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Abstract

Models and analysis of animal movements:
From individual tracks to mass dispersal

Eliezer Gurarie

Chair of the Supervisory Committee:
Professor James Anderson

School of Aquatic and Fisheries Sciences

Almost every process related to animal ecology, including foraging, predator avoid-

ance, mate encounter, invasion, dispersal and migration, is intimately related to ani-

mal movements. In recent years, improvements in tracking and observation technolo-

gies have led to an explosion of movement data on all manner of organisms. Move-

ment processes are, however, difficult to model mathematically. They are the result of

extremely complex interactions between an organism’s internal state, behavioral ten-

dencies and environmental cues. The data are multi-dimensional and almost always

non-independent, and there is no consensus on the appropriate statistical summaries

or underlying models. This dissertation aims to address several issues in quantitative

movement ecology beginning with rigorous mathematical descriptions of individual

movement and culminating in models of mass movements and dispersal.

Part I, containing Chapters 2 and 3, is devoted to theoretical and mathemati-

cal considerations related to parameterizations of movement process. In Chapter 2,

the correlated random walk model (CRW) is discussed in detail. Generalizations of

the CRW for arbitrarily sampled data are presented, as well as methods to obtain

the essential summaries of homogeneous movements: characteristic length scales and

time-scales of independence. In Chapter 3, a continuous, autocorrelated stochastic





model of movement and its parameterization is discussed, along with algorithms for

estimating the associated parameters. The second part covers several applications

and extensions of the basic movement models on an ecological scale. In Chapter 4,

theoretical relationships between the fundamental time and length scales of movement

and encounter rates are derived and applied to survival of migrating salmon. Chap-

ter 5 presents a statistically robust and informative method for identifying multiple

behavioral modes in irregularly sampled individual animal track data. In Chapter 6,

migratory and dispersing mass movements are considered in terms of population level

heterogeneity in the movement parameters. Methods of separating intrinsic random-

ness of movement from differences within and between populations from dispersal and

travel-time distributions are derived.

The models and methods throughout this work are applied to a wide range of

aquatic organisms: microscopic algae in a laboratory, migrating salmonids and dis-

persing cyprinids in freshwater environments, dugongs in subtropical Australian wa-

ters and northern fur seals in the northwestern Pacific Ocean.
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Chapter 1

INTRODUCTION

1.1 Overview of movement modeling in ecology

Movement is one of the defining features of many forms of life. Most representatives

of the protist and animal kingdoms move actively. Even those relatively few animals

that are sessile, including sponges, bryozoans, some mollusks, cnidarians, and annelid

worms, generally display active motility in the larval stages. Furthermore, many alga

move actively while passive movements, most notably of genetic material by physical

or animal related dispersal, is an essential process for most other plants.

It can consequently be argued that most processes in ecology are directly related

to movement. Survival is in large part the result of successful acquisition of food

and avoidance of predators; reproductive success depends on encounters with mates;

habitats and home ranges are defined as the geographical areas in which physical

displacement of individuals occurs; invasions are mass movements toward previously

unoccupied habitats; and so on. Conservationists and resource managers need to

identify home ranges and migration pathways as well as the interactions between

an organism and its habitat. Evolutionary ecologists are interested in teasing out

the selective forces related to successful food encounter, mate encounter and preda-

tor avoidance. Ethologists investigate the strategies and tactics by which animals

navigate their environment to fulfill their survival needs.

It might therefore seem surprising that for the bulk of the history of ecology as

a scientific discipline, the study of movement has played a somewhat peripheral role.

This is illustrated by a casual overview of “classic” papers in Foundations of Ecology:

Classic Papers with Commentaries (Real and Brown, 1991). Of the 40 papers in
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the compilation, roughly 15 deal with population structure, predation and feeding

strategies, community structure and habitat of animal species. Of these only one

article, C. S. Skellam’s (1951) seminal “Random dispersal in theoretical populations”,

addresses the analysis of movement explicitly.

This disparity between the self-evident centrality of movement processes and its

historical absence in ecological theory can be attributed in part to the lack of ap-

propriate data to motivate theoretical development. In the aforementioned study,

Skellam (1951) develops many elaborate mathematical formulations of expected rates

of dispersal and migration based on a random-walked derived diffusion approximation

combined with simple models of reproduction and population growth. But the only

data Skellam considered was the multi-generational expansion of the range of intro-

duced North American muskrat (Ondatra zibethicus) in Central Europe documented

by Ulbrich (1930), and the comparisons to the data are essentially qualitative. Skel-

lam also had no access to data on individual movements, nor did he make a rigorous

attempt to relate individual movements to the parameters of his equations, except to

briefly discuss the discrete, unbiased, one-dimensional random walk.

From the perspective of individual movements, a very rigorous analysis of in-

dividual movements was provided in a pair of excellent early papers by C. Patlak

(1953a,b). In these largely forgotten papers the effect of various forms of correlation

and anisotropy in individual movement steps are related to diffusion approximations,

with explicit derivations of expected displacements and rigorous tests for external ori-

entation. Patlak considers a discretization of movement that consists of step lengths

l, the tuning angles θ and time intervals t drawn from some arbitrary distributions

and predicted the displacements and theoretical rates of diffusion for such movers in

terms of the mean and variance or step lengths, the mean cosine of turning angles, and

the mean time interval. Both of his papers were purely theoretical, but the author

concludes somewhat hopefully that these models
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“... will provide a systematic method for experimental investigation of

the problem of the orientation of organisms ... [and] that by use of the

knowledge of the various parameters not only may the behavior of the or-

ganism in its natural environment be predicted but also the search for the

underlying physiological mechanisms for this behavior may be facilitated”

(Patlak, 1953a).

Patlak’s mathematical results were far ahead of the data, and consequently mostly

ignored. Some of his results were rederived in an extremely influential study by

Kareiva and Shigesada (1983), who were apparently unaware of Patlak’s work. These

authors essentially recreated Patlak’s movement, ignoring the variable time intervals,

and dubbed it a correlated random walk (CRW). In contrast to any earlier studies,

however, the authors could apply their model on actual data on the movement of

cabbage white butterflies (Pieris rapae) through an experimental field. Based on the

expected squared displacement according to the theory, they conclude, for example,

that while ovipositing butterflies move in a “correlated random” manner, nectar-

feeding butterflies displace in an manner that violates the CRW assumptions. The

authors summarize the utility of quantifying individual movements:

It may be especially fruitful to investigate the foraging or searching move-

ments of animals as correlated random walks whose parameters (turning

angle or move length) depend on local ecological conditions. Thus, for

example, an organism might always move randomly, but with sharper

turning angles in the presence of food resources. (Kareiva and Shigesada,

1983)

This is a concise summary of the simplest sort of hypothesis relating measurable

changes in animal movements to an environmental covariate.
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1.1.1 Tracking data

The data analyzed by Kareiva and Shigesada (1983) was meticulously collected by

manually pursuing over 200 butterflies at a respectful distance of four to five feet

as they navigated through a planted field of potatoes and greens and meticulously

attaching color-coded clothespins to the landing sites (see Root and Kareiva, 1984,

for details on the methods). Since then, the development and application of animal

tracking technology have undergone extraordinary advances leading to an explosion

of data. Radio tags, ARGOS and GPS satellite tags have been developed that fol-

low everything from thousand mile migrations of birds such as storks and albatross

(Jouventin and Weimerskirch, 1990; Blouin et al., 1999; Weimerskirch et al., 2000;

Martell et al., 2001; Kanai et al., 2002; Fritz et al., 2003; Grünbaum and Veit, 2003;

Chernetsov et al., 2004; Shimazaki and Tamura, 2004; Berthold et al., 2006, others),

free ranging terrestrial mammals such as elk, reindeer, wolves and bears (Keating

et al., 1991; Bascompte and Vilà, 1997; Mårell et al., 2002; Morales et al., 2004;

Fortin et al., 2005b; Forester et al., 2007; Johnson et al., 2007, others), foraging pin-

nipeds (Andrews, 1998; Fedak et al., 2002; Raum-Suryan et al., 2004; Speckman et al.,

2006), large pelagic creatures including cetaceans (Laidre et al., 2004; Johnson et al.,

2008, Zerbini, unpublished data) and bluefin tuna (Block et al., 1998; Royer and Gas-

par, 2005), to the daily peregrinations of tree-dwelling monkeys (Ramos-Fernández

et al., 2004), marten (Nams and Bourgeois, 2004) and dugong (Holley, 2006; Sheppard

et al., 2006). Hydroacoustic technologies are used to obtain three-dimensional tracks

of salmon approaching dams (Ransom et al., 2007; Goodwin et al., 2006; Steig et al.,

2006) and foraging sturgeon (M. Parsley, USGS Cook Biological Station, pers. comm.).

Digital video setups tracking movements of individual plankters, various larvae and

fish in laboratory settings are increasingly common (Parrish et al., 2002; Bearon et al.,

2004; Seuront et al., 2004; Uttieri et al., 2005). If Root and Kareiva were to repeat

their collection of the butterfly movement data now, they might consider attaching 22
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mg radar transponders to the butterflies’ thoraxes and using a large harmonic radar

to obtain the butterfly data, as was successfully performed by Cant et al. (2005). The

preceding list is necessarily far from comprehensive, but it gives an idea of the range

and diversity of the kinds of individual movement data, that researchers only 20 years

ago could scarcely have imagined.

1.1.2 Analysis methods

In the wake of this ever-growing body of data, there has been a balkanization of

approaches to the quantification of movement data. Many of these methods have

moved away from the explicit organism-centric modeling implicit in the correlated

random movement models, focusing more on descriptive statistics that quantify some

characteristic of the path itself. To this family of descriptive analysis methods one

can ascribe fractal analysis and the Lévy walk models.

Fractal analysis

The fractal dimension D of an object measures its ability to fill Euclidian space (Man-

delbrot, 1967). A straight line is a 1 dimensional object, whereas a pure Brownian

motion - i.e. a random walk composed of independent random steps - has fractal

dimension 2. A fractal dimension of a curve is estimated using the simple regression

method applied by Mandelbrot for the English coast.1

The ease of application and intuitive nature of fractal analysis have led to an

abundance of studies applying the technique. A short list of organisms whose paths

have been analyzed in terms of fractal dimensions includes copepods, spider mites,

1In a brief note published in Science, Benôıt Mandelbrot (1967) noted that coastline’s measured
length L(r) increases as the ruler of length r becomes smaller and smaller. The relationship is
given by the simple empirical formula: L ∝ r1−D, where D is interpreted as a fractional dimension
of the curve. The primary purpose of Mandelbrot’s note was to demonstrate that a fractional
dimension, far from being an esoteric “invention of mathematics”, did, in fact, have “simple and
concrete applications and great usefulness”.
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grasshoppers, clownfish, albatrosses, sheep, martens, wolves, polar bears and nar-

whals. Most commonly, authors compare estimated fractal dimension D against

some environmental or internal state factor, like season (Laidre et al., 2004), life cycle

(Bascompte and Vilà, 1997), abundance of food, predators or competition (Coughlin

et al., 1992; Dicke and Burroughs, 1988; Doerr and Doerr, 2004), landscape struc-

ture (With, 1994). For example, Laidre et al. (2004) comprehensively analyzed the

movement patterns of narwhals in Greenland, comparing these patterns between dif-

ferent bays, seasons, and different age and sex classes. The lower fractal dimension of

migratory behavior was well constrasted with the more tortuous movements during

the summer and winter periods. The relationship between the nature of the more

tortuous movements could be realted to the fractal structure of the ice fields or the

fjord-lined coast. Dicke and Burroughs (1988) performed a behavioral manipulation

experiment, tracking spider mites in an attractive field of Lima bean odor and in

a repellent field of Lima bean odor plus other spider-mite pheromone. The spider

mites in the repellent field left with more directed, less tortuous, paths than those

that made more wiggly foraging movements in the attractive field. In both of these

cases, the fractal dimension provided a robust and relatively simple indirect index of

behavior.

Other researchers have explored how the estimate for D varies across scale rather

than calculating a single value for a curve (Fritz et al., 2003; Nams, 2005). The purpose

of these studies is to elucidate and quantify the hierarchical nature of an organism’s

spatial interaction. For example, Fritz et al. (2003), analyze albatross tracks up to

1100 km long with a resolution on the order of a single meter. The authors note that

there is a consistent and distinct dip in tortuosity between the 100 m and 10 km scales.

The authors conclude that albatrosses are responding to their environment variously

on different scales. The small scale reflects adjustments to small changes in wind

direction and intensity, the medium (low tortuosity) zone reflects the effectiveness

of the albatross’ specific ability to soar, and the higher tortuosity at a longer scale
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reflects responses to larger scale weather and wind patterns.

There have been debates as to whether a fractal curve is an appropriate model

for animal movement data from a technical point of view since a truly fractal object

is formally non-differentiable, whereas the motion of an organism space is necessary

smooth. In a fairly influential critique of fractal analysis, Turchin (1996; 1998) argues

that at the scale of the organism itself, all motion is approximately linear, whereas at

a large temporal and spatial scales (over an entire range, or an entire lifetime), most

organisms movementd will appear uncorrelated and therefore more truly random. The

measured estimated fractal dimension can therefore be an artifact of the temporal

resolution of the data collection.

Another potential shortcoming of fractal analysis is the treatment of an organism’s

track as a purely spatial object. Tracks, in fact, are objects in space and time. The

spatial component can be thought of is a projection of a three-dimensional {X, Y, T}

object onto a two-dimensional {X, Y } plane. A purely spatial characterization of

a trajectory risks losing some information, especially when velocities are variable.

However, if velocities are fairly consistent and the sampling is more or less regular,

the fractal dimension seems to be a generally robust measure.

In general fractal analysis of paths is a straightforward and relatively simple to

implement characterization of movement paths. When applied judiciously, it can

be an excellent tool for identifying observed patterns of relatively coarsely measured

movements on large scales (as with the narwhals), for characterizing movements in a

controlled behavioral experiments (as with the spider mites), and for parsing the cross-

scale nature of movements for high resolution data (as with the albatross). Methods

presented in this dissertation hope to provide a similar application while accounting

both for the ultimately smooth and time-dependent nature of movement.
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Lévy walks

The analysis of animal movements in terms of Lévy walks (or Lévy flights) has also

led to some fruitful analyses. A Lévy walk is essentially an uncorrelated random

walk distinguished by a step length distribution following some power law: f(l) ∼

t−α. Higher values of α are marked by many small steps, and an occasional very

long movement, and therefore have a fairly distinctive “look”. For values of α <

3, the movements are super-diffusive and the dispersals become leptokurtic (Zhang

et al., 2007). Lévy walks have been applied to fit long time-scale animal movement

data where periods of tight movement are interrupted with occasional long voyages,

including albatross (Viswanathan et al., 1996, 1999), plankton (Levandowsky et al.,

1988; Klafter et al., 1989), amoebas (Levandowsky et al., 1997), jackals (Atkinson

et al., 2002), reindeer (Mårell et al., 2002), spider monkeys (Ramos-Fernández et al.,

2004) and humans (Brockmann et al., 2006).

Beyond the qualitative observation that organisms display rare long distance move-

ments, some researchers have made an effort to explain the adaptive significance of

Lévy movements. Thus, motivated by albatross movements, Bartumeus et al. (2002,

2005) found via simulation that for sparcely distributed, slow-moving prey and large

interaction distances, encounter rates can be significantly higher for a Lévy random

search than for a Brownian random search. This is explained by the ability of the

Lévy walker to explore a greater area as well as minimizing the probability of reaching

areas already visited.

Boyer et al. (2006) demonstrate that a Lévy walk can emerge from a foraging

process that is not itself random. In their simulation of monkey foraging, resources

are allocated patchily in trees and each tree has a power-law distributed random

quality (i.e. a few high quality spots, many poorer quality spots). Simulated foraging

monkeys with full knowledge of their environment aim to minimize their energy ex-

penditure, spending an amount of time in a tree proportional to its quality, and often
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preferring long trips to other high-quality trees over shorter trips to lower quality trees.

The results of their model conform broadly with the behavior of spider monkeys (Ate-

les geoffroyi) and tree quality distributions measured in the field (Ramos-Fernández

et al., 2004). Unlike the encounter rate simulations by Bartumeus and colleagues, the

Lévy walk here is not a strategy per se, but a consequence of resource distributions.

Similarly, the Lévy-type scaling associated with human movements is related to the

spatial distribution of urban centers (Brockmann et al., 2006).

Several recent studies, including work done by some of the early proponents of the

Lévy walk model, suggest that patterns which fit the Lévy walk model are more infor-

matively fit by multi-modal random walks or other more behaviorally sophisticated

models (Edwards et al., 2007; Benhamou, 2007). Lévy-walk like statistical proper-

ties can therefore be considered an “emergent property” of more classical movement

models that undergo behavioral shifts.

