl.).

Landscape attributes

We selected landscape attributes known from previous

studies to influence wolf and/or elk resource selection

and predator�/prey dynamics (Kunkel and Pletscher

2000, Roloff et al. 2001, Boyce et al. 2002, Lingle and

Pellis 2002). Landscape attributes measured at encoun-

ter, kills, wolf, elk, and available sites included percent

slope, aspect classified as eight cardinal directions,

elevation to nearest 100 m, distance (km) to roads and

trails, and vegetative cover type in ARCGis 8.2 (ESRI

Inc.). Topographic variables (slope, elevation) were

calculated from a 100 m2 resolution digital elevation

model for the study area, whereas distance to roads and

vegetation layers were measured at a 30 m2 resolution.

Roads and trails were derived from the human use

atlas of the Central Rockies Ecosystem (Jevons 2001)

and included active roads used by vehicles, and inactive

roads and trails used by off highway vehicles, horseback

riders, or by hikers. We buffered this access layer with

ArcGIS 8.2 to create a distance to human access surface

in km. Because the territory of the Cascade wolf pack

straddled two mapping jurisdictions for vegetative

cover type, we merged two landcover maps following

expert advice (D. Zell, Parks Canada). Land cover

types were pine, closed conifer, open conifer, avalanche

path, alpine, grassland, shrub, and rock/ice. We screened

for collinearity using tolerance scores following Menard

(2002), which resulted in the exclusion of the rock/ice,

and several aspect categories. We included categorical

habitat and aspect variables in models using dummy

variable coding, excluding the reference category.

Resource selection function modeling

We estimated resource selection models for the encoun-

ter (Eq. 2) and kill (Eq. 3) stages of wolf predation, and

then compared these to overall wolf-search and elk RSF

models (using Eq. 2) to test for differences in effects of

landscape attributes between predation stages (Fig. 1).

For the elk RSF, we assessed availability using a

balanced number of random locations for each indivi-

dual elk in the wolf territory. We calculated variance for

beta coefficients in elk models by clustering data by

individual elk in STATA (StataCorp 2001) to reduce

autocorrelation (Pendergast et al. 1996). For the wolf-
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search RSF, we compared wolf telemetry locations to

1000 random locations within the wolf territory. Wolf

relocations were screened ]/24 h between locations to

reduce autocorrelation (Otis and White 1999). Analyses

with multiple packs should use an appropriate grouping

by pack (Pendergast et al. 1996) to account of lack of

independence among individuals within a pack. We

estimated a(x), the encounter RSF, by comparing all

elk encounters obtained from snow tracking with the

same 1000 random locations as for describing resource

availability within the wolf territory. Finally, we used all

elk encounters and kill locations of elk in the final d(x),

or probability of death, RSPF model. Our analyses

correspond to the third-order (Johnson 1980) or within

home range scale, but our approach could easily be

applied at different spatial scales (Boyce et al. 2003).

Because our objective was to compare how the

different stages of predation (search, encounter, and

kill) and elk distribution were affected by landscape

attributes, we used a constrained model selection

approach to select a constant set of parameters to

compare across models. Without consistency among

variables, coefficients would not be comparable because

the covariance matrix adjusts coefficients differently

with different combinations of covariates (Hosmer and

Lemeshow 1989, McCullough and Nelder 1989). There-

fore, we first created candidate sets of hypothesized

models and then fit RSF or RSPF models for each

component (wolf search, encounter, kill; elk), and used

AICc to rank models based on Akaike weights, wi for

each model (Burnham and Anderson 1998). We then

used the sum of all Akaike weights for each covariate to

rank covariates in order of importance following Burn-

ham and Anderson (1998, p. 140). We selected a

consistent set of landscape attributes to build compara-

tive RSF models for each predation stage from this

ranked set of variables in the top models. In addition to

assessing overall model fit, we compared estimated beta

coefficients for each covariate for effect size and

significance using 90% confidence intervals (we set

P�/0.10) to determine at which predation stage land-

scape features had the largest effect. Using these models

we mapped a(x) and d(x) using Eq. 2 and 3 in ArcGIS

8.2 at the resolution of 30 m2 pixel�1. We then

substituted the spatial RSF probabilities a(x) and d(x)

into Eq. 1 using map calculator in ArcGIS 8.2 to

estimate the relative predation risk surface for our study

area. All figures are displayed with a histogram

smoother in ArcGIS 8.2.