Correlated random walk and extensions

Many studies apply or explore some version of the Patlak-Kareiva-Shigesada-type

correlated random walk model alluded to earlier (Alt, 1990; Firle et al., 1998; Bergman

et al., 2000; Mårell et al., 2002; Morales et al., 2004; Fortin et al., 2005b,a; Forester

et al., 2007, others). In an example of a relatively sophisticated application of the

CRW to study the interaction of animals and the environment, Fortin et al. (2005b)

assess movement of elk (Cervus canadensis) in Yellowstone National Park in the

context of a trophic-cascade hypothesis that the reintroduction of wolves encourages

aspen by controlling overgrazing by the elk. In this study, the researchers radio

tagged 14 female elk and described the environment using several relevant factors:

aspen stands, distance to roads, slopes, use by wolves. They then compared the

actual paths of the elks with simulated paths generated using turning angles and

step-lengths estimated from the actual elk and explored whether the paths the elks

chose differed from the random paths, and how. They concluded convincingly that



10

the elk do respond to wolves on the winter range by shifting their habitat selection

from aspen, a preferred habitat of wolves, to conifer forests.

Nonetheless, there are some recurrent fallacies that emerge in the CRW literature.

In particular, there is a tendency in many studies to “test” whether a movement track

is a CRW or a simple RW. In fact, at a small enough temporal resolution all move-

ments are necessarily correlated and a long enough temporal resolution, all movements

are uncorrelated. For example, in another study of foraging elk by the same group,

Fortin et al. (2005a) repeatedly test the movement data against a simple random walk

(RW) hypothesis, concluding that: “This directional persistence indicated that forag-

ing elk do not travel as simple random walkers.” In fact, a more accurate statement

would be: “The temporal resolution of our data was within the auto-correlation lag

of the foraging elk’s movement.” An explicit awareness of the meaning of temporal

scale of the correlation in movement is generally lacking in CRW literature, which

contents itself with reporting clustering coefficients.

Extensions of correlated random walk models

Recently, several more mathematically and statistically sophisticated approaches to

interpreting movement data have emerged.

In order to address the fact that much movement data is error-ridden, several

excellent studies on the use of state-space model (SSM) approaches to analyzing

animal movement data have appeared (Jonsen et al., 2003; Morales et al., 2004; Jonsen

et al., 2005; Royer and Gaspar, 2005; Forester et al., 2007; Ovaskainen et al., 2008.,

see review by Patterson et al. 2008). A SSM is a stochastic time series model in

which the observed data is interpreted as the result of a coupling between a process

model with an observation model. A process model might be a correlated random

walk with parameters that change in response to some environmental variable, while

the observation model might be a standard Gaussian error. Parameters of a model

are estimable using maximum-likelihood or Bayesian approaches. The important
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advantage of the state-space framework is the ability to estimate the extent and

effect of measurement errors. The limitation of the state-space framework is that

it is ultimately only as good as the underlying movement model and the behavioral

hypotheses associated with it. There is little direct need for an state-space framework

for data for which the errors are essentially negligible, e.g. GPS, acoustic and video-

tracking data.

The use of state-space models necessarily begs the question of what explicit model

of movement is, in fact, most realistic or informative. Several kinds of models have

been proffered in the literature. In an analysis and simulation of data on foraging elk

(Cervus elaphus), Morales et al. (2004) suggests a CRW with Weibull distributed steps

and wrapped Cauchy turning angles (see chapter 2 for definitions of these distribu-

tions) where the parameters have some probability of switching from a traveling-like

mode to a foraging-like mode. The authors compare several different switching mod-

els (for example: no switching, constant switching probability, switching probability

which depends somehow on habitat type), estimate parameters and compare models.

They conclude that a model with two types of behaviors dependent on covariates is

the most parsimonious and informative model. Similarly, Skewgar et al. (in prep.)

parse foraging trips of nesting Magellanic penguings (Spheniscus magellanicus) in

South America into directed travel modes and foraging/searching modes using the

identical Weibull-Wrapped Cauchy model, and estimate Markovian transition proba-

bilities between the states. Forester et al. (2007) test models, again working with elk

movement data, in which switching between states depends on a complex of landscape

factors. Ovaskainen (2004) presents a rigorous method for using diffusion models for

modeling butterfly and wolf movements,2 in which the diffusion parameters depend

on certain landscape features. It should be noted that the butterfly data the authors

analyze is mark-recapture data which, though fundamentally similar to individual

2The latter example comes from personal communications and unpublished data.
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track data, is far coarser with, typically, a complete loss in auto-correlations.

Several older studies have developed continuous stochastic models of movement

and applies them to movements of microscopic organisms (Dunn and Brown, 1987;

Alt, 1988, 1990). These models are discussed in detail in chapter 3. A recent study

by Johnson et al. (2008) presents a continuous-time correlated random walk in terms

of an Ornstein-Uhlenbeck process and applies the models to interpreting movements

of several species of marine mammal. Perhaps the greatest advantage of a rigorously

parameterized continuous-time model is that data that is irregularly sampled can be

modeled (chapter 5).

Individual-based simulation models

All of the analysis methods presented thus far describe movement as stochastic

processes with some estimable statistical properties. Behavioral changes, when in-

cluded, are modeled as basic responses to coarse environmental covariates. This

reduction is almost unavoidable, since movement is a complex outcome of behavioral

responses to individual’s internal states, biophysical constraints, external stimuli and

simple whimsy, and these interactions are daunting to model. Nonetheless some

attempts at modeling explicit behavioral rules have been made, with occasionally

striking results.

For example, Goodwin et al. (2006) developed a highly involved simulation model

for the movements of juvenile salmonids near dams in the Columbia river. The model

combines hydrodynamic models of water flow velocities, shears and strains with a

behavioral model of fish response to the flow structure based on a event-based mem-

ory model of behavior proposed by Anderson (2002). While computationally very

intensive, the model does reproduce observed fish behaviors in dams forebays with

good qualitative agreement. Notably, the duration and nature of milling before pass-

ing through the dam and the specific routes in the flow environment that fish select

are well captured. Furthermore, the model allows for experimental passage setups
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to be simulated virtually, for example to test the effects of shifting the position of

a fish passage entrance or changing the orientation of a boom. A drawback of the

method is one common to many very detailed individual based models: It is difficult

to compare models or test how realistic a model might be since the structure of the

model itself is based largely on guesswork. Nonetheless, in view of the primarily prag-

matic, engineering-oriented purpose of the model, accurate and useful predictions are

a satisfactory objective.

Considerable research has been devoted to investigating clearly non-independent

aggregated dynamics, such as insect swarm, fish schools, bird flocks, herds of ungu-

lates, even human aggregations. Group dynamics are extremely complex, and under-

standing their formation, ecological function and evolutionary genesis calls for high

quality empirical datasets together with novel theoretical and modeling frameworks

(Parrish and Edelstein-Keshet, 1999). A direct approach to exploring these dynamics

is to measure the movements of multiple individuals in a controlled environment and

attempt to obtain empirically derived behavioral rules of interaction. Studies along

these lines have been performed by taking video measurements on groups of tropical,

freshwater cyprinids (giant danio - Danio aequipinnatus) in a tank (Parrish et al.,

2002; Viscido et al., 2004, 2005; Grünbaum et al., 2005). From the data, individ-

ual parameters such as preferred nearest neighbor distance and orientation, turning

curvature, and velocities were measured and used to calibrate individual based mod-

els. The group dynamics of the real and simulated fish, based on several metrics of

aggregated movements, were compared, shedding some insights into the factors that

control the size, coherence and behavior of aggregations.

These last two examples illustrate ways in which quantification of individual move-

ments can be integrated into individual based simulation modeling frameworks to

explore “emergent” properties of nearly intractably complicated systems, whether

due to complex environments such as the flow regime in the forebay of a dam or to

interactions between individuals in an aggregation.
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1.1.3 Comment on randomness

Since almost all the sections of this work deal to some extent with versions of so-called

“random walk” models, it is worth pausing to discuss the extent to which movement

can legitimately be considered “random”.

Organism movement is due in some proportion to internal choice and direct exter-

nal control or constraints. Seeds or spores in the wind or non-motile larvae in water

are transported entirely passively, and their dispersal is well-described by a statistical

description of their medium. A large land-based vertebrate moves through the thin

soup of air more willfully, but is often constrained by topographical or landscape-

defined features that might be considered randomly distributed. The flight of a bird

in strong winds or the movement of a fish in strong flows is some mixture of willful and

medium-constrained motion. In short, most willful movement processes are very com-

plicated deterministic processes with multiple unknown factors, some of which might

be stochastic in nature. All of these processes combining into a single movement out-

put are most conveniently summarized statistically. The observed movement which

is the output of these processes is then often considered “random”, though there can

be very little that is truly random about the movement.

As information is collected on possible stimuli or explanatory factors to describe

a movement, researchers ideally separate deterministic factors, explicitly model-able

stochastic processes, and are left with a remaining error, whether related to mea-

surement that most parsimoniously contains the ‘intrinsic’ randomness and those

deterministic factors which we cannot explain. An analogy can be made to standard

regression models, which generally attribute a certain amount of variation to “ran-

dom error”. In fact, such errors are most commonly not truly random, but merely

unexplained and occasionally unexplainable.

Researchers would be well-advised to follow the recommendation of Turchin (1998)3

3made in a section of his seminal book appropriately entitled: “The bugbear of ‘randomness’ ”
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that the term “random movement” be replaced as much as possible with “stochas-

tically modeled”, if only for the sake of precision of meaning. However, historical

convention and strong roots in the idealized mathematical model known as the “ran-

dom walk” make use of the term quite common, and this dissertation is no exception.

1.2 Fundamental assumptions and structure of dissertation

Despite the great diversity and rapidly increasing number of movement studies in

ecology, I would tend to agree with Jonsen et al. (2003) that “[o]ur ability to analyze

movement patterns ... has been far outstripped by our ability to collect individual

movement data”. The overarching purpose of this dissertation is to move the mathe-

matical and statistical analysis of movement data forward with the goal of developing

practical methods to obtain biologically and ecologically relevant information from

various kinds of movement data. The subjects of the various chapters of the disserta-

tion range from rigorous mathematical parameterizations and predictions of ecological

processes based on movement parameters, to identifying behavioral changes in indi-

vidual tracks and characterizing mass movements. The fundamental feature of all

the models considered here is that they are stochastic and organism-centric. Because

these are such fundamental aspects, they merit discussion in some depth.

1.2.1 Heuristic of movement analysis

Throughout this dissertation, movement is considered from the reference frame of the

moving organism as opposed to a fixed reference frame. A useful term for this distinc-

tion can be borrowed from fluid mechanics, in which models that consider changes

that occur to a moving particle are termed Lagrangian, while models that consider

the changes that occur at given points in space are termed Eulerian. Random walks,

correlated random walks and Lévy flight models are essentially Lagrangian analy-

ses, while home range analysis (Millspaugh and Marzluff, 2001; Moorcroft and Lewis,

2006) might be considered Eulerian since its primary concern is the characteristics and
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the geographical area used by an organism. Though there is, in fact, much overlap

between these two approaches, the basic difference between these types of analysis are

the sorts of questions that are typically asked: Lagrangian models probe the detailed

behavioral responses and mechanics of movement, while Eulerian analyses generally

ask larger scale questions about spatial distributions and habitat usage of animals.

Environmental variables and behavioral responses can be related to a Lagrangian

model of movement using by fromulating a very general heuristic model:

∂S(X, t)

∂t
= f (S(t), E(X(t))) (1.1)

Here, X(t) represents the spatial location of the individual (whether in one, two or

three dimensions) at time t, E is some vector of local environmental variables at loca-

tion X(t) (e.g. temperature, food density, light availability, presence of predators), and

the innocuous looking f(·) represents the behavioral response of the organism to envi-

ronmental conditions and its state and S is a description of an organism’s state. This

variable is a function of extrinsic properties, notably (for our purposes) spatial loca-

tion, but also any number of physiological properties, size, strength, hunger/satiation,

energetic reserves, and also intangible ones like knowledge, memory and desire. Using

mathematical jargon, Behavior can be viewed as an operator that transforms inter-

nal states and environmental parameters into new states. Movement behavior would

be the component of the behavior operator that acts only on the change of physical

location of the organism.

In the most simple model of movement, an organism is unaware of its absolute

spatial position but makes its movement choices based purely on immediate environ-

mental information. For example, a foraging organism that encounters a food item

might change its movement pattern to intensify a food search by slowing down and in-

creasing its turning rate, a fish might move more slowly in warmer waters, any diurnal

organism spends some part of the night inactive. The step length is a function of the
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environmental information, which is itself a function of the absolute location of the

organism, while the intrinsic state is independent of absolute position. Displacement

can be expressed as

V(t) =
∂X

∂t
= f(S(t),E(X(t))), (1.2)

or, in the discrete case, the movement step can be expressed as:

∆Xt = f(St−1,E(Xt−1)) (1.3)

This general model suggests a framework within which information about move-

ment from the Lagrangian perspective of the organism can be interpreted in terms of

Eulerian knowledge of the environment. Once positional data, Xt, is decomposed into

actual parameters of movement, such as step lengths Rt and turning angles θt, and

the environmental history Et is obtained, the specific analysis needs to be tailored to

the study organism, the relevant question at hand and to the quality of the available

data.

1.2.2 Objectives and structure

This dissertation does not, in fact, contribute concretely to inferences on the be-

havioral operator presented above. However, its broad goal is to contribute to the

development of an understanding of the movement models themselves, whether com-

plex and behaviorally heterogeneous or diffusive simplifications. All the movements

in the dissertation are ultimately parameterized by a Lagrangian, stochastic model of

movement. Basically, much concern is given to modeling and parameterizing ∆X(t),

whatever the application.

The dissertation is divided into two parts. Part 1 (Chapters 2 and 3) discusses

and develops mathematical parameterizations of movement at the most fundamental

level with emphasis on estimating relevant parameters from movement data. Some
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of the ambiguities and shortcomings of existing methods are addressed, refinements

and alternatives are proposed, and practical examples are provided.

Chapter 2 discusses, dissects and decomposes the correlated random walk model.

In most applications, the CRW assumes independent distributions of move lengths and

move angles that describe an organism’s path. The “correlated” nature of the CRW

is captured by turning angles that are clustered around zero degrees, but are not,

in fact, autocorrelated themselves. The consequences of this omission for analyzing

movement tracks are discussed and presented. A further drawback of the CRW is that

the parameters are only meaningful when the data is “regular”, i.e. the time interval

of sampling is constant. However, real data is often very irregular, particularly in

marine environments. I explore what happens to the parameters of a CRW under

irregular samplings and suggest a parameterization in terms of a time-scale of loss of

correlation, illustrating the method with data on dugong (Dugong dugon) movements

in Western Australia. Finally, I suggest that the two fundamental parameters of

homogeneous random movement are the length and time scales at which correlation is

lost, and present a method to determine these scales. In later chapters, these scaling

parameters are shown to be largely sufficient for predicting larger-scaled ecological

processes such as dispersal, migration and encounter rates.

In Chapter 3, I present in detail a continuous, stochastic, auto-correlated model

of movement originally developed by Dunn and Brown (1987) and Alt (1990). The

model is versatile, capable of capturing advective movements, helical trajectories,

and turning persistence, all features which traditional CRW models are incapable of

capturing. The parameters of the model are readily interpretable in terms of temporal

and spatial scales of autocorrelation and turning radii. Efficient methods of estimating

the parameters are developed and applied to movements of unicellular algae.

Part II (Chapters 4, 5 and 6) presents diverse ecological applications of various

ideas developed in the Part I. Chapter 4 is devoted to mathematical predictions of

encounter rates, whether between predator and prey or foragers and search targets.
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Under certain assumptions, encounter rates can be derived entirely from characteristic

time and length scales of movement presented in Chapter 2. The one-dimensional

encounter rate model is applied to data on survival of migrating juvenile salmon

in the Columbia River basin. Finally, the two-dimensional case is discussed with

some general applications about the movement scales which optimize foraging in two

dimensional environments.

In Chapter 5, I develop a comprehensive method of interpreting animal movement

data in terms of discrete behavioral switches. Movement is parameterized in terms of

means, variance and autocorrelations of persistence and turning components. Robust

statistical methods to identify discrete shifts in the values of these parameters are

developed and tested. The method is notably geared to appropriate interpretation of

gappy movement data, that is data that has been sampled at irregular intervals, as is

particularly common in marine environments where the receipt and transmission of

a signal relies on the organism being on the surface of the water. I apply the method

to data of a GPS-tracked foraging female northern fur seal (Callorhinus ursinus)

acquired in the Kuril Islands in Russia.

Chapter 6 departs from the analysis of individual track data to consider two other

fundamental kinds of movement data: mark-recapture of a dispersing population and

first-passage times of a migrating population. Beginning with the fundamental length

and time scales of movement defined in chapter 2, the effects of a heterogeneous popu-

lation on the observed distributions and travel times of moving organisms are derived

in terms of a general population-heterogeneity framework. Parameters of the resulting

distributions are estimated for dispersing blue head chub, migrating salmonids in the

Columbia river and human runners in a marathon. I present a straightforward quan-

tification of population level heterogeneity and provide a mechanistic explanation for

the long-tails observed both in dispersal and first-passage time distributions.

I conclude in chapter 7 with some general thoughts about the study of animal

movements, possible future directions in fundamental developments and relevance to
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applied problems in ecology.

This work is essentially methodological. An attempt has been made to include

all the necessary estimation and analysis routines, including annotated R-code in the

appendices which should allow the reader to readily implement any of the analyses.