Evaluating performance of RSF models based on

normal logistic regression diagnostics (i.e. ROC, R2, etc)

are flawed in use-availability designs (Fielding and Bell

1997, Boyce et al. 2002). Therefore, we evaluated the

predictive performance of all models using k-folds cross-

validation (Boyce et al. 2002), where k-partitions of the

dataset are made following a test to training ratio of

20%, or five subsets. Predictive capacity of partitioned

models were evaluated against the withheld training data

using Spearman rank correlations (rs) between training

and test data grouped within ten bins (Fielding and Bell

1997, Boyce et al. 2002). We conducted all statistical

analyses in STATA 7.0 (StataCorp 2001).

Results

Data and model assessment

During four winters from 1997 to 2001 we collected 119

telemetry locations ]/24 h apart on six different wolves

in the Cascade pack, snow backtracked wolves approxi-

mately 1250 km finding 77 groups of elk tracks

encountered by wolves, and sampled 119 elk that were

killed by wolves. Elk killed by wolves included 29 adult

female, 52 adult male, 7 yearlings, 9 calves, and 31

unknown female age classes. We collected 4890 telemetry

locations on 104 radiocollared adult female elk in both

the Bow Valley and Ya Ha Tinda winter ranges between

1997 and 2001, with an average of 29 telemetry

locations/elk/winter.

Six covariates, distance to human access, slope,

elevation, and the cover types of grassland, pine, and

open conifer were consistently retained in top-ranked

models for all predation stages (Table 1, 2). Where model

selection uncertainty arose, such as for the kill stage

(Table 1, 2), DAICc scores suggested a close tie between

the lower ranked, full six covariate model, and other

top models (Table 1, 2). With the exception of the kill-

stage RSPF, most models containing the top six

covariates were consistently ranked first or second out

of all competing models (Table 1, 2), despite some

model selection uncertainty (i.e. wi from 0.15 to 0.38).

Therefore, we felt justified in comparing the importance

of these six covariates among predation stages. Using

these six covariates, RSF models for elk occurrence, wolf

search, and wolf-encounter a(x) had good model fit

(Table 2, all likelihood ratio-test x2 P-values B/0.0005,

and high Nagerleke’s R2�/ 0.22). By contrast, the RSPF

predicting d(x) had poor model fit, and many of the

predictor variables were not selected for (Table 2,

likelihood ratio-test x2 P-value�/0.12, Nagerleke’s

R2�/0.10). Similarly, the Spearman rank correlation

from the k-fold cross-validation was lower (0.529/0.05,

SE) for d(x) than the other models (0.679/0.08 to 0.869/

0.01, Table 2). Based on Akaike weights, simpler models

for the kill stage with less than the six covariates did

not greatly improve model fit (unpubl., Table 1).

Elk and wolf occurrence

Probability of elk occurrence within the territory of the

Cascade wolf pack decreased with increasing distance to
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roads (b�/�/0.377), and increased at lower elevations

(b�/�/0.219) and on shallower slopes (b�/�/0.017)

during winter (presented as relative odds ratios in

Table 3, and as beta coefficients in Fig. 2). Probability

of elk using grasslands (b�/2.05) and open conifer

(b�/1.65) was high while probability of elk use of pine

forests (b�/�/0.125) was low. The probability of a

resource unit being used by wolves at the search stage

decreased with increasing elevation (b�/�/0.380), slope

(b�/�/0.021) and distance to roads (b�/�/0.703). Wolf

use was higher in grasslands (b�/1.255) and pine forests

(b�/0.44), but decreased in open conifer (b�/�/0.204,

Table 3).

Elk�/wolf encounters and kills

In our study area there were important statistical

differences in the effects of landscape attributes on

wolf predation risk stages for elk (Table 3, Fig. 2). The

relative odds of an elk being killed in grasslands (1.34)

were about five times less than the odds of elk being

encountered in grasslands (7.65). Once an elk was

encountered, odds of being killed in pine stands (1.45)

was about a third more likely than being encountered

(1.07), while the odds of being killed in open conifer

stands (0.35) was about half that of being encountered

(0.66). Similarly, elk were about fifth again more likely to

be killed in high elevation areas (0.83) than being

encountered (0.71). There was no difference in the

odds of elk being encountered and killed near roads or

on slopes of varying steepness (Table 3).