Because of the wide scope of this dissertation, with objects of study ranging from

microscopic alga to top predator marine mammals, from tropical waters in Australia

to North American rivers, it is necessarily difficult to fully explore the practical con-

sequences and nuances of any of the ecological systems considered. Nonetheless, it

is hoped that the mixture of theoretical rigor, practical algorithms and concrete ex-

amples will provide some inspiration for attacking a variety of problems in movement

ecology.
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Part I

MATHEMATICAL MODELS OF MOVEMENT AND
THEIR PARAMETERIZATIONS

[T]he type of motion presented by living organisms ... can be regarded

as containing both a systematically directed and also a random

component... The mathematical treatment of the statistical mechanics

of the kind of systems here taken in view may appear to threaten

formidable difficulties. It is hoped that this will not altogether prevent

its attack.

Alfred J. Lotka (1924)
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Chapter 2

THE CORRELATED RANDOM WALK: OVERVIEW AND
EXTENSIONS

[But] it is on such false correlations that men found half their

inferences...

George Eliot (1865)

2.0 Introduction

Actual animal movements are the result of a complicated behavioral and biophysical

responses to internal states, environmental cues, and constraints. Because it is im-

possible to model all of these interactions, especially for mass movements, movements

of organisms are often modeled stochastically, i.e. with intrinsically random velocities

and orientations that can be summarized by well-defined probability densities and

associated parameters. While actual movement contains many different behavioral

modes, the discussion here is constrained to a single behavioral idealized “unit” of

movement that is homogeneous and stationary, i.e. described by the same set of para-

meters independent of absolute spatial location and time respectively. Despite these

simplifications, it is not immediately obvious how a continuous movement process

should be modeled and parameterized, since movement is a multi-dimensional, com-

bining both spatial and a temporal dimension, and auto-correlated process.

While a true consensus in appropriate models still eludes movement ecologists,

an increasingly widespread general description of homogeneous unoriented random

movements can be broadly classified as the “correlated random walk” (CRW). The

most common CRW is modeled as one where step-lengths r have some non-negative,
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right-skewed distribution and turning angles θ are symmetrically clustered around

zero degrees (Patlak, 1953b; Shigesada, 1980; Kareiva and Shigesada, 1983; Marsh and

Jones, 1988; Bergman et al., 2000; Morales et al., 2004; Bartumeus et al., 2008, others).

Widely used example of a circular distribution for turning angles are the wrapped

normal (WND) von-Mises (VMD) and wrapped Cauchy distributions (WCD) (see

Fisher (1993) for a review of circular distributions). Most recently, attention has

been paid to a circular distributions known as the Jones-Pewsey distributions which

generalize wrapped normal and Cauchy and other distributions into a single family

(Jones and Pewsey, 2005; Bartumeus et al., 2008).

Here and in subsequent chapters I will be primarily applying the Weibull distribu-

tion for step-lengths r and the wrapped Cauchy distribution for turning angles θ (see

figure 2.1 for examples of trajectories and distributions). The Weibull distribution is

a positive unimodal distribution whose density function is given by

R ∼ f(r) =
a

b

(r

b

)a−1

exp
[(
−r

b

)a]
(2.1)

with shape parameter a and scale parameter b. Several special cases for the shape

parameter merit discussion. The case when a = 2 is the Cauchy distribution

f(r|t) =
2r

b
√

t
exp

(
−r2

bt

)
(2.2)

which is the solution for the distribution of an unconstrained two-dimensional diffusion

process where the diffusion constant D = (b/2)2. As a approaches infinity, the Weibull

distribution becomes a delta function at value b. If a = 1, (2.2) is the exponential

distribution (the spatial Poisson process), and the resulting movement corresponds

to jumps between neighboring points randomly distributed in space.
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Figure 2.1: Examples of correlated walks along with rose diagrams of wrapped Cauchy
distributions for turning angles (along left) and Weibull distributions for the step lengths
(along top).
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The mean and variance of the Weibull distribution are:

E [R] = bΓ(1 + 1/a) (2.3)

Var [R] = b2[Γ(1 + 2/a)− Γ(1 + 1/a)2] (2.4)

where Γ is the gamma function. These moments can be used to obtain moments

of methods estimators (MME’s) from the sample mean and variance. Maximum

likelihood estimates can also be obtained, though they require iterative procedures

(Gove, 2003).

The wrapped Cauchy distribution is defined over the interval (−π, π) as follows

Θ ∼ g(θ) =
1

2π

(
1− κ2

1 + κ2 − 2κ cos(θ − µ)

)
(2.5)

where µ is the mean direction and κ ∈ {0, 1} is a clustering parameter: When κ = 0,

the angles are distributed uniformly between −π and π and when κ = 1, the distribu-

tion is a delta function at θ = 0. Uniformly distributed turning angles correspond to

a true random walk (RW), or drunkard’s walk, or Pearson’s walk1. Clustering greater

than zero between successive steps give a movement some directional persistence (fig-

ure 2.2B).

An important feature of the WCD is that the clustering parameter κ is the ex-

1The study of random walks can be said to have been fathered by Karl Pearson (1857-1936), who
posed the following problem in a brief letter in Nature (Pearson, 1905):

A man starts from a point O and walks l yards in a straight line; he then turns through
any angle whatever and walks another l yards in a second straight line. He repeats
this process n times. I require the probability that after these n stretches he is at a
distance between r and r + dr from his starting point, O.

An approximate solution provided by Lord Rayleigh of, essentially, a two-dimensional Gaussian
distribution around the origin prompted the following quip by Pearson:

The lesson of Lord Rayleigh’s solution is that in open country the most probable place
to find a drunken man who is at all capable of keeping on his feet is somewhere near
his starting point!
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pectation of the cosine of the angles: κ = 〈cos(θ)〉; making κ an intuitive and readily

estimable parameter. This property also dovetails nicely with a fundamental result

in the CRW literature by Kareiva and Shigesada (1983): The expected square of the

displacement (MSD) after n steps of a CRW can be written out in terms of κ and the

moments of the step length distribution as

〈
R2(n)

〉
= n

〈
r2
〉

+ 2 〈r〉2 κ

1− κ

(
n− 1− κn

1− κ

)
(2.6)

For κ = 0, the second term drops off and the MSD becomes simply 〈R2(n)〉 = n 〈r2〉,

which is the familiar relationship of a true random walk2 that the variance of a

cumulative independent random process increases linearly with time. For non-zero

values of κ, at the long-time limit of large n the MSD becomes

lim
n�1

〈
R2(n)

〉
= n

(〈
r2
〉

+
2κ− 1

1− κ
〈r〉2

)
(2.7)

which is also proportional to the length of the walk. Thus, a CRW will eventually

approximate standard diffusion-like dispersal at a long enough time-scale. This is

an expected result of the essential Markovian property of all homogeneous random

walks. Deviations from the Gaussian approximation are only relevant at time-scales

where the term 1−κn

1−κ
is on the order of n.

The MSD is analytically solvable for CRW’s, and therefore a commonly used

property in analyses. However, the actual expected displacement, which is often a

parameter of greater interest, is often difficult to solve for analytically. Bovet and

Benhamou (1988) suggest that for a reasonable amount of steps (N > 10) a good

estimate of the actual expected net displacement is

〈R(n)〉 ∼
√

π

4
〈R2(n)〉 (2.8)

2or of Brownian motion, or of diffusion approximations, or even of the central limit theorem
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This approximation gives good predictions under assumptions of homogeneous, “in-

dependent” CRW’s, and will be referred to later.

2.1 Is the correlated random walk really correlated?

A fundamental assumption of the correlated random walk as it is most commonly ap-

plied is that the step-lengths and turning angles are independent. The “smoothness”

of the walk is accounted for by angles that are clustered around zero, but the fluc-

tuations around a directed orientation, while small, oscillate independently between

positive values and negative values. The radius of the curvature is limited by the

step-length. Real animal movements, however, often display large radia of curvature

(see, for example, fur seal tracks in figures 5.5), which cannot be accounted for by a

classic CRW model. Furthermore, at a high temporal resolution of sampling of a true

smooth trajectory, turning angles and velocities will necessarily be auto-correlated

due to rotational and linear inertia. Thus, a sampling of a true movement that may

be well-modeled by a CRW at a particular time interval will not be a sub-sampling of

another CRW, but of a truly correlated random walk (what we might call a TCRW).

There are any number of ways of modeling a truly correlated random walk; the

only requirement is that the autocorrelation structure between subsequent parameters

be well defined. Because turning angles are circular and velocities are positive and

skewed, standard Gaussian autocorrelated models are, however, not appropriate. A

simple model which explicitly autocorrelates the turning angles can be written out as

follows:

θi = ρ θi−1 + εi (2.9)

where ε are independent and identically distributed wrapped Cauchy random variables

with clustering coefficient κ and 0 < ρ < 1. In this parameterization, ρ = κ = 1 is
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linear movement, ρ = 0 collapses to the CRW and ρ = κ = 0 is the uncorrelated RW.

Realizations of the TCRW are presented in figure 2.2. Note that the CRW (figure

2.2B) is somewhat more zig-zaggy, even at a high value for κ = 0.9, whereas at

ρ = 0.5 (figure 2.2C) the path is somewhat smoother. At high values of ρ (fig. 2.2D),

we observe several periods of tight looping, corresponding to periods where larger

turning angles are auto-correlated, which the standard CRW is incapable of capturing.

One immediate impact of a TCRW is that the expected distances no longer con-

form with Patlak’s expectation. I performed 1000 simulations apiece of TCRW with

turning angles generated from equation 2.9 for values of ρ ranging from 0 to 1. The

results (figure 2.3) indicate that as ρ approaches 1, the expected displacement drops

from 25.83 (as predicted by Patlak’s formula 2.7) by more than half to 10.97. These

results suggest that auto-correlation in the turning angles can have a significant im-

pact on the statistical nature of correlated random walk models.

A more mathematically sophisticated discussion of auto-correlation structures in

continuous stochastic movement models is presented in chapter 3.

2.2 Dealing with irregular intervals: Estimating Θ(t) for gappy time-
series

A further limitation to applying correlated random walk models to continuous move-

ments is the fact that they are predicated on regular observations between intervals.

It is, however, not meaningful to fit a CRW to gappy data, since neither the R(ti) nor

Θ(ti) are identically distributed when the interval between measurements changes.

Here, I explore approximations of the expected distribution of Θ as a function of

irregular intervals. Again, the basic CRW model I consider is one in which Θ and R

are independently drawn from the wrapped Cauchy and Weibull model respectively,

such that:
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Figure 2.2: Examples of several kinds of stochastic models of movement. A) Uncorrelated
random walk. B) Weibull-wrapped Cauchy random walk. C) True CRW (2.9) with κ = 0.9,
ρ = 0.5. D) True CRW with κ = 0.9 and ρ = 0.9.



30

●

●

●●●
●
●

● ●

●●●●
●●●

●

●
●

●

●
●●

●

●
●●●
●
●●

● ●

●

●
●

●●

●

●●●

●

●●●
●●
●●●
●

●●●
●

●●●●●
●●

●

●

●

●●●●
●
●

●●

●

●
●
●●
●●

●●●
●
●

●●●

●●
●

●
●

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
10

30
50

70

ρρ

D
is

ta
nc

e 
af

te
r 

10
0 

st
ep

s

Figure 2.3: Expected displacements after 100 steps of a TCRW process (2.9) with κ = 0.8
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Θ ∼ f(θ) =
1

2π

(
1− κ2

1 + κ2 − 2κ cos(θ − µ)

)
(2.10)

R ∼ g(r) =
a

b

(r

b

)a−1

exp
[(
−r

b

)a]
(2.11)

2.2.1 Modified wrapped-Cauchy distribution

When we consider turning angles a problem with irregular measurements immediately

arises: at very small time intervals, the probability that the organism will continue to

move in the previous direction is very high and κ is close to one. At long time intervals,

the tendency to continue in the same direction is closer to zero (e.g. an organism is

typically very little affected at any given moment by its orientation months before

a given moment). The κ parameter is therefore a continuous function depending on

the time between measurements (τ). In order to find the relationship between the

effective κ and the interval of measurement, I performed ten thousand simulations

of CRW curves with high values of κ1 (so denoted to reflect the fact that it is the

true clustering coefficient at a time interval of 1), subsampled these at every possible

interval τ ∈ {1, 30}, obtained values of κ̂τ and performed linear regressions of 1/κ̂τ

against τ . The regression yielded the following semi-empirical relationship

κ(τ) =
1(

1
2
(1− κ1)τ + 1)

)2 (2.12)

This relationship provides excellent fits to the simulation results (figure 2.4). Accord-

ing to equation 2.12 the measured κ drops as expected from a value of 1 at τ = 0 to

zero, suggesting that a “characteristic” time-scale of the decrease might be a para-

meter of interest, especially since actual irregularly collected animal movement data

does not lend itself to an immediately discretizable, “natural” value of τ1. Thus, if

we define a parameter τ1/2 such that κ(τ1/2) = 0.5, equation 2.12 can be reexpressed
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as

κ(τ) =
τ 2
1/2(

(
√

2− 1)τ + τ1/2

)2 (2.13)

and the complete distribution for turning angles is

f(θ, τ |τ1/2) =
1

2π

(
1− κ(τ)2

1 + κ(τ)2 − 2κ(τ) cos(θ − µ)

)
. (2.14)

where κ(τ) is a function of τ1/s as in (2.14). I will refer to this distribution as

the adjusted wrapped Cauchy distribution. The τ1/2 parameter is the first of several

possible indices of characteristic time-scales of movement that I introduce in this

dissertation. R-code for generating the distribution (2.14) and for simulating random

draws from it are provided in appendix A.1 and A.2.

2.2.2 Estimating parameters

The existence of a well-defined form for the distribution of turning angles as a function

of the gap interval allows for ready application to maximum likelihood methods for

estimating a value for τ1/2 from data in the form {Xi, Yi, Ti}, where i ∈ {1, 2, ..., n}.

We reduce this dataset to turning angles Θi (see section 3.3 for the most efficient

method to obtain turning angles from spatial data) and gaps τi = Ti − Ti−1. Then

the likelihood of parameter τ̂1/2 given the data is

L(τ1/2|Θ, τ) =
n∏

i=1

f(θ, τ |τ1/2), (2.15)

where f(·) is the adjusted wrapped-Cauchy distribution (2.14). This is smooth, well-

behaved function of τ1/2 and can readily be maximized numerically (see R-code in

appendix A.3).
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Figure 2.5: Movement track of dugong D0606 in Shark Bay, Western Australia.
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Figure 2.6: Histogram of time intervals between measurements and rose diagram of turning
angles for D0606 track.

2.2.3 Example with dugong (Dugong dugon) movements

The dugong (Dugong dugon Müller, 1776) is a species of marine mammal in the or-

der Sirenia which also includes sea cows and manatees (Trichechus spp.) It is the

smallest of the sirenians, measuring usually less than 3 m. and is distinguished by

a fluked rather than paddle-shaped tail. Once found throughout the Indian Ocean

and tropical South Pacific, the dugong’s populations have been greatly reduced and

fragmented, primarily due to hunting and habitat degradation. Dugongs are associ-

ated with shallow, protected near-shore areas and spends most of their time foraging

on various species of seagrass (de Iongh et al., 1995). One of the healthier dugong

populations resides in Shark Bay, a shallow (6-15 m) semi-enclosed bay on Australia’s

west-central coast (25oS, 113oE) with the most extensive seagrass shoals in the world

(Marsh et al., 2005).

From 2000 to 2002, dugongs have been captured, instrumented with GPS tags
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and released. Their locations (latitude and longitude to millisecond resolution) have

been subsequently monitored remotely, and at a later date some of the instruments

were retrieved for additional data. The tags floated on the surface of the water,

towed by the animal, and emitted a signal every 15 minutes identifying the latitude

and longitude. For more details on the tagging methods and data see Holley (2006).

Here, I discuss a track drawn by a single dugong, referred to in this report as D0606,

that was tracked from June 18 to August 9, 2002 (see Figure 2.5).

Due to variable satellite exposure, linkage delays and deeper diving behavior,

the resulting data is very gappy. D0606 was covered for 52.5 days or 5040 possible

15 min. periods, but only 1471 positions were registered. Time intervals between

measurements therefore ranged from a few minutes to over a day, with roughly 90%

under 45 minutes and 75% under 16 minutes (see figure 2.6A). The turnings angles

are weakly clustered around zero degrees (figure 2.6A).

Since a straightforward estimation of a wrapped Cauchy parameter (κ̂ = 〈cos(θi)〉

is relatively meaningless, the identification of the half-clustering time is a useful pa-

rameter for characterizing the time-scale at which the movement loses its autocor-

relation. For dugong D0606, the resulting value for the estimate is 9.55 minutes,

suggesting that if positions were samples exactly every ten minutes, the estimate of

the clustering coefficient would be around 0.5. From (2.13), we calculate that the

expected clustering at 1 minute intervals would be a high 0.92, whereas as a 1 hour

sampling rate, κ̂ drops to 0.077, i.e. undetectable clustering in the turning angles.

Thus, we can generalize the movement of the dugong to say that it’s general persis-

tence or “memory” or movement is on the order of tens of minutes.

In reality a dugong’s movements are highly heterogeneous. There are periods

when it transitions from one feeding ground to another, in which case the persistence

scale is much higher, as opposed to the periods when it is feeding and making much

slower, more random movements. The separation of behavioral modes within a single

movement track is the topic of chapter 5. Within a relatively homogeneous move-
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ment period, however, the half-time of persistence τ1/2 is an excellent indicator of

the temporal scale of the animals directional changes, whereas the traditional κ has

essentially no meaning for irregularly sampled data.

2.3 The mu-sigma-tau (MST) walk

There is much discussion in the literature as to whether actual movement data con-

stitutes a true random walk (RW) or a correlated random walk (CRW), how to char-

acterize the “sinuosity” or “tortuosity” of a walk, and what impact different models

have on expected dispersal distances (Skellam, 1951; Patlak, 1953b; Shigesada, 1980;

Kareiva and Shigesada, 1983; Byers, 2001; Benhamou, 2004). However, much of this

debate seems somewhat spurious, since almost all movements are necessarily corre-

lated at a small enough time scale and uncorrelated at a large enough time-scale.

Exceptions to this rule are processes that are inherently discrete, such as in the orig-

inal application of the CRW in the analysis of moth movements between flowers by

Kareiva and Shigesada (1983) or of elk moving between snow craters (Fortin et al.,

2005b).

It is generally not meaningful to discuss whether a movement itself is “correlated”,

rather, data acquired from an organism may or may not be correlated depending on

the temporal resolution of the data acquisition compared to a time scale of indepen-

dence (τ ∗). A given time scale of independence is associated with a characteristic

distance scale (σ∗) which is a measure of the typical random component of distance

that a moving organism covers in time τ ∗. A third parameter, µ∗, characterizes the

advective component of a movement. I make the assertion that for any homoge-

neous random walk, the identification of these time and length scales is sufficient

to determine such larger scaled ecological processes as encounter rates (chapter 4)

and dispersal rates (chapter 6), regardless of the specific “nature” of the appropriate

correlated random walk model.
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2.3.1 Formal definition of an MST-walk

Most generally, a generalized homogeneous3 Markovian movement process is defined

as a continuous time process, Z(t), that can be discretized such that at at some

interval τ

Z(t + τ) = Z(t) + X(τ) (2.16)

where Z is the step distribution, a random variable with some constant mean vector

µ and variance-covariance matrix Σ2. The time interval τ at which subsequent X’s

are fully independent, such that Cov[X(t), X(t + τ)] = 0, is defined as the time scale

of independence.

In two dimensions, for example, the process defined as {Wx(t), Wy(t)} would be

fully characterized by six parameters of step length: µx, µy, σ2
x, σ2

y , σxy and the

temporal independence scaling parameter τ . The case where µx = µy = 0 can capture

the statistical behavior of any correlated random walk, since there is no absolute trend

in orientation to typical CRW movements. In that case, τ is merely sub-sampling

interval at which turning angles become uniformly distributed. If the mean parameter

is different from zero, then the movement has an advective trend the velocity of which

is 〈V 〉 = µ/τ .

The movement defined in equation 2.16 will be referred to as an MST-walk, since

it is fully defined by the parameters µ, σ and τ . Note that both µ and σ have units

of distance.

One immediate application of this parameterization is in the identification of dif-

fusion parameters. The “biodiffusion” model, which has been widely used to describe

either distribution of large numbers of independently moving organisms of probability

distributions of displacement for a single randomly moving individual (Skellam, 1951;

Zabel, 1994; Turchin, 1998; Okubo and Levin, 2001; Ovaskainen, 2004, others). The

3It would be more technically correct to use the time-series jargon: “stationary” rather than
“homogeneous”, but I sacrifice the obvious benefits of precision in order to avoid a distressingly
oxymoronic discussion of “stationary movements”.
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simplest form of one-dimensional, homogeneous, unconstrained diffusion of a group of

organisms all leaving the origin at a time 0 with mean velocity v suggests that their

spacial distribution at time t is given by

f(x|t) = φ(v t, Dt/2) (2.17)

where φ(µ, σ2) is the Gaussian distribution and D is a diffusion parameter with units

of distance2 over time. The diffusion parameter describes the rate at which the spatial

distribution of the population increases with time. Equation (2.17) is often derived

from the solution of Fick’s equation which integrates the flux of infinitesimally moving

Brownian particles described in partial differential equation form. Diffusion parame-

ters are rarely defined explicitly in terms of the parameters of individual movement.

The MST parameterization and the central limit theorem, however, explicitly suggest

that a cumulative number of independent MST-steps yields

f(x|t) = φ

(
µ

τ
t,

σ2

τ
t

)
. (2.18)

This derivation and parameterization is biologically highly intuitive, and contributes

to the encounter rate theory presented in chapter 4 and derivations of migration and

dispersal presented in chapter 6.

2.3.2 Estimating parameters

There are presumably as many ways to identify the MST parameters as there are

ways to model stochastic movements. The half-time of clustering under the correlated

walk model discussed in the previous section is one example. In chapter 3, I present

a mathematically more sophisticated method by exploring the continuous autocor-

relation structure of a complex track with oscillatory components. The persistence

and turning autocorrelation calculated for foraging northern fur seals in 5 is related
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to another such index. Here, I present a method that is based on a semi-empirical

analysis of subsamplings of a CRW.

Consider data separated into turning angles Θ and step lengths R. Subsampling

this walk at various intervals τ yields sets of step lengths Rτ and turning angles Θτ .

(It should be noted that a set of these gapped values can be obtained beginning at

any of the first τ points, such that the length of these subsample vectors is N − τ .)

Maximum likelihood estimates of the clustering coefficients κ̂τ and step-lengths R̂τ

at different intervals can be obtained using methods described in Fisher (1993). At a

high gap interval, the turning angles will be impossibly to distinguish from uniformity.

The size of that interval, τ ∗ and the corresponding expected step-length σ∗ are the

time and length scales of independence.

An example of the application of this methodology is presented in figure 2.7. A

smooth curve is generated with constant step length l = 1 and clustering parameter

κ = 0.9 (fig. 2.7A). The curve is sampled at various intervals τ as described above. In

order to determine the point at which any correlation is lost, I generated an empirical

null-distribution of κ-estimates by simulating 1000 datasets from a uniform angular

distribution (κ0 = 0) of length N/τ and obtaining 5% and 95% quantile envelopes

around estimates of κ̂0 (fig. 2.7B). In the example, the data-derived κ̄ crosses the

envelope at τ ∗ = 21, indicating that at that interval length the turning angles are no

longer meaningfully clustered. The corresponding empirical step length is σ∗ = 14.4,

or, using the Bovet-Benhamou approximation, σ∗ = 13.7 (fig. 2.7C).

I repeated this process for a range of clustering coefficient values 0 < κ < 0.98,

simulating 20 walks at each value and obtaining estimates and scatters for τ ∗. The

resulting relationship is plotted in figure 2.8. At κ = 0, i.e. the uncorrelated walk, the

expected value for τ ∗ is 1, while at κ = 1, i.e. the linear, directed movement, τ ∗ →∞.

An empirical equation that fits the data well is

τ ∗ = A log

(
1

1− κ2

)
+ 1 (2.19)
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Figure 2.7: Example of decomposition of smooth track. (A) represents a smooth CRW
trajectory, with wrapped Cauchy turning angles with clustering coefficient κ = 0.9 and step
lengths equal to one. Subsamplings of the data at intervals τ = 10 and 30 are illustrated
in red and blue respectively. While the first subsample still shows correlation, at τ = 30
the walk can be considered truly random. Maximum likelihood estimates of κ against τ are
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quantile envelopes of estimates of κ for data generated with no clustering (κ = 0). At the
point where the κ estimates enters the envelope (approximately τ = 21), the estimate cannot
be considered significantly different than zero. Plot (C) shows the mean step length at each
τ along with the Bovet-Benhamou prediction. At τ∗ = 21, the step length of independence
σ∗ ∼ 14.4.
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where A is found via regression on a linearization of the formula to be equal to about

13.71. This formula gives a rough idea of the relationship we might expect between

the strength of the autocorrelation in a random walk and the expected time lag of

independence.

2.3.3 Total distance of subsampled movement

When applying this subsampling to an true correlated movement, there is clearly some

additional movement that is not accounted for in the non-correlated approximation.

When calculating encounter rates, it is of some importance to know how much of the

true path length is “lost” by the subsampling procedure. Denoting the total path-

length at subsampling τ as Lτ , the ratio between expected subsampled pathlength

and the total true path-length after N steps is

Lτ

L1

=
N
τ
〈R(n)〉
N 〈r〉

. (2.20)

For high values of κ, this quantity drops relatively slowly against τ , while for lower

values of κ there is a rapid drop (see figure 2.8); however, this loss is compensated

for by the correspondigly much shorter time-scales of independence for less correlated

walks. A superposition of the expected values for τ ∗ onto the distance ratio curves

suggests that the ratio of distance traveled to total distance does not drop below 0.6.

While this is a semi-rigorous quantification of the impact of rescaling on the total

distance swept out by the true path, the main message is that we can rescale with

relative impunity. As long as the time and distance scale of independence is chosen as

close as possible to the autocorrelation threshold, we can be confident that the bulk

of the properties of the movement will be retained despite the simplification. Only a

very coarse sub-sampling will lead to total distances that are less than half the true

distance.
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Figure 2.8: Simulation results exploring the relationship between clustering coefficient κ,
estimated independence time-scale τ∗ and the length ratio Lτ/L1. In the plot, 20 trajectories
were generated for each value of κ and values of τ∗ were estimated using the method
described in the text. The median values and 5 and 95% quantile values are plotted, as well
as an empirically fit curve (in red). The lower plot shows the ratio of the subsampled path
lengths (Lτ ) compared to total path length for different values of κ, based on simulated
paths of length 10000. The bold points represent the expected values of τ∗ for each of the
curves based on the results of the simulation above.
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2.4 Conclusions

Lack of independence is one of the primary difficulties in analyzing movement data

since it precludes application of many standard statistical analysis techniques. How-

ever, there is much potential information in the temporal and spatial scales at which

movement data can be considered independent. These scales lead directly to a pa-

rameterization of diffusion approximations as well as predictions of encounter rates,

which have consequences both for predation avoidance and successful foraging. Fur-

thermore, these time and length scale are also more fundamentally intrinsic parame-

ters of movement in the sense that they are independent of the frequency of measure-

ment. The half-time parameterization of clustering angles and step lengths are useful

not only because they deal with the issue of irregular sampling intervals, but because

the parameters themselves have some biological meaning.

In this chapter, I presented a few examples of methods to estimate these scales

from various kinds of data. Others are implicit in the parameterizations of movement

presented further. While comparison of the various methods awaits further research,

the theme of scales of independence and autocorrelation is a recurrent one throughout

this dissertation. The MST-walk in particular will be referred to on several occasions.

A general recommendation can be made to researchers of animal movement to embrace

rather than avoid the issue of lack of independence, since identifying the intrinsic scales

of independence can provide considerable insight into movement processes.
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Chapter 3

CONTINUOUS STOCHASTIC AUTO-CORRELATED
MODELS OF MOVEMENT

[T]he complexity of movement data has often led researchers to seek out

methods that avoid its complexities rather than embrace them.

Patterson et al. (2008)

3.1 Introduction

A fundamental feature of physical movement is that it occurs in two or more spa-

tial dimensions and in time. The CRW model considers the two polar dimensions

of discretized steps (step length and turning angle), but does not account for any

relationship between the two or, as we have seen, for any kind of temporal struc-

ture beyond independent samplings from appropriate distributions. In this section,

I present some mathematically convenient methods of modeling movements as con-

tinuous stochastic processes, highlighting the natural way in which persistence and

turning velocities can be auto- and cross-correlated. I also present ways to discretize,

simulate, and estimate the necessary parameters for such processes.

I use complex vector notation to model continuous movement. Complex num-

bers are ordered pairs of numbers, separated into real and imaginary components.

Complex numbers map onto two-dimensional space and can therefore represent two-

dimensional vectors. A variety of straightforward arithmetic and algebraic operations

(addition, multiplication, integration, etc.) have ready geometric interpretations. In

short, they are an efficient and natural mathematical framework for describing two-

dimensional processes like movement.
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O
●

●

Z1 == X1 ++ iY1

Z2 == X2 ++ iY2

Z3 == Z1 ++ Z2

x1 ++ x2

y1 ++ y2

O

Z1 == r1e((iθθ1))
Z2 == i

θθ1

Z3 == Z1Z2

θθ3 == θθ1 ++ ππ

Figure 3.1: Geometric representation of complex numbers, their addition and multiplica-
tion.

Complex variables were most notably used to describe biological movement by

Dunn and Brown (1987) and Alt (1988, 1990), who developed a complex autocor-

relation analysis for modeling continuous stochastic movements with applications to

various single-celled organisms. However, these methods do not appear to have caught

on widely, especially among investigators of larger organisms. The interested reader

is encouraged to study the original papers.

3.2 Brief review of complex notation

(N.B. The following is a brief review of complex numbers and their manipulation.

Readers comfortable with complex analysis can proceed directly to section 3.3.)

Complex numbers are written in the form z = x + iy where x is the real part and y

is the imaginary part (since it is multiplied by the imaginary unit : i =
√
−1). These

components are often notated as x = <(z) and y = =(x). Complex numbers can be
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visualized conveniently as vectors in the complex plane, where the x and y axes are

the real and imaginary axes respectively (figure 3.1). A complex number z can also be

summarized by the polar quantities r, also denoted |z| and referred to as the modulus,

and θ, known as the argument. Geometrically, these correspond to the distance from

the origin and the angular deviation from the positive x-axis respectively, and are

related to x and y via the standard Cartesian-polar relationships:

r =
√

x2 + y2 (3.1)

x = r cos(θ) (3.2)

y = r sin(θ). (3.3)

A complex number can be expressed in terms of the modulus and argument as: z =

r exp(−i θ). Thus, the real complex number Z = r can be expressed as Z = r exp(0)

and the imaginary complex number Z = ir = r exp(iπ).

The sum of two complex numbers z1 + z2 is defined as (x1 + x2) + i (y1 + y2) and

is readily visualized as the sum of two vectors. The product is given by

z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1) (3.4)

= r1r2 exp (θ1 + θ2)i. (3.5)

It is perhaps most clear in the polar notation that the product of the complex numbers

z1 and z2 with arguments θ1 and θ2 is equivalent to a rotation of z1 by θ2 degrees,

accompanied by some stretching (figure 3.1).1

A final definition that will be useful later is the complex conjugate, defined for

vector z = x + iy as z? = x − iy, or, in polar notation: z? = r exp(−i θ). The

product of a complex number z1 and the complex conjugate of another number z2

1This interpretation helps clarify the otherwise cryptic definition of i =
√
−1: Multiplying a

number by i (equivalent to r = 1, θ = π/2) is just a 90 degree rotation. Thus the value i2

corresponds to rotating the unit vector twice, from +1 to +i to −1.
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can be thought of as a measure of their similarity. Consider the following set of

relationships:

Identical vectors: z1 · z?
1 = |z1|2

Diametrically opposite vectors: z1 · (z1 ei π)? = −|z1|2

Perpendicular vectors: z1 · (z1 ei π
2 )? = i |z1|2

Thus, the product z1z
?
2 has the greatest positive value for vectors that are oriented

in the same direction, the greatest negative value for opposite orientations, and a

zero real component for pairs of perpendicular vectors. These relationships will be

exploited to construct autocorrelation structures.

3.3 Movement in complex notation

A continuous two-dimentional trajectory Z(t) = {X(t), Y (t)} is fully determined by

the velocity vector V (t), such that

Z(t) =

∫ t

t′=0

V (t′) dt′. (3.6)

The velocity vector can be denoted in complex notation as

V (t) = S(t) eiΦ(t), (3.7)

where S = |V | is the instantaneous speed (modulus of V ) and Φ is the absolute

orientation.

Actual movement data is almost always discrete. Consider data consisting of

ordered pairs of x and y locations Xt and Yt where t ∈ {0, 1, 2, ..., n} (for simplicity

we assume that the time interval is equal to 1). These locations can be recast as a

complex vector of positions Zt = Xt + i Yt and the velocity vector is given by

Vt = Zt − Zt−1 for t ∈ {1, 2, ..., n}. (3.8)
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Figure 3.2: Velocity vectors displaced by interval τ .

Obtaining turning angles and step lengths from complex velocity vectors Vt is no-

tationally and computationally very compact. This is illustrated in the following

example (given in R-code but analogous in any standard mathematical programming

language):

# Complex position vector from positions "X" and "Y"
Z <- complex(re=X,im=Y)

# Velocity vector
V <- diff(Z)

# Absolute orientations and step lengths
S <- Mod(V)
Phi <- Arg(V)

# Turning angles and differential velocity changes
dV <- diff(V)
Theta <- Arg(dV)
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It is arguably worth the effort of familiarizing oneself with complex notation and

manipulations for the sake of this efficiency alone.