Predation risk

The spatial functions of relative probability of encounter

(Fig. 3a) and probability of kill (Fig. 3b) from the

equations in Table 2 illustrate the spatial application of

predation risk in real landscapes (Fig. 3c). Wolves

avoided high elevation and steep slope areas more than

elk (Table 3, Fig. 2), concentrating elk�/wolf encounters

in valley bottoms (Fig. 3a). The strength of the topo-

graphic effect on encounter overwhelmed effects of other

variables once translated onto the real ecological land-

scape in Fig. 3a. However, given an encounter, habitat

appeared to have the strongest effects on risk of being

killed (Fig. 2, 4b, Table 3), with risk of death being

Table 2. Model fit for predicting the relative probabilities of resource use by elk, p(elk), wolves, p(wolf), encounters between wolves
and elk, a(x), and the true conditional probability of elk being killed by wolves, given an encounter, d(x), within the Cascade pack
wolf territory during winters 1997�/2001, Banff National Park, Alberta. Models are shown with corresponding number of
parameters ki, DAICc, Akaike weight (wi), Nagerleke’s R2, and the Spearman rank correlation (rs) obtained from k-folds cross
validation (see text) as a means of evaluating model predictive performance shown with SE. See text for statistical modeling details.

Model Na ki DAICc
b wi

b Model
rankc

R2d Likelihood
ratio X2

Likelihood
ratio P-value

k-folds cross
validation rs

e

Elk 9780 7 0.61 0.15 2 0.22 139.12 B/0.0005 0.869/0.01
Wolf 1190 7 0.60 0.20 2 0.32 295.70 B/0.0005 0.829/0.05
Encounter�/a(x) 1077 7 0.00 0.38 1 0.28 144.10 B/0.0005 0.679/0.08
Killf�/d(x) 189 7 0.02 0.11 4 0.10 11.41 0.0700 0.529/0.05

a- Sample size including 4890 random locations for elk, 1000 for wolf and encounter, and 77 encounters and 119 kills for the
probability of kill model.
b- AICc and weights are reported for each model of the top model set for each predation stage, and are not comparable across the
different stages. They are presented to allow evaluation of their strength.
c- Model rank among candidate models set based on DAICc, from Table 1.
d- Nagerleke’s pseudo �/ R2 value.
e- Spearmans rank correlation coefficient for k-folds procedure averaged from five partitions. See text for details.
f- Conditional on encounter.

Table 1. Akaike weights (wi) for covariates in the four predation stage RSF models: for elk, wolf-search, wolf-encounter, and wolf-
kill in Banff National Park, Alberta, winters 1997�/2001. Shown are the Akaike weights for each covariate, along with the averaged
weight across all four predation stages and the average rank of covariate importance.

Covariate Elk Wolf-search Wolf-encounter Wolf-kill Average Akaike
weight, wi

Average rank

Elevation 0.952 1.000 0.983 0.996 0.983 1
Distance to human access 0.952 0.921 0.983 0.996 0.963 2
Slope 0.614 1.000 1.000 1.000 0.903 3
Grassland 0.925 0.917 1.000 0.740 0.895 4
Open conifer 0.710 0.530 0.226 0.870 0.584 6
Pine 0.520 0.936 1.000 0.572 0.757 5
Closed conifer 0.483 0.233 0.440 0.459 0.404 7
Shrub 0.338 0.081 0.296 0.137 0.213 8
Avalanche 0.027 0.115 0.000 0.000 0.036 11
Deciduous 0.044 0.081 0.000 0.563 0.172 9
South aspects 0.000 0.000 0.247 0.000 0.062 10
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reduced in grasslands and open conifer relative to other

habitats. Combined in Eq. 1, the conditional nature of

the risk of death on encounter is clearly illustrated (Fig.

3c). For example an elk’s risk of death in pine forests is

modified by its topographic position in Fig. 3c because

of the dominant effect of topography on risk of

encounter.

Discussion

Our example clearly illustrates the importance of care-

fully defining predation risk for prey, and demonstrates

the utility of our approach to spatially decompose

predation risk for revealing the behavioral aspects of

predation risk in real landscapes. For example, encoun-

ters were driven largely by topographic variables slope

and elevation (Fig. 3a), whereas habitat covariates had

the greatest effects on the risk of death, given an

encounter (Fig. 3b) for our study area. Important trends

in predation risk between stages were also revealed. For

example, grasslands and open conifer consistently re-

duced risk as predation escalates from search to

encounter to kill, while the opposite occurred in pine

stands and with decreasing elevation (Fig. 3). Broader

analyses will be required to determine whether these

patterns hold across different wolf territories. Never-

theless, in this example if we had defined predation risk

simply as those areas used by wolves, we would have

overestimated risk by 60% in grasslands and open

conifer, and underestimated risk by 20% in pine and at

higher elevations (Fig. 2, Table 3). Thus, predation risk

for elk was a function of not only where wolves were, but

of landscape attributes that rendered elk more or less

vulnerable to predation once encountered. Studies that

assume predation risk is equivalent to predator habitat

use may be misleading. Similarly, if a landscape attribute

decreased the encounter risk but increased vulnerability

once encountered, studies that do not distinguish

between encounter and kill may not uncover the

attributes that influence predation because the compo-

nents negate each other.

By distinguishing between components of predation,

mechanisms driving the observed statistical patterns may

be hypothesized and tested using field experiments or

further analyses. For example, the safety afforded to elk

in grasslands may result from increased predator detec-

tion and vigilance in open habitat (Dehn 1990) or larger

group sizes. Elk group sizes are typically greater in

grasslands, and while wolf encounter and attack rates

may increase for large herds, individual elk predation

risk declines with increasing group size because of

dilution effects (Hebblewhite and Pletscher 2002). In-

deed, our decomposition of predation risk results

suggests elk reduce predation risk the most in grasslands,

Table 3. Parameter estimates presented as relative odds-ratios, standard errors (SE), and associated p-values for independent
variables in RSF models for elk, wolf search, wolf encounter, and wolf kill models. Statistically significant differences (at P�/0.10)
between different predation stages (elk, wolf, encounter, kill) within a covariate are marked with different letters (a, b, c, etc).

Variable Distance to road Elevation Slope Grassland Pine Open conifer

Elk 0.685a 0.803 a 0.983 a 7.655 a 0.882 a 1.635 a

SE 0.1257 0.0479 0.0136 2.5212 0.3175 0.5202
P-value 0.005 B/0.0006 0.203 B/0.0005 0.728 0.122

Wolf 0.495 a 0.684 b 0.979 a 3.508 b 1.553 a 0.815 a

SE 0.1154 0.0375 0.0116 1.2333 0.3919 0.2485
P-value 0.003 B/0.0005 0.077 B/0.0005 0.081 0.503

Encounter 0.485 a 0.711 b 0.965 b 1.862 b 1.066 a 0.661 a

SE 0.1627 0.0530 0.0173 0.9681 0.3599 0.2620
P-value 0.031 B/0.0005 0.047 0.232 0.85 0.297

Kill 0.4833 a 0.838 a 0.971 b 1.346 b 1.451 b 0.350 b

SE 0.4770 0.0970 0.0153 0.7556 0.3941 0.1458
P-value 0.43 0.071 0.058 0.597 0.265 0.012
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Fig. 2. Beta-coefficients for distance to human access (km),
elevation (in 100 m intervals), grassland, pine, and open conifer
habitat’s from logistic regression resource selection function
models for elk, wolves, wolf encounters with elk, and wolf-killed
elk in Banff National Park, Alberta. Estimates are presented
with 90% confidence intervals, and non-overlapping significant
differences are also indicated in Table 3. Slope is not shown
because of the large Y-axis scale relative to the estimates of
effect sizes for slope (Table 3).
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consistent with earlier non-spatial work on predation

risk (Hebblewhite and Pletscher 2002). In contrast to

grasslands, dense cover in pine forests may render elk

more vulnerable to predation by wolves because detec-

tion distance may be reduced or woody deadfall may

slow escape of fleeing prey (Kunkel and Pletscher 2000).

Because our analysis was conducted at a resolution of a

30-m pixel we did not measure deadfall, but resource

attributes at the microsite level (B/30 m) could be

measured to test more mechanistic hypotheses (Kunkel

and Pletscher 2004).

Insights into the mechanisms of predation may have

important management and conservation implications.

For example, endangered mountain caribou (Rangifer

tarandus tarandus ) are thought to spatially separate from

predators by migrating to high elevations to reduce the

risk of encountering wolves (Seip 1992). Recent caribou

declines are hypothesized to arise from the combined

effects of a numeric response in wolves from increasing

alternative prey (moose) density as a result of early seral

habitats from forestry (Terry et al. 2000) and/or in-

creased encounter rates by wolves due to human-

modified trails (Seip 1992). Cause-specific survival data

support the hypothesis that predation plays a key role in

caribou decline (Seip 1992, Kinley and Apps 2001).

However, demonstrating whether roads increase encoun-

ter rates, or that roads or attributes associated with roads

themselves make prey more susceptible to predation

once encountered may require different mitigating

actions. Without the decomposition of predation risk,

these and other mechanistic hypotheses about landscape

effects on predation risk would be difficult to test.

Decomposition of predation risk can focus conservation

actions on the predation stage that had the greatest effect

or flexibility to management.