3.3.1 Complex velocity autocorrelation function

Consider V (t + τ), the velocity vector at some small interval τ later (figure 3.2). The

complex product between two velocity vectors :

G(t, t + τ) = V (t) · V ?(t + τ) = S(t) S(t + τ) e−i (Φ(t+τ)−Φ(t)). (3.9)

This complex product has intuitive meaning in the context of the properties of the

complex product listed above. Consider a decomposition into real and imaginary

components

<(G(t, t + τ)) = S(t) S(t + τ) cos(Φ(t + τ)− Φ) (3.10)

=(G(t, t + τ)) = S(t) S(t + τ) sin(Φ(t + τ)− Φ) (3.11)

The real component reflects the persistence of the movement in a given direction,

while the imaginary component represents the tendency to turn to the right and

left. A positive, purely real value for G indicates that the movement is continuing in

exactly the same direction as before, whereas an imaginary value for G indicates that

the movement has made a 90 degree turn to the right or left.2.

We consider stationary, stochastic processes, i.e. movements that are homogeneous

with time but include a random component that can be only be described statistically.

This constraint is referred to the Markov condition, which suggests that at any given

moment, the subsequent evolution of the process depends only on the current state.

Under this assumption, the expected value of G(t, t + τ) should depend only on τ .

2These components of movement are related to those which are analyzed for Northern fur seals
in chapter 5 (see also Gurarie and Andrews in prep)
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We can then define a complex velocity autocorrelation function (CVAF)

GV(τ) = 〈V (t + τ) · V ?(t)〉 (3.12)

At τ = 0, the value of this autocorrelation function is the mean speed squared

GV(′) = 〈|V (t)|〉2. As τ approaches infinity and all information between sampled

velocity vectors is lost, the function approaches the modulus of the expected square

velocities: GV(τ →∞) = 〈|V (t)|2〉. For a movement that has no persistence in any

given direction, µv = 0 and GV(τ →∞) = 0. While both of these limits are confined

to the real line, intermediate values of the complex velocity autocorrelation function

can well be imaginary. The imaginary component reflects tendencies to turn in a

consistent way at certain intervals τ .

R code for obtaining the CVAF from discrete data is provided in Appendix B.1.

3.4 The Dunn-Brown-Alt movement model

A versatile continuous model for homogeneous autocorrelated movement with a ran-

dom component can be expressed as a stochastic differential equation

dV = α · (µv − V ) dt + β · dWt (3.13)

where µv is a mean drift, α = α1 + i α2 is a complex parameter which determines the

turning radius and strength of autocorrelation, Wt = W1+i W2 is a white noise Wiener

process composed of real and imaginary independent standard Gaussian variables and

β is a real parameter that represents the strength of the randomness. This model was

proposed by Dunn and Brown (1987) to model the motility of unicellular organisms

and was further developed by Alt (1990). In deference to these researchers I will refer

to it as the Dunn-Brown-Alt (DBA) model.3 A movement is determined by the two

3In the original references, a, b and V are used in place of α, β and µv. My choice of notation is
an attempt to be consistent with the statistical convention of using Greek letters for parameters
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complex parameters: µv and α and the real parameter β.

The simplest discretization of the DBA model (which we can refer to as the DBA

walk) is to set dt = 1 as follows:

Vt+1 = Vt + α · (µv − Vt) + β ·Wt. (3.14)

However, care is required when discretizing the DBA model in this way, since coarse

time samplings will lead to unstable solutions. Specifically, if the value for the α

parameter lies outside of the circle defined by (α1 − 1)2 + α2
2 = 1, the mode of the

velocity will either explode or collapse exponentially. This problem is mitigated by

introducing a scaling coefficient K > 1 to make the temporal increments smaller, such

that

Vt+1 = Vt +
α

K
· (µv − Vt) +

β√
K
·Wt. (3.15)

As an example, to convert this equation from units of minutes to units of seconds,

K would be set equal to 60. The square root before stochastic part of the equation

is there to balance out the increase in the variance of the white noise process as the

square root of the number in increments.

R code for simulating DBA walks is provided in appendix B.2 and several realiza-

tions under various values for the parameters are presented in figure 3.3.

A feel for the behavior of this model is obtained by considering several special

cases. If there is no drift (µv = 0) and α = 1 (figure 3.3a), the model reduces to

Vt+1 = β ·Wt, i.e. a pure random walk where each step is independently drawn from

a bivariate normal. Real quantities for α between 0 and 1 yield classic correlated

random walks (figure 3.3b). The addition of an imaginary component to α introduces

a tendency to turn in circles (figure 3.3c), and µv > 0 causes advective movement

(figure 3.3d).

to be estimated and capital letters for random variables.
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Figure 3.3: Realizations of discrete DBA walks (3.15) for different parameter values. (A)
α = 1, β = 1, µv = 0; (B) same as (A), except α = 0.1, (C) α = 0.1 + 0.4i, β = .1, µv = 0;
(D) same as (C), except µv = 2.
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3.4.1 Complex velocity autocorrelation function

The velocity autocorrelation function (3.9) of a DBA model can be expressed as

GV(τ) = µ2
v +

β2

2<(α)
e−ατ (3.16)

which can be decomposed as

<(GV(τ)) = µ2
v +

β2

2α1

e−α1τ cos(α2τ) (3.17)

=(GV(τ)) =
β2

2α1

e−α1τ sin(α2τ) (3.18)

Empirical autocorrelation functions for the four parameterizations illustrated in figure

3.3 are presented in figure 3.4. Recalling from (3.12) that GV(′) = 〈|V (t)|〉2, 3.16 can

be rewritten at lag zero as

〈|V (t)|〉2 − µ2
v = Var [V (t)] =

β2

2α1

. (3.19)

The autocorrelation function suggests that the velocity of an organism fluctuates as

a stationary Gaussian process around the mean drift µv with variance σ2
v = β2/2α1,

a mean angular velocity given by the frequency of the periodic component of the

autocorrelation function ω = −α2, and a relaxation time (i.e. a characteristic time

scale at which the autocorrelation is lost) given by the exponent on the decay term:

Tv = 1/a1.
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Figure 3.4: Velocity auto-correlation functions for the four models in figure 3.3. The trace
of the function in the complex plane, the real and imaginary components are presented in
the left, middle and right columns, respectively.
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3.4.2 Estimating parameters

The estimate for the mean drift µ̂v is obtained directly by taking the average velocity,

µ̂v = Vt (3.20)

Note that the mean of a vector of complex values has a standard definition, such that

for vector Zk = Zk + i Yk, where k ∈ (1, 2, ..., n), the mean is given by

Z̄ =
N∑

k=1

Xk + i Yk, = X + i Y (3.21)

The estimate for stochasticity strength parameter β is constrained by its relationship

to the variance of the velocity and to α1 (3.19) such that

β̃ =

√
σ̂v

2

2α̂1

=

√
|Vt|2 − |Vt|

2

2α̂1

(3.22)

Since α2 is related to the period of rotations, a good initial estimate can be ob-

tained identifying the lag at which the standard autocorrelation function of the real

or imaginary component of V attains a minimum. Formally:

α̃2 =
π

argmax
τ

(−γ(<(Vt)))
(3.23)

where γτ (X) is the autocorrelation function γτ =
∑N−τ

j=1 Xj ·Xj+τ .

The final estimate α̂1 can be obtained by fitting the real part of the empirical

complex autocorrelation function to equation (3.17). In the examples that follow,

I performed a minimization of the least-squared difference between the theoretical

equation (3.17) and the empirical CVAF over values of α1, α2 and β using α̃2 and

β̃ as seed parameters in the optimization routine (see figure 3.5 for a comparison

between the null parameters and the fitted parameters). R-code for estimating all
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parameters is provided in appendix B.3.

Obtaining errors or confidence intervals for these parameters is a subject for future

work.

3.5 Fitting Heterosigma movement data

I fitted this model to several tracks of Heterosigma akashiwo, a motile biflagellate

unicellular alga. Heterosigma episodically form toxic aggregations known as harmful

algal blooms (HAB) or red tide. Since these can have ecological and public health

impacts, there is considerable interest in understanding and explaining Heterosigma

movement patterns and behaviors. It has been suggested, for example, that statisti-

cally significant differences in the movement parameters between different strains can

explain differences in the resistance to dispersion of toxic slicks(Bearon et al., 2004).

The alga were videotaped in a cylindrical chamber and their tracks were auto-

matically digitized as a two-dimensional track (see Bearon et al. (2004, 2006) for

details on the experimental setup). Heterosigma typically follow helical trajectories

along vertical axes, but there is high variability between individuals as well as distinct

behavioral changes within single trajectories.

Figure 3.5 represents three sample tracks for individual Heterosigma labeled H49,

H45 and H52, along with fitted complex velocity autocorrelation curves. The data

consist of 600 to 1200 two dimensional locations, accounting for 20 to 40 seconds of

movement at 30 frames per second. The total distance traveled range is on the order

of 0.5 to 2.5 millimeters.

The estimates for the parameter DBA parameter values are given in table 3.1.

Examples of tracks simulated using these estimated parameters are plotted in figure

3.5 for visual comparison.
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Figure 3.5: Data on 3 sample Heterosigma tracks and simulated tracks based on parameters
estimated from the movement data. The plots on the right represent the corresponding real
part of the empirical complex velocity autocorrelation functions (ecvaf, in grey) with fitted
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parameters (p̂). See text for details.
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Table 3.1: Estimates of parameters for the DBA model estimated for example Heterosigma
tracks. Tt and Dt are the total time elapsed and net displacement of the tracks respectively.
Tv = 1/<(α) is the characteristic time-scale of auto-correlation.

Frames Dt (mm) µ̂v (mm/sec) α̂ (1/sec) β̂ (mm/sec1/2) Tv (sec)
(1/30 sec)

H49 1197 2.042 -0.00128− 0.051i 0.239 + 2.40i 2.38× 10−3 4.18
H45 602 2.826 0.00340− 0.141i 0.213 + 10.0i 1.31× 10−3 4.69
H52 765 0.605 0.02366− 0.002i 0.189 + 2.16i 2.07× 10−3 5.30

3.6 Discussion

A visual comparison of the true tracks and the simulated tracks (figure 3.5) sug-

gest that the estimation routine captures many of the essential features of the data.

Specifically, the net displacements, the number of oscillations, the nature of the oscil-

lations (loops versus swoops) and the variability in the magnitude of the oscillations

are rendered well. The parameter values are readily interpretable in terms of these

visual characteristics. Thus: H49 and H45 have predominantly downward net move-

ment (large negative imaginary components of µ̂), with the latter moving almost three

times faster (=(µv) = −.141 compared to -0.051), while H52 has the slowest aggregate

displacement. The tightest oscillations are displayed by H45, as reflected in the high

imaginary component of α̂ (10.0 compared to 2.4 and 2.16). The greater “loopiness”

of H52 is explained by the relatively slow advection term compared to a comparable

angular velocity with the other tracks. The variability coefficient β is lowest for H45,

but quite similar for the other two tracks. The time-scale of autocorrelation is fairly

consistent between all three tracks, between 4.2 and 5.5 seconds. In summary, H45

can be classified as a fast, tightly coiled, less variable helix, while H49 is somewhat in-

termediate in speed, less tightly coiled and variable, and H52 is a slow, loopy, variable

track.
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The movement model is most inadequate in its inability to capture the larger

scale direction changes evident in the tracks even within the relatively short durations.

While H49 maintains the most consistent mean direction, H45 displays several gradual

direction shifts and H52 doubles back on itself, making the use of net displacement in

calculating µv obviously inappropriate. One possible way of dealing with this problem

is to identify the trend in the data by filtering away the periodic component via an

averaging of points over a scale larger than the period of oscillation (reminiscent of

standard “de-trending” techniques in time-series analysis. Subtracting away the trend

from the raw data should give a linearized, oscillating remainder which will conform

with the DBA model. This is a subject for future research.

3.7 Conclusions

The DBA model is a more versatile model for movement than the classic correlated

random walk. It contains relatively few parameters, all of which are readily inter-

pretable in terms of random fluctuations, scales of auto-correlations, mean drift and

turning radii. The parameters are straightforward to estimate via an analysis of the

complex velocity auto-correlation function. For trajectories like those of the Het-

erosigma, which combine drift, oscillations and randomness, the DBA model does an

excellent job of quantifying the main features of these movements in a straightfor-

ward and easy to implement way. Informative quantification of complex movement,

especially when collected in large quantities as in the video collection of microscopic

plankter movements, is in itself an important goal as it is a first step in being able to

compare differences between strains, between individuals, and between several behav-

iors performed by a single individual. Furthermore, a consideration of the values of

these parameters in terms of the actual biomechanics of Heterosigma is a potentially

informative exercise. For example, the interaction between flagellar length, power and

body mass must be related to the speed (µ), angular velocity (=(α)) of the organ-

ism’s movement, while ambient variations or fluctuations in the water medium might
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control the time-scales of autocorrelation and the strength of the random component

(β, <(α)).

In further chapters, I am interested in the movement of much larger organisms for

which the techniques outlined here do not at first appear immediately applicable. The

movement of a top predator is presumably controlled by much more complicated be-

havioral and biophysical mechanisms than two flagella. The tendency or necessity to

oscillate in a helical manner is largely absent. Satellite tracking data is generally two-

dimensional and often very irregularly sampled, especially in the marine environment.

However, there are several important lessons to be learned from the DBA model. The

first is that the decomposition of a movement into turning and persistence compo-

nents and the modeling of each of these as essentially stationary Gaussian processes is

conceptually and mathematically justifiable. This decomposition is the fundamental

premise of the technique employed in Chapter 3 for the analysis of remotely sensed

large animal movements at sea. The DBA model, however, adds to these analyses a

rigorous understanding of the relationship between these orthogonal components of

movement. The second contribution of the DBA model is the straightforward way in

which characteristic time and length scales of randomness can be obtained directly

from the parameters. I discuss the importance of these scales for parameterizing rates

of diffusion and dispersal and for predicting encounter rates in subsequent sections

and chapters of this dissertation.
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Part II

ECOLOGICAL APPLICATIONS

[The study of animal movement] is fundamentally important to future

advances in ecological, ethological and evolutionary theory, as well as to

applied disciplines such as natural resource management, pest control

and public health ...

W. Lidicker and R. Caldwell 1982



63

Chapter 4

ENCOUNTER RATE MODELS

[T]rusting their lives ... they descended the Mississippi, running the

gantlet between hostile tribes, who fiercely attacked them.

Francis Parkman (1865)

4.1 Introduction

Encounters between organisms are universal prerequisites for many fundamental eco-

logical processes. Feeding depends on the ability to encounter food items or prey,

survival can be strongly dependent on avoiding encounters with predators, and suc-

cessful reproduction depends on mates encountering each other. The most widely

applied null-model of encounter rates is essentially a variation of one developed by

Clausius (1859) and Maxwell (1860) to describe the statistical-mechanical behavior

of gases. Their result relates collision rates of “ideal free gases”, i.e. perfectly elas-

tic, deterministically moving spheres of fixed radius, via a straightforward function

of mean velocities, interaction area and density. A fundamental assumption behind

the derivation is that each particle moves linearly with a constant velocity. Clausius

assumed all particles move with a single homogeneous velocity while Maxwell solved

the collision rate problem for particles whose velocities are distributed according to

the Maxwell-Boltzmann distribution - i.e. where the x, y and z components of velocity

were each normally distributed.

These equations were generalized to a predator-prey type scenario in a widely cited

and influential model of Gerritsen and Strickler (1977) (referred to as the GS model),

which predicted encounter rates between prey (in their case, zooplankton) moving
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at velocity u and predators moving at velocity v. The GS model accounts for any

population-wide distribution of velocities g(u) and f(v) for the prey and predators

respectively, leading to the following result

Er =
π r2ρ

6

(ū + v̄)3 − |ū + v̄|3

ū · v̄
(4.1)

where Er is the stable encounter rate of a system of predators and prey moving with

mean velocities v̄ and v̄ are the mean speeds of the predator and prey populations,

ρ is the density of prey and r is the encounter radius. Evans (1989) suggests that a

simplification of the GS-model to a simple root squared sum of the velocities, such

that

Er = π r2ρ
√

ū2 + v̄2) (4.2)

While the GS and Evans models account for the possibility of heterogeneous popula-

tions, the fundamental movement of the individuals remains linear and deterministic

as in the classic ideal gas.

While encounter rate modeling is dominated by heterogeneous populations of indi-

viduals moving in a deterministic way, most historical models of population dispersal

are governed by the inverse case, namely a homogeneous population of randomly mov-

ing individuals. Among many studies along these lines, one might cite Skellam (1951);

Turchin (1998); Okubo and Levin (2001). In another example of biology taking its

cues from results in physics, these movements are described as approximately Brown-

ian, i.e. consisting of very short, independent steps in random directions at small time

intervals. This model has the advantage of being mathematically related to processes

of diffusion and an extensive family of differential equation-based approaches to mod-

eling dispersal (Okubo and Grünbaum, 2001). Rates of ‘diffusion’ have been related

to individual parameters of movement and thereby to actual measurements of ani-

mal movements via random walk (RW) and correlated random walk models (CRW),

notably in an several early mathematical studies by Patlak (1953b,a) and a highly
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influential model of butterfly movements between flowers by Kareiva and Shigesada

(1983). Much of the theoretical work in diffusive dispersion has considered homo-

geneous populations of randomly moving individuals, though several recent studies

have explicitly modeled heterogeneity in the populations (Skalski and Gilliam, 2000;

Yamamura, 2002; Skalski and Gilliam, 2003; Gurarie et al., 2008).

Lotka (1924), who used an ideal gas model to justify the density-dependence of his

famous predation model, was fully aware that his models were great simplifications of

reality and called on researchers to attack the mathematical complexities of movement

models that consist of mixtures of directed and random components (see epigraph of

Part I). Several studies have since addressed the issue of random movement in ideal gas

models. In particular, Hutchinson and Waser (2007), in their excellent review of ideal

gas models, performed simulations of encounter rates between organisms moving as

correlated random walks, stating that “turning angle distributions, detection distance,

step length and step number all have interacting non-linear effects, so quantitative

predictions are only possible using simulation”.

Anderson et al. (2005) present an analytical model of encounter rates referred to as

the XT-model. This model predicts encounter rates between prey migrating through

a field of predators with mean velocity w such that

Er = π r2ρ
√

(w2 + ω2) (4.3)

where w is the relative advective speed of prey moving through a field of predators and

ω is the root mean squared velocity of prey and predator movement, i.e. a statistical

measure of the net randomness of the process. This result is reminiscent of Evans’

model (4.2), with the relative speeds of predator and prey replaced by a decomposition

in to advection and random movement. The empirically supported conclusion of

this model is that the strength of dependence of survival on travel distance versus

travel time is controlled by the relative net randomness of the movement. Specifically,
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linearly traveling advective prey survival is independent of the speed of travel since the

same gauntlet of predators is encountered, whereas more random movements increase

encounter rates. “Randomness of movement” is, however, somewhat ambiguously

defined in their model, with no suggestion as to how to estimate ω from individual

movements, or what it’s relationship to a rate of dispersion or diffusion might be.

In this chapter, I present mathematical models of encounter rates which incorpo-

rate a mixture of random and directed movements for heterogeneous populations. The

resulting expressions are relatively simple and tractable. While broadly corroborating

the XT-model, it is more rigorously parametrized in terms of individual movements.

In developing the argument, I rely on the MST parameterization of model from

chapter 2. I derive one-dimensional encounter rates for unbiased and biased walkers

moving through a field of moving and stationary predators based on the parameteri-

zation and discuss applications to survival probabilities of migrating salmon. Finally,

I extend the encounter rate model to two dimensions.

A note on jargon: In developing the following arguments, I begin with the simplest

of model of a moving organism, referred to as a “searcher” encountering stationary

organisms referred to as “targets”. In applications where the “targets” represent,

for example, food items and “searchers” represent foragers, the jargon is intuitive. In

other applications, the “searchers” represent prey items who are presumably attempt-

ing to avoid collisions or interactions with “targets” that represent predators, though

it is a distinctly masochistic prey that “seeks” a predator. In applications where both

“searchers” and “targets” are moving, there is an inevitable symmetry between the

two. It should therefore be made clear that the two terms refer merely to two classes

of organisms. The objective of the derivations is to predict rates of encounter given

certain parameters of movement, regardless of intent.
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4.2 One-dimensional encounter rate models

4.2.1 Unbiased walker

Assume that an individual is moving one-dimensionally as an unbiased MST-walk,

i.e. µ = 0, σ > 0 and τ > 0 through a field of immobile targets (either food items or

ambushing predators) with fixed density ρ. In the one-dimensional case, we assume

that the characteristic distance between targets (d=1
ρ

) is greater than the size of the

random step σ. The MST-walk is defined as

W (t) =

t/τ∑
i=0

Xi (4.4)

where Xi is the step random variable: Xi are iid random variables with mean µ = 0

and variance σ2. Several important quantities related to W (t) are the total length of

the trajectory

LX(t) =
t∑

i=1

|Xi| (4.5)

and the total range of the walk

WR(t) = max(W (t))−min(W (t)). (4.6)

Non-destructive encounters

If the encounters are not “destructive” - i.e. the searcher can reencounter any given

target an unlimited amount of times - and the system is isotropic, encounters must

occur randomly with an asymptotically constant rate.

The expected number of encounters as a function of time is

Ep(t) = Np(t)Rp (4.7)
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where Np is the total number of unique targets encountered and Rp is the mean

number of times each target is encountered. The total number of unique targets

encountered is just the density ρ times the total range of a given random walk. The

mean number of revisits per target is the total expected length of the trajectory,

denoted LW , divided by the total range. It should be clear that total length is the

sum of the absolute lengths of each time step, distinct from the net displacement.

Thus, we can rewrite 4.7 as

Ep(t) = ρ WR(t)
LX(t)

WR(t)
= ρ LX(t) (4.8)

Recalling that time is discretized in units of τ , the total length of the walk is:

LX(t) =

t
τ∑

i=1

|Xi| (4.9)

and the expected number of encounters is

Ep(t) = ρ 〈LX(t)〉 =
ρt

τ
〈|X|〉 (4.10)

The encounter rate is just the number of encounters per unit time,

Er =
ρ 〈|X|〉

τ
. (4.11)

The value of the expected absolute step length (〈|X|〉), and consequently the

encounter rate, depends on the nature of the step distribution. This is a somewhat

surprising result, since most aggregate statistical properties of random walks and

diffusion processes, including dispersal rates and arrival times, are identical as long

as the first two moments are equivalent. Indeed, this principle has been formalized

and is referred to as Wald’s identity (Wald, 1947).

We now consider three different random walk models, each with step mean equal
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Figure 4.1: Results of encounter rate simulations. The number line was randomly seeded
with targets in a range of densities ρ from 0.01 to 0.1. Unbiased random walks on the
number line were generated and the resulting encounter rates (Ep) obtained. The slope of
Ep against ρ is plotted here with the associated estimated standard deviations (error bars)
for different values of σ and three different step distributions: discrete unbiased random walk
(black), the Gaussian random walk (red), and the double exponential random walk (green).
The lines represent the theoretically predicted slopes: 1,

√
2/π and 1/

√
2 respectively.

to zero and variance σ2:

Case I: A discrete unbiased random walk with variance σ2 has fixed step length

σ. The encounter rate then becomes:

Er =
ρσ

τ
(4.12)

Case II: A Gaussian random walk, or discrete Gaussian jump process, has a normal

step distribution: X ∼ Normal {0, σ2}. The expected absolute step length 〈|X|〉 =
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√
2/πσ, and the encounter rate is

Er =

√
2

π

ρσ

τ
(4.13)

Case III: Another reasonable model for step length distributions is a double ex-

ponential model where the step length distribution is

X ∼ f(x) =

√
2

σ
e−

√
2

σ
|x| (4.14)

The expected absolute value of a step is 〈|X|〉 = σ/
√

2 such that the encounter rate

becomes

Er =
1√
2

ρσ

τ
(4.15)

In general, the encounter rate for this process is:

Er = κ
ρσ

τ
(4.16)

where κ is a constant less than or equal to 1. The case where κ = 1, the discrete

unbiased random walk, is in some ways an extreme case, as the distribution is a split

Delta dirac function. For “reasonable” step distributions, κ is inversely related to the

kurtosis of X. The kurtoses of the discrete, Gaussian and double-exponential cases

are {-2, 0 and 3} respectively, corresponding to values for κ of {1, 0.798 and 0.707}.

The double-exponential case is particularly fat-tailed and it is safe to assume that

for any real movements the coefficient κ will range between 0.5 and 1, It should be

noted that ore extreme tails which fall into the class of walks known as Lévy walks

(Bartumeus et al., 2002)) and may have somewhat different properties.

Simulations of the movement process confirm these results with great precision

(figure 4.1).
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Destructive encounters

A destructive encounter is one in which the target is annihilated upon encounter. In

this case, there is no constant encounter rate, as the density of targets is consistently

depleted. Nonetheless, the expected number of encounters as a function of time is

simply the range of the walk times the density. Thus

Ep(t) = ρ WR(t) (4.17)

The expected range of a random walk 〈WR〉 = 2
π
σ
√

t (see Weiss (1994) for a deriva-

tion). The encounter rate of a destructive, unbiased one-dimensional walk conse-

quently decreases as the square root of time as

Er(t) =
2

π

σρ√
t

(4.18)

Note that this result holds regardless of the nature of the step length distribution.

4.2.2 Advective random walkers

If an MST-walker moves deterministically through a field of targets with velocity µ/τ

and step variance σ2 = 0, the expected number of targets encountered at time t is

just Ep(t) = ρµ t
τ
. The addition of a random component in the movement will have an

impact on encounter rates only if there is some probability that the walker returns to

a previously visited site. Clearly, this probability will be positive only if the random

component has some probability of exceeding the magnitude of advective step µ.

Thus, in the advective case, the nature of the step-process has particular bearing on

the encounter rate. Since it is straightforward to scale any of these processes in time,

we will assume τ = 1 for the subsequent dicussion.
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Figure 4.2: Trajectories of 10 simulated 1-D Gaussian MST walkers moving with µ = 1
and (A) σ = 1 and (B) σ = 4. Green lines represent the location of stationary targets; red
dots represent encounters. In these realizations, the number of encounters per walker per

target are (A) 1.24, compared to a predicted value (4.31) of

√
2
π

(
σ
µ

)2
+ 1 = 1.28 and (B)

2.72, compared to a predicted value of 2.47.
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The biased discrete random walk

A form of random movement for which an analytic solution of advective encounter

rates can be obtained is the biased discrete random walk, denoted WB, where a

random walker takes a step of length b to the right with probability p or to the left

with probability q = 1− p such that

WB(t) = b
t∑

i=0

(2Bi − 1) (4.19)

where B are independent Bernoulli trials with probability p. The mean and variance

of this walk are

〈WB(t)〉 = b(p− q)t (4.20)

Var [WB(t)] = 4b2pqt. (4.21)

The analogous statistical properties of the MST walk are

〈W (t)〉 = µt (4.22)

Var [W (t)] = σ2t. (4.23)

Equating the expressions for the means (4.20 and 4.22) and the variances (4.21 and

4.23), the following equivalences are obtained:

b =
√

σ2 + µ2 (4.24)

p =
1

2

(
1 +

µ√
σ2 + µ2

)
(4.25)

q =
1

2

(
1− µ√

σ2 + µ2

)
. (4.26)
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Note that if σ = 0, then p = 1 and b = µ, i.e. the motion is deterministic with

fixed step-length µ. If µ = 0, the motion is asymptotically equivalent to an unbiased

random walk with p = q = 1/2 and step-length b = σ.

While every target must eventually be encountered by a discrete biased random

walker, some targets will be encountered multiple times as there always exists some

finite probability of returning to a previously visited site. The expected number of

times a target is encountered is denoted Rp. In order to derive this quantity, we first

consider the probability of recurrence p00, defined as the probability that a random

walker revisits any site at least twice. For a discrete biased random walk,

p00 = 1−
√

1− 4pq. (4.27)

[See Hughes (1995) for a derivation of this result. The expected number of returns is

given by

Rp =
∞∑
i=1

i Pi (4.28)

where Pi is the probability distribution of i returns. The probability of arriving the

first time (to any point) is unity. The probability of returning at least once after

that is p00, the probability of returning at least twice is p2
00, and so on. Thus, the

probability of returning exactly twice is P2 = p00 − p2
00. In general,

Pi = pi−1
00 − pi

00 (4.29)

The sum (4.28) can be solved:

Rp =
1

1− p00

(4.30)

Plugging in our expression for p00 from equation (4.27) and converting to the MST

parameters via equations 4.25 and 4.26 we obtain the following expression for the
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number of encounters per target:

Rp =

√(
σ

µ

)2

+ 1 (4.31)

We note that when σ = 0, there is exactly one encounter per target over the entire

trajectory, whereas as if µ = 0 there is an infinite expected number of encounters, a

restatement of the recurrence property of unbiased random walks.

As time goes to infinity, the expected number of unique targets encountered is the

expected distance travelled times the density:

Np(t) = 〈W (t)〉 = ρ µ t (4.32)

The product of the number of individual targets encountered per unit time and the

number of encounters per target yields the encounter rate

Er = NpRr = ρ
√

σ2 + µ2 (4.33)

Scaling to discrete units of τ gives

Er =
ρ

τ

√
σ2 + µ2 (4.34)

Equating equation (4.34) to the non-advective encounter rate (4.16), we can generalize

the advective encounter rate to accomodate different distribution shapes as

Er =
ρ

τ

√
(κσ)2 + µ2 (4.35)

where κ is defined by 〈|X|〉 = κσ, with the very important constraint that if max(|X|) <

µ, then revisits are impossible, κ = 0, and the expected encounter rate will always

be equal to Er = ρµ. Simulations of the process indicate that this model does an
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Figure 4.3: Motions of 10 simulated one-dimensional walkers moving as low-randomness a
Gaussian MST-walkers with µ = 1 and σ = 1 through a field of randomly moving targets
with σd = 4. The number of encounters per walker per target in this simulation is 3.4

compared to a theoretically predicted value of
√

2
π

(
σ2+σ2

d
µ2

)
+ 1 = 3.44 from equation 4.37.

excellent job of predicting encounter rates for the biased discrete random walk (figure

4.4A). For the advective Gaussian walk (figure 4.4B), the model has the appropriate

limiting behavior (Er = ρκσ where µ � σ and Er = ρκµ for µ � σ), but slightly

overestimates actual encounter rates for intermediate values (figure 4.4B). While a

mathematical explanation for this divergence is elusive, for all practical purposes it

can be considered negligible.
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Figure 4.4: Results of encounter rate simulations. The numberline was randomly seeded
with targets in a range of densities ρ from 0.01 to 0.1. Random walks on the number line were
generated and the resulting encounter rates (Ep) obtained. The slope of Ep against ρ with
the associated estimated standard deviation is plotted here against advective component
mu for three values of σ. The solid lines represent the predicted encounter rates according
to equation 4.35: Er = ρ

√
(κσ)2 + µ2, where κ = 1 for (A) biased discrete random walk

and
√

2
π for (B) the Gaussian random walk.
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Randomly moving targets

Within the framework of this derivation, it is relatively straightforward to predict

the effect of randomly moving targets. We consider an advective random walker

performing movement Wa(t) with parameters µa > 0, σa > 0 and τ > 0 through

a field of unbiased randomly moving targets Wb(t) with step distribution Xb having

µb > 0 and some σb > 0 at a similar time-scale τ . The distance ∆W (t) = Wa(t)−Wb(t)

between the walkers and any moving target is simply

∆W (t) = Wa(t)−Wb(t)

=

t/τ∑
i=1

Xai −
t/τ∑
i=1

Xbi

=
t∑

i=1

∆Xi (4.36)

where ∆X = Xa − Xb. For independent processes with well-behaved distributions,

∆X will have mean µa − µb and variance σ2
a + σ2

b . Thus, from the reference point of

any given moving target, the process is identical as if the target were stationary and

the random walker were moving with transformed MST parameters µ′ = µa + µb and

σ′ =
√

σ2
a + σ2

b . We can substitute these results directly into (4.35) and obtain the

following expression for the encounter rate

Er =
ρ

τ

√
κ2(σ2

a + σ2
b ) + (µa − µb)2 (4.37)

In most practical applications, where we are concerned about encounter rates between

a migrating population and a stationary population, µb can be set equal to zero. The κ

coefficient is generally close to 1 (see equation 4.16 and subsequent discussion). Thus,

a widely applicable simple expression for the encounter rate of an advective, randomly

moving population moving through a field of randomly moving non-migratory targets
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Figure 4.5: Map showing Snake River tributaries and the hatcheries from which juvenile
salmonds were released for survival studies.

is given by

Er =
ρ

τ

√
σ2

a + σ2
b + µ2

a (4.38)

Simulations (figure 4.3) confirm that this model gives accurate predictions of en-

counter rates.
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4.3 Application to juvenile salmon survival

The one-dimensional encounter rate model can be applied in a very natural way to

survival analysis of migrating juvenile salmonids (Oncorhynchus spp.). Millions of ju-

venile salmonids in the heavily impounded Snake and Columbia rivers are consumed

by predators (Rieman et al., 1991). The main piscivorous fish are the native northern

pikeminnow (Ptychocheilus oregonensis), and three non-native species: smallmouth

bass (Micropterus dolomieu), walleye (Stizostedion vitreum) and channel catfish (Ic-

talurus punctatus) (Poe et al., 1991). Significant avian predators include the Caspian

tern (Sterna caspia), the double-crested cormorant (Phalacrocorax auritas) and sev-

eral gull species (Laridae spp.) (Collis et al., 2001, 2002; Roby et al., 2005).

There is considerable concern about the impact of predation on salmon popula-

tions, especially since predation has likely increased since the construction of dams.

Several reasons can be cited for this effect. Deeper, wider reservoirs provide more

net habitat for predators, especially non-native ones, while warmer net temperatures

increase their bioenergetic demands (Petersen and Ward, 1999; Petersen, 2001). Pas-

sage through hydroelectric systems can cause disorientation of the juveniles as well as

predictable, spatial concentrations of prey at the tailraces (Rieman et al., 1991). Fi-

nally, the slower net flows in the reservoirs increase the residency time of the juveniles,

increasing the probability of predation. This latter assumption, that the probability

of survival is dependent exponentially on time of residency in a reservoir, has been

an essential component in most models of fish passage survival models, such as the

Columbia River Survival Passage (CRiSP, Anderson et al., 1996) and Fish Leaving

Under Several Hypotheses (FLUSH, Wilson, 1994) models.

One accessory benefit of major anthropogenic transformations of the Columbia

River has been the opportunity to obtain very detailed data on its denizens. Since

the 1990s, hundreds of thousands of juvenile salmon have been implanted with indi-

vidually identifiable PIT (passive integrated transponder) tags, providing an exten-
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sive dataset of survival estimates and environmental covariates at many reservoirs.

Anderson, Gurarie, and Zabel (2005) analyzed 287 groups of tagged juvenile spring

chinook (O. tschawytscha) released at 17 different locations in tributary streams on

the Snake River upstream from Lower Granite Dam in eastern Washington state be-

tween 1993 and 2003 (figure 4.5). The distances of the release locations ranged from

31 to 772 km. Survival estimates were obtained using the multiple-recapture model

for single-release groups (Muir et al., 2001) and straightforward regressions of log-

survival (log(S)) against travel time and travel distance were performed (figures 4.6

and 4.7).

The relationship between log survival and migration travel time was generally very

weak, with only five significant years (1996-1998, 2001, 2002 with p < 0.1) all of which

displayed low correlations r2 < 0.5. The relationship with distance was significant

for all years except 1997 and the correlations were greater than 0.7 for six of the

remaining 10 years.

Anderson et al. (2005) developed a model referred to as the XT model, arguing

that the strength of the dependence on distance or time is controlled by the extent

of the relative randomness in the movement of the predator and prey according to

S(x, t) = exp
[
−ρa

√
x2 + (ωt)2

]
(4.39)

where S is survival, a is a measure of the interaction area between predator and

prey, ρ is predator density, and ω is defined as the “relative random velocity” of the

predator-prey system. Small values of ω suggest a survival that is entirely dependent

on distance traveled, regardless of the mean speed of travel. This model is referred

to as the “gauntlet” model, since lack of random movement suggests that the prey

must pass a fixed gauntlet of predators, regardless of the amount of time spent in

the reservoir. The case where there is no net advection allows for multiple possible

encounters between predator and prey and corresponds to something more similar
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Figure 4.6: Regression of log survival, log(S), vs. migration travel time, T (days). Regres-
sions are weighted by 1/S.E.2 of S (from Anderson, Gurarie, and Zabel 2005)

Figure 4.7: Regression of log survival, log(S), vs. migration travel distance, X (km).
Regressions are weighted by 1/S.E.2 of S (from Anderson, Gurarie, and Zabel 2005)
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to the ideal-free gas model implicitly assumed by the time-dependent Lotka-Volterra

type predation models.

The estimated “random velocity” (on the order of 5 cm/s) was generally less

than the mean advective velocity (mean 15 cm/s) for the data in the analysis. The

broad implication of this result is that increasing flows is not theoretically expected

to significantly mitigate survival of juvenile salmon, or at least not for the reasons

worked into the passage survival models, namely reduction of residency time. The

empirical evidence seems to largely bear this conclusion out.

To the extent that the XT model is tractable, intuitive, parameterizable with

existing data and ecologically insightful, it can be considered a success. However,

the meaning of the ω parameter, defined somewhat heuristically as “mean squared

random encounter speed” in terms of actual parameters of individual movement re-

mains somewhat unclear. Furthermore, a statistical analysis which separates time and

distance is somewhat unsatisfactory since the two are clearly related via the mean

velocity.

The relationship between velocity, distance and time is, in fact, less simple than

might be expected. It can be expressed in terms of the mean distance traveled in

a fixed time: x̄ = v̄ t or as a mean time for arrival over a fixed distance: t̄ = v̄/x.

Migrating salmon disperse as they travel, and the rate of that dispersal is presumably

somehow related to the ω parameter.1 Interpreting survival in terms of the individu-

ally explicit one dimensional encounter rate models clarifies the relationships between

travel distances, travel times and encounter rates.

4.3.1 Survival analysis

While the migrating and potential encounters salmonids through a reservoir occurs

in three dimensions, certain simplifying assumptions allow us to essentially project

1For more detail on the interpretation, inference and meanings of travel times and spatial distri-
butions of migrating organisms, see chapter 6.
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Figure 4.8: Schematic of salmonid passage survival through a field of stationary predators.
The randomly moving fish survives three possible encounters with the first predator, only
one unfortunate encounter with the second, and no opportunities for an encounter with the
third.

the geometry of the problem onto the single natural dimension of the river’s axis.

Consider a potential prey item moving through a reservoir of length X and cross-

sectional area A containing N predators (figure 4.8). A basic mechanistic assumption

is that the probability of a prey being consumed by any given predator is the ratio

of the interaction area between predator and prey a and cross-sectional area of the

reservoir A. The total probability of survival in the reservoir is given by:

S =
N?∏
i=1

(1− P{predation event}i)

=
(
1− a

A

)N?

(4.40)

where N∗ is the number of total encounters during its journey. If we consider that the

predators are stationary and the prey is moving via an MST walk, then the number
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of possible encounters per predator is given by equation (4.31)

N∗ = N

√(
σ

µ

)2

+ 1 (4.41)

Substituting in N = ρ AX and rearranging we obtain

S =

[(
1− a

A

)A
]ρ X

r
(σ

µ)
2
+1

(4.42)

If we assume a/A � 1, this expression reduces to

S(X) ≈ exp

−a ρX

√(
σ

µ

)2

+ 1

 (4.43)

Expressed in this way, survival probability can be viewed as being dependent only

on the distance traveled and a ratio of random and directed length scales. Since the

average velocity of a cohort of fish is given by V = µ/τ and the mean time spent in

the reservoir is given by T = X/V equation (4.43) can be recast as

S(X) = exp

(
−a ρ

√(σ

τ
T
)2

+ X2

)
(4.44)

This form corresponds exactly with equation (4.39), and the “random velocity” ω is

revealed to be the ratio σ/τ , i.e. the ratio of the length and time scale of independence.

For both randomly moving predators and prey, the equivalence becomes

ω2 =

√
σ2

a + σ2
b

τ 2
(4.45)

where σa and σb are the length scales of independence of prey and predator respectively

and τ is a common time scale of independence. The relationship between the scales
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of randomness of predator and prey are illustrated in figure 4.9.

Interpretation of survival model

This formula has some ecological and behavioral interpretations. Since it is not in the

interest of the migrating smolt to be captured, there is little incentive for migrating

fish to increase the randomness of their migration, as it is in the prey’s interest to

drive σa to 0 and drive the system as close as possible to a gauntlet-like situation. The

caveat to this strategy is that prey items themselves might be foraging themselves

on smaller prey and attempting to increase their encounter rates in turn. The actual

extent of foraging among outmigrating salmon varies considerably between species

(Quinn, 2005), leading to substantially different migratory behavior (see chapter 6).

The onus on increasing encounters lies with the predators, either by increasing

its σb or encounter radius. The first strategy is constrained by the energetic costs

associated with active foraging. If passive encounter rates with no random movements

are sufficient to fulfill the needs of a predator, then a stationary “sit-and-wait” strategy

is sufficient.

Conceptually, this model gives a framework for classifying in a quantifiable manner

a broad range of potential predator strategies. For example, a gliding bird low has a

relatively low energetic to searching, and its σb can be quite high. On the other hand,

fish predators like the northern pikeminnow, are more likely to be satiated by sit-

and-wait strategies. When the flux of passing prey is too low, many have alternative

foraging options to switch to, such as feeding on benthic crustaceans and resident fish

Naughton and Bennett (2003). Certain predators such as orb-weaving spiders don’t

need to move at all, concentrating on increasing their encounter radius and relying

on the sufficiency of passive prey flux.
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Figure 4.9: Theoretically expected number of encounters per predator at different prey
and predator distance scales of indepedence (σa and σb respectively). It is generally in the
prey’s interest to keep the encounter rates low by driving σa to zero, but the predator can
increase encounter rates itself by increasing σb.
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4.3.2 Relating encounter velocity to spread of migrating populations

Intuitively, the random velocity that governs encounter rates (ω) should be related

to the rate of spread of a migrating cohort of random walkers (see sections 2.3 and

6.3.2), defined by

f(x|t, v, D) =
1√
πDt

exp

(
−(x− vt)2

Dt

)
(4.46)

where f(x) is either the spatial distribution of a population of identical random walk-

ers or the probability distribution of a single walker at time t, v is the advective

velocity and D is a standard diffusion rate of spread in units of distance squared per

time. This diffusion rate D is given from equations (2.17) and (2.18) , the rate of

diffusion D of a population is simply

D =
σ2

a

τ
(4.47)

Arrival time data at a detection site can be modeled using used the inverse Gaussian

distribution, from which estimates for D are straightforward to obtain (see Zabel

(1994); Zabel and Anderson (1997) and chapter 6 for details). For spring chinook in

the Lower Goose reservoir, for example, estimates for D were on the order of 5 to 4.6

to 12.5 km · day−0.5 (see Zabel and Williams, 2002, Table 1).

From equation (4.45) the net random velocity of encounter (ω) is related to the

individual parameters of movement by

ω2 =
σ2

a + σ2
b

τ 2
. (4.48)

According to the XT-model paper, estimated values for ω were on the order of 4 to

8 km/day. Equating equations (4.48) and (4.48) and rearranging yields the following
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relationship for the time-scale of independence τ

τ =
D

ω2

(
σ2

a + σ2
b

σ2
a

)
(4.49)

The minimum value for τ is obtained when there is no random movement of the

predator, and the ratio D/ω2 yields a lower limit on τ . Using the reported values for

D and ω into (4.49) results in time scales of independence with a lower bound ranging

from 0.5 to 2 days. If the random movement of the predator is roughly on the order

of the random velocity of the prey then the estimate of τ increases correspondingly.

At first glance, this estimate for τ as a time scale of independence for the movement

of an individual fish seems quite large. Several factors may give rise to this curious

result. First, recall that τ is the unit of time at which subsequent displacements

for the migrating organism are independent. Juvenile salmon display strong diurnal

patterns during their migration: moving primarily at night and presumably holding

station during the day (Zabel and Williams, 2002; Quinn, 2005). Furthermore, due

to daily fluctuations in power demand, there is a strong one day cycle in the flow

regimes of the reservoirs. Thus, in this context of the diffusion process, a one day

scale of independence might be reasonable.

Furthermore, estimates of D are inflated, sometimes significantly, by the assump-

tion in the inverse Gaussian model of homogeneous populations. For certain popula-

tions, the bulk of the spread in arrival times can be explained by a model in which

fish move more or less deterministically, but with a population-level variance in mean

travel velocity. The effect of population-level heterogeneity on models of migration

are discussed in detail in chapter 6.

4.3.3 Discussion

The major theoretical contribution of the one-dimensional models is a rigorous unifi-

cation of advection-diffusion and the XT survival model in terms of individual, mea-
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surable movement parameters. Practically, the results make clear why survival of

migrating smolt is, indeed, more gauntlet-like and distance dependent than a classic

reaction-type predation model might predict. The exercise of thinking about survival

in terms of individual movements is a useful one, for it clarifies the essentially sim-

ple fact that time dependence only plays a role in survival if there is a possibility of

multiple encounters between predators and prey. It is highly unlikely and rarely, if

ever, observed that juvenile salmon spend any significant effort swimming upstream

(figure 4.8 notwithstanding), and the theory provides a vivid explanation why. In

the Columbia river system, the onus on having multiple encounters and increasing

the probability of encounter success lies with the predators. In those situations in

which the flux of juvenile salmon prey passing is sufficient to energetically satisfy

the predators, we can predict that a wholly distance-dependent gauntlet system is

in effect. In this case, increasing flows (a common management scheme to mitigate

survival) will probably have little effect on encounter rates. However, as soon as the

predators begin significant random foraging movements themselves, the travel speed

of the prey suddenly does have an impact on survival. Thus, according to this theory

and in support of conclusions in Anderson et al. (2005), active foraging of predators is

a requisite condition for flow increases to have a beneficial effect on juvenile salmon

survival.

While PIT-tag data is voluminous and excellent, it necessarily aggregates every-

thing that happens in a reservoir into a single travel time and survival estimate.

However, actual reservoirs are heterogeneous environments, swimming and predation

behavior are complex and little understood, and the distribution of predators and

migration of prey are both rather patchy. In Appendix C, I provide a brief analysis

of migration and survival of juvenile salmon in the mid-Columbia river using hydroa-

coustic data which provides a crude idea of the differences between mid-reservoir,

tailrace and forebay predation. The differences between survival rates in different

regions are striking and significant, not only within a reservoir but between species
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(figure C.5 and C.2) as are the travel times in different sections of the river (figure

C.2). The variability in survival between sections can be quite striking. For example,

nearly 10 times more sockeye died in the tailraces or passing through two of the dams

than in any of the mid-reservoirs (figure C.5).

In light all of these environmental heterogeneities, it is unclear how to interpret

parameters estimated over an entire aggregated reservoir. I would suggest, however,

that the insight provided by the models can inform recommendations for future explo-

ration of the system. Currently, a massive effort is underway in finding correlations

and explanatory factors for salmon survival in terms of all sorts of reservoir-wide co-

variates (flows, spills, temperatures, turbidity, dissolved gas content). Large projects

to individually track acoustically tagged salmon in three dimensions as they approach

and pass through the dam are in effect. Juveniles are dutifully inspected by hand for

blemishes as they pass through multi-million dollar fish passage systems. The fish

have been genetically sequenced, transported in barges, tagged and clipped every

which way. But most models of survival still rely on murky time-dependent functions

of survival. There is an increasingly growing body knowledge about the distribu-

tion and movement behavior of redator and prey in the river itself (R. W. Zabel,

NOAA Fisheries, pers. comm.), but these data have yet to be actively implemented

in understanding proceses of survival.

If I were to make concrete recommendations to managers on the Columbia River

concerned about mitigating the survival of juvenile salmon, I would suggest that con-

siderably more effort be devoted to understanding sub-reservoir dynamics, predator

distributions and movement behavior of all the agents. This sort of information is

difficult to obtain and would necessarily involve some elaborate and clever monitor-

ing efforts. But it would greatly facilitate the realism and informativeness of survival

models from a process- and biology-based perspective in the Columbia River. In this

context, the rigorous development of the encounter models presented here can serve

an important role.
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Figure 4.10: Three trajectories showing the effect of randomness on encounter rates. All
three movements consist of 100 steps of length 1. The grey walker is moving linearly, and
has the highest encounter rate. The green walker is walking with relatively high correlation
between turning angles, and the blue walker displays very low auto-correlation.
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4.4 Two-dimensional encounter rate models

Consider a walker moving in a straight line through a two-dimensional field of sta-

tionary targets of density ρ at constant velocity v with an encounter radius a. An

encounter occurs whenever the detection area of the walker includes a target. The

number of encounters is given by N(t) = ρ A(t) where A(t) is the area swept out by

the movement: A = 2avt. Thus the encounter rate is

Er = 2ρav (4.50)

For random walkers, this expression ceases to hold. Intuitively, the straighter a trajec-

tory, the closer an encounter rate estimate will be to the deterministic model above.

A more tortuous path, with slower dispersal and higher probability of reencounters,

will have lower encounter rates (see schematic in figure 4.10). The only attempts I

am aware of to consider the impact of random movements on encounter rates are

simulation studies performed by Bartumeus et al. (2002) comparing the encounter

rate efficiency of “Brownian walks” to “Lévy walks” and by Hutchinson and Waser

(2007) where the effect of a correlated random walk on expected ideal-free gas type

encounter rates was numerically assessed. The latter authors conclude, somewhat pes-

simistically, that: “It is apparent that turning angle distribution, detection distance,

step length and step number all have interacting non-linear effects, so quantitative

predictions are possible only using simulation.”

Indeed, mathematical predictions of encounter rates depend to some extent on

the way in which random movement is modeled. A greatly simplifying assertion

can be made that the identification of the time and length scales of independence

(i.e. the MST parameters) largely determine encounter rates. This is supported by

the observation made in section 2.3.2 that the actual total distance swept out by a

homogeneous random movement is unlikely to be more than 1.5 times greater than
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the MST decomposition of the movement (see figure 2.8). Thus, many of the factors

cited by Hutchinson and Waser collapse into the essential parameters of an MST walk,

and quantitative predictions are possible after all.

4.4.1 Derivation

The following derivation assumes a searcher moving with a non-correlated random

walk with characteristic time and step-length scales τ and σ in a uniform random

field of predators. Targets are distributed randomly according to a Poisson process

with density ρ such that the expected distance between targets is much smaller than

the detection range a of the searcher. We are interested in comparing the nature of

the movement rather than the effect of absolute velocity. Thus, we fix the absolute

speed of the movement σ/τ = 1. It is important to note that small values of σ and

large values of σ correspond to movements whose speed, and, presumably, energetics,

are identical.

Analogously to the one-dimensional case, encounter rates in two dimensions are

related to the ratio of the area swept out by a movement to the potential area explored.

This ratio is controlled by the relationship between the length scale of movements

and the distance between targets. For uniformly distributed targets with density ρ

in two dimensions, the mean distance between neighboring targets is λ = 1
2
√

ρ
. If

the step length σ is on the order of λ or greater, the encounter rate asymptotically

approximates

Er(σ|σ ≥ λ) = 2aρ. (4.51)

This expression is equivalent to equation (4.50) with the “random speed” σ/τ = 1

replacing the velocity term.

The limiting case where σ → 0 is an infinitesimal Brownian motion, for which

expected displacement scales as the square of time rather than linearly with time.

When the step lengths are much smaller than characteristic distance λ, the path
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to any given target becomes highly tortuous, such that the time needed to traverse a

distance λ scales as t2 rather than t and instead of a linear relationship with velocity

σ/τ , the encounter rate is proportional to σ2/τ , such that

Er(σ|σ � λ) = 2 k a ρ σ, (4.52)

where k is an empirical slope parameter that describes the encounter rate limit for

highly tortuous paths. It should be noted that the encounters considered here are de-

structive. Otherwise, a highly tortuous movement that disperses slowly continuously

reencounters a given target thereby inflating the apparent encounter rate.

A function that fits both of these asymptotic behaviors is the von Bertalanffy

curve

Er(σ) = 2aρ(1− e−kσ). (4.53)

It is straightforward to estimate the k parameter from simulated data. I used a

non-linear least squares fitting routine in R.

The model can readily be scaled into real time by dividing by τ , such that a final

encounter rate model for a non-directed randomly moving searcher in a uniform field

of targets is given by:

Er(σ) = 2aρ
σ

τ
(1− e−kσ) (4.54)

For the case where the targets are also moving with step length σb at time scale τ , the

encounter rate is adjusted in a manner analogous to the one-dimensional case (4.38),

such that

Er(σ) = 2aρ

√
σ2

a + σ2
b

τ
(1− e−k

√
σ2

a+σ2
b ). (4.55)

This result was obtained by analogy to the one-dimensional case: from the perspective
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of the random searcher, all of the targets are moving with a random velocity that adds

their movement with the searcher’s own movement. A rigorous derivation of these

results is left as a future project.

4.4.2 Simulations

I performed many thousands of simulations to test these results, seeding a virtual

environment with targets at density ρ = 0.001, interaction distance a = 1 and mea-

sured encounter rates for random walkers with step-lengths σ varying from 0.4 to 20

(figure 4.11). I fitted equation (4.53) to the resulting encounter rates, and obtained

an estimated value for k of 0.316 (95% C.I.: 0.302, 0.331).2 The fit is excellent and

yields good predictions for diverse values of a and ρ.

4.4.3 Discussion

One contribution of the two-dimensional encounter rate model is to illustrate the use

of MST parameters in reducing an otherwise complex problem of encounter rates to

tractable and relatively simple expressions. Practically, encounter rate models based

on individual movements are difficult to compare to data since data that combines

both individual movements and observations of encounters is rare. However, several

fundamental theoretical principles can be made regarding foraging strategies.

Perhaps the most important principle is that when searching randomly for sparcely

distributed prey, the fundamental length scale of movement should be on the order of or

greater than the distance between targets. An upper limit on the scale of the movement

is the size of the greater patch. Thus, the intrinsic scales of a movement behavior of a

foraging organism provides some indirect information on the distribution of the prey.

Often, the movement behavior of forager can be measured while much less is known

about the prey items. The best example of this is marine predators, such as pinnipeds

2This value is tantalizingly close to 1
π . A more satisfactory derivation of the encounter rate awaits

further work.
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field of targets with density ρ = 0.001 and encounter radius a = 1.
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and seabirds, many of which perform distinctly identifiable foraging behaviors on prey

such as fish, squid and krill, whose movements are largely mysterious. A quantification

of the predators’ movement patterns - specifically, an identification of the length and

time scales of movement, might suggest a rough figure for the size of a food patch

and for the density of the items within it. This fundamental foraging strategy can

be relevant at larger scales which characterize distant aggregation of foraging food

as well. Thus, the hierarchical, complex foraging movements observed for albatross

(Fritz et al., 2003; Grünbaum and Veit, 2003) can be explained by adapting their

characteristic length scale of movement to the relevant hierarchical level of searching,

whether between patch or within patch.

It should be noted that under the assumption that “reasonable” foraging move-

ments will have a length scale of movement on the order of the neighbor distance,

the second term in equation in 4.55 can be neglected, and a tractable, simple, useful

encounter rate formula reduces to

Er(σ) = 2 a ρ

√
σ2

a + σ2
b

τ
. (4.56)

A second principle of foraging that arises from these models is that when searchers

and targets are both moving, random encounter rates increase roughly linearly with

their net velocities. The consequences of this second principle is very case specific.

Often, it will be to the advantage prey to minimize extraneous movements, unless it

too is foraging. In some situations, it may be energetically sufficient for a predator

to merely sit and wait for the flux of prey to encounter them. Certainly, that is the

strategy of web-weaving spiders (various spp. in Aranae), who additionally increase

their encounter rate by creating large and highly effective encounter radii. Among

certain plankters, residing in an environment where ambient movement forces are

often greater than their own ability to move, it has been shown that increased turbu-

lence can significantly increase encounter rates (Marrasé et al., 1990; MacKenzie and
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Kiorboe, 1995).

For plankton, larvae and other small aquatic organisms, encounter rates govern

many aspects of survival in a highly dynamic environment which can often be legit-

imately considered random. They are, in some ways, ideal candidates for applying

refined encounter rate theories. Higher-level predators, in contrast, rely on experi-

ence, subtle interpretation of environmental cues, adaptability and, often, strategy

and tactics when foraging. However, any search must contain some component of

randomness, and physiological and bioenergetic constraints and prey distribution in-

variably the kinds of movement. The mathematical principles behind encounter rates

presented in this chapter can serve at the very least to guide the interpretation of

observed movements and, perhaps, to inform higher-level questions of adaptation

and evolution of organisms to successfully exploit various kinds of dynamic foraging

niches.
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Chapter 5

BEHAVIORAL CHANGES IN GAPPY ANIMAL
MOVEMENT DATA

It may be but an idle whim, but it has always seemed to me, that the

extraordinary vacillations of movement displayed by some whales ...

indirectly proceeds from the helpless perplexity of volition.

Moby Dick

Hermann Melville (1851)

Summary

Individual animal movement data is collected at an increasing rate as remote-sensing

technology develops. At its best, analysis of the data can suggest mechanisms by

which organisms exploit a heterogeneous and variable environment. Unfortunately,

movement data are multidimensional, non-independent and almost always suffer from

the twin banes of measurement error and gappiness, making appropriate analyses far

from straightforward. While error in the data can be accounted for by state-space

models, an increasingly popular statistical approach, gappiness (i.e. irregular inter-

vals between times of measurement) has not been well-addressed in the literature.

Gappiness is particularly widespread in data on marine organisms, for which remote

sensing depends on a combination of transmitter exposure and satellite presence. I

suggest a method of dealing with gappiness by identifying a persistence component

of movement that can be modeled as a continuous auto-correlated stochastic process

with three parameters: a mean, a variance and a continuous auto-correlation coef-

ficient. I then develop several methods for identifying changes between behavioral
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modes. A single breakpoint can be found with a maximum likelihood estimation over

an entire gappy time-series, while multiple breakpoints can be found by sweeping a

window and identifying which of the parameters change at any given breakpoint. Af-

ter demonstrating the robustness of the method with simulation, I apply the routine

to GPS data collected on a northern fur seal (Callorhinus ursinus) in the Kuril Is-

lands in Russia. The resulting model suggests a complex behavioral profile that can

potentially be analyzed against environmental covariates.

5.1 Introduction

In recent years, there has been a rapidly growing body of work devoted to the detailed

study of animal movements in the wild, mirroring the increase in the technological

ability to accumulate data. Most fundamental ecological processes are a direct result

of movement, including foraging success, breeding success, migrations and dispersals.

Furthermore, individual animal movements are a measurable behavioral response to

a combination of internal states, physiological constraints and environmental factors.

Informative analysis of movement data can yield sophisticated insights into the behav-

ioral mechanisms that allow organisms to exploit temporally variable and spatially

heterogeneous environments. This appears to be a common goal of many animal

movement researchers.

Analysis of movement data, however, is far from straightforward, since the data

is multi-dimensional and auto-correlated in space and time. A common approach to

modeling a movement track is to apply some variety of a correlated random walk

models (Skellam, 1951; Turchin, 1998; Okubo and Levin, 2001), which typically hy-

pothesizes some distribution of step-lengths and turning angles clustered around zero

degrees. Over a long enough time-scale, multiple behaviors can be captured by a

single dataset and the properties of mixed random walk models have been explored

(Grünbaum, 2000; Skalski and Gilliam, 2003). Recently, models have been constructed

that successfully relate changes in correlated random walk parameters to environmen-
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tal and landscape features (Morales et al., 2004; Forester et al., 2007; Haydon et al.,

2008; Aarts et al., 2008).

There are two common features of movement data which complicate the straight-

forward application of correlated random walk models. The first is error in the mea-

surement process. A fruitful body of research has emerged recently that addresses

measurement error with the use of state-space models (SSM’s) (Jonsen et al., 2003,

2005; Royer and Gaspar, 2005; Patterson et al., 2008). State-space models are effi-

cient frameworks for parsing movement data into a process model of movement and an

observation model that accounts for error. They have been, in particular, invaluable

in the interpretation of ARGOS-satellite derived telemetry data.

The second significant issue with movement data is irregular timing of measure-

ments, sometimes referred to as “gappiness”. This issue is particularly important

for tagged marine species such as pinnipeds, whales, penguins, sea turtles and large

pelagic fish, where sending a signal requires that the tag be exposed to the air and

that a connection be made with the receiving satellite. Clearly, a straightforward

estimation of turning angle distributions and estimated velocities is compromised by

the irregularity of the data. The solution to this problem is to model the movement

data as an irregular subsampling of a continuous auto-correlated process (Johnson

et al., 2008, in press).

In this paper, I present an efficient and robust method for identifying behav-

ioral changes in a gappy movement dataset. The fundamental idea is to sweep an

analysis-window over the movement data and identify the time and nature of any

significant behavioral shifts, outputting estimates of descriptive parameters and ag-

gregating them into a behavioral summary of the movement.

The complete analysis method involves several steps. I begin by suggesting a

natural decomposition of velocity and turning-angle data into persistence and turn-

ing velocity components. These velocity components have the statistically attractive

feature of being locally stationary and Gaussian, crucially allowing for the straight-
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forward modeling of an auto-correlation structure. I consider these time-series to be

samplings from a continuous auto-regressive process and present a straightforward

likelihood-based method to determine a continuous auto-regression coefficient, a pa-

rameter that has an important biological interpretation. The movement can then be

described by three parameters for each of the two velocity components: a mean, a

variance and the continuous auto-correlation. Next, I present a maximum likelihood

method to estimate the location of a single change point, i.e. the likeliest time at

which one or more of the three parameters that describe the time-series changes val-

ues. It is of interest to be sure that the change is a “real” one and not an artifact

of randomness, as well as to identify which of the parameters are changing. Both of

these challenges are met by applying an information-based criterion to test all possible

permutations of model parameters changing. A simulation study demonstrates that

the Bayesian Information Criterion (BIC) does an excellent job of identifying which

of the parameters are really changing their value at a given most likely changepoint.

I provide code for all of the relevant pieces of the analysis algorithm in Appendix D.

The complete analysis machinery was applied to GPS-derived data on movements

of an adult Northern fur seal female (Callorhinus ursinus) in the Kuril Islands in

Russia. After giving birth, female fur seals nurse their pups for several weeks before

beginning to take extended foraging trips up to seven days in length. They can wander

up to a hundred kilometers from the rookery of birth in pursuit of sufficient forage

to fulfill both their own energetic requirements and that of the nursing pup. These

foraging trips show distinct modes of movement, including rapid travel, periods of

frequent diving and semi-somnolent drifting. The application of the analysis method

allows for the identification of a complex behavioral profile.

5.2 Models of movement

We take a “Lagrangian” approach to modeling movement, that is, we place the or-

ganism at the center of our analysis. Thus, rather than analyze the absolute positions
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(Xi, Yi) or compass orientation (Φi), we examine the two variables that the organism

controls: speed V and turning angle Θ. Because we are specifically interested in ana-

lyzing irregularly sampled data, we have an additional vector of times of measurement

Ti and define these variables as

V (Ti) =
√

(Xi −Xi−1)2 + (Yi − Yi−1)2/(Ti − Ti−1) (5.1)

Θ(Ti) = Φi − Φi−1 (5.2)

The statistical properties of these variables will depend on the time-interval between

measurements, which we define as τi = Ti − Ti−1.

A very common Lagrangian method for modeling movement data is the two-

dimensional correlated random walk (CRW). A traditional CRW, which we might

further specify as an unoriented, homogeneous correlated random walk (see Chapter

2). A CRW is defined as a discrete movement in which step-lengths Rt are independent

and have some positive random distribution and the turning angles θt have some non-

uniform distribution clustered around 0 degrees (Kareiva and Shigesada, 1983; Marsh

and Jones, 1988). Common distributions for velocities include the Weibull and log-

normal, while turning angles are often modeled with wrapped Cauchy distribution

with zero mean and clustering parameter κ: When κ = 0 the angles are distributed

uniformly between −π and π, and when κ = 1, all the angles are concentrated at 0

(Fisher and Lee, 1994). A CRW can generate smooth tracks that do a good job of

resembling real animal movement data, and the parameters of the model are readily

estimable. For example, κ̂ is just the expected value of the cosine of the turning

angles.

Whatever the distribution used for turning angles has been to model movement,

the applications of the CRW are almost always drawn from independent distributions

and auto-correlation between subsequent turning angles or step lengths are rarely

discussed. Nonetheless, CRW’s have proven to be useful and tractable models for
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unoriented, homogeneous movements.

It is, however, not clear how to fit a CRW to gappy data, since neither V (ti) nor

θ(ti) are identically distributed when the interval between measurements changes.

There are two feasible approaches for dealing with this problem. The first is to

calculate or approximate the expected distributions of R and Θ as a function of the

gap (see section 2.2). The second, and the one that is addressed in this report,

is to transform the data by decomposing every step into orthogonal components of

persistence velocity Vp(t) and turning velocity Vt(t):

Vp(t) = V (t) cos(Θ(t)) (5.3)

Vt(t) = V (t) sin(Θ(t)) (5.4)

Vp captures the tendency of a movement to persist in a given direction, and the

velocity of that movement while Vt captures the tendency of movement to head in a

perpendicular direction at a given interval. Thus, the primary descriptive features of

movement, namely speed, directional persistence, and variability are captured in these

variables. Empirical explorations of movement data via histograms or qqnorm plots

suggest that both Vp and Vt are well approximated by mixed normal distributions, with

Vt notably always having a mean very close to zero. This appealing statistical property

allows for the application of an arsenal of analysis techniques for characterizing auto-

correlated data.

Though geometrically orthogonal, these two variables are not necessarily inde-

pendent. Because, however, our eventual technique is ultimately descriptive and the

interpretation of each of these variables is somewhat unique, we choose to analyze

them separately. An investigation of their correlation structure is the subject of fu-

ture work.
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Figure 5.1: A simulated full AR(1) time series with auto-correlation coefficient ρ = 0.8
in plotted in gray on the top graph. The dots indicate a sampling of 100 points from this
time-series. The lower plot shows is the log-likelihood profile over ρ for the sampled data.
The estimated value for ρ in this simulation is 0.778
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5.3 Defining correlation structure in gappy time-series

5.3.1 Gappy time-series model

We begin the analysis with the empirically supported assumption that the persistence

velocity Vp (eq. 5.3) is a sample from a generic, stationary, Gaussian continuous space,

continuous time process X(t) which has the following properties:

X(0) = X0

E [X(t)] = µ

Var [X(t)] = σ2

Corr[X(t), X(t− τ)] = ρτ , (5.5)

where 0 < ρ < 1 is the first order auto-correlation at a time lag 1, i.e. at whatever

units the time is measured. (Note, all subsequent discussion applies analogously to Vt,

with the constraint that µ = 0). Consider observations Xi that are made at times ti,

where t0 = 0 and beginning at initial observation X0. The series Xi can be described

as

Xi = µ + ρτi(Xi−1 − µ) + εi, (5.6)

where i ∈ {1, ..., n}, τi = ti−ti−1 is the time interval between subsequent observations,

ρτi is the auto-correlation as a function of the time gap and εi is a stochastic error

term. Given the constraints in 5.5, εi can be shown to have mean 0 and variance

σ2(1− ρ2τi). The variance is obtained as follows:
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Var [εi] = Var [Xi − ρτiXi−1]

= σ2 + ρ2τiσ2 − 2ρτiCov[Xi, Xi−1]

= σ2(1− ρ2τi) (5.7)

In order to estimate the continuous correlation function ρ, we need to express the

likelihood function for the entire process. Since any Xi depends only on the previous

observed value Xi−1, a total conditional likelihood can be written

L(ρ|X,T) =
n∏

i=1

f(Xi|Xi−1, τi, ρ), (5.8)

where X and τ represent the vector of observations and times of observation respec-

tively and the distribution function f is the probability density function of the con-

ditional distribution Xi|Xi−1. For the process (5.6) with a Gaussian error structure,

f is given by

f(Xi|Xi−1) =
1

σ
√

2π(1− ρ2τi)
exp

(
(Xi − ρτi(Xi−1 − µ))2

2σ2(1− ρ2τi)

)
. (5.9)

This likelihood (5.8) is smooth and easily maximized over the range of possible

values for 0 < ρ < 1. The estimate for ρ can be expressed as

ρ̂ = argmax
ρ

L(ρ|X,T) (5.10)

To test this estimation routine, we