Our objective was to illustrate the importance of

decomposing predation risk. In applications where

predicting predation risk for management or conserva-

tion is the main priority, the need to model predation

risk with a consistent set of covariates would not

unnecessary. One would simply select the best model

for each predation stage, or where model selection

uncertainty arose, adopt a model averaging approach

(Burnham and Anderson 1998). Total predation risk

over the landscape would then result from the combined

effects of the best encounter and kill models. Further-

more, if information about encounters were unavailable,

predation risk could be approximated using a direct

comparison of kills and availability of habitats to

predators and prey. One important caveat is that we

focused on a single wolf territory and ignored density in

our example because wolf numbers over the study were

relatively constant. Thus our relative spatial predation

risk function would be valid for the Cascade pack we

modeled. Yet, total predation risk is not only related to

the spatial predation risk function, but to the numeric,

or spatial density of predators (Messier 1994, Kristan

and Boarman 2003). This is similar to non-spatial

predator-prey dynamics where total predation rate is a

function of both the functional and numeric responses

(Messier 1994). Thus, while the predation risk function

(Eq. 1) will identify risky habitats, for example, pine for

elk, predation risk may vary across pack territories

dependent on the number of predators, wolf pack size in

our example. To incorporate the effect of density on

predation risk, Kristan and Boarman (2003) weighted

predation risk for tortoises by raven density to estimate

Fig. 3. Spatial maps of the decomposition of the components of predation, illustrated using wolf predation on elk in the Cascade
valley portion of the Cascade pack wolf pack territory from 1997�/2001 in Banff National Park (light boundary). Predation risk
decomposes into (a) probability of encounter, given availability, (b) probability of kill, given encounter, and the product of (a) and
(b) equal the relative probability of death, (c) P(k) following Lima and Dill (1990) where P(k)�/1�/exp�(adT). Shown are
wolf telemetry locations (m, n�/119), encounters with elk (', n�/77), and wolf killed elk (�, n�/118). Relative probabilities were
derived using resource selection functions (Manly et al. 2002).
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total predation risk. Therefore, for situations of multiple

predators or packs, different packs should be weighted

according to pack size, although this assumes predation

risk responds linearly to predator density, which may not

always be the case (Messier 1994). Assessing the func-

tional response of predation risk as a function of

predator density (sensu Mysterud and Ims 1998) using

this approach would provide a considerable advance in

our understanding of spatial predation risk.

We believe the most exciting opportunities for this

approach is in their application to spatial models of

predator�/prey dynamics. Predator�/prey dynamics have

been modeled spatially using lattice-networks (Tobin

and Bjornstad 2003), heuristic simulation models

(Donalson and Nisbet 1999), and individually-based

models (McCauley et al. 1993), to name a few ap-

proaches. Most models simplify landscape structure into

a few patch types, and model predator�/prey dynamics in

these different patches. Our approach can provide

spatially explicit functions of predation risk based on

landscape attributes (Lima and Zollner 1996) that

are proportional to probability of encounter (a) and

attack (d) (Manly et al. 2002, p. 177), and thus should

be proportional to the predator functional response

(Holling 1959, Messier 1994). Messier (1994) combined

the functional and numeric response to estimate the total

population-level predation response of wolves preying

on moose. If the spatially explicit risk of predation in

Fig. 3c (i.e. a relative functional response) is combined

with the spatial density response (numeric response) to

generate a spatially explicit total predation function

(sensu Messier 1994), this total predation risk function

should be proportional to the number of prey expected

to be killed by predators in a landscape, and could be

used for a number of applied and theoretical purposes.

For example, one could adapt the Boyce and McDonald

(1999) approach whereby a RSF is used to distribute a

known number of animals (from some other data source)

on a landscape using a GIS for predator�/prey modeling.

Instead of distributing a known number of animals on a

landscape (Boyce and McDonald 1999), the predation

risk function could distribute a known number of kills

across the landscape, which could be then combined

with RSF models for prey species to examine relative

predation rates across a landscape. Moreover, pack-size

kill-rate relationships (Mech and Boitani 2003) or

mechanistic models of predator functional responses

(Messier 1994) could be used to rescale the relative

encounter probability a(x) to a true probability in

combination with prey density data. In this fashion,

landscape-level prey simulation models (Turner et al.

1994) could be combined with predation risk functions

to model the effects of landscape on predator�/prey

dynamics (Iwasa et al. 1981). Thus, spatial predation risk

functions will help bridge the gap between behavioral

ecology and landscape ecology in real ecological land-

scapes (Lima and Zollner 1996, Lima 2002).
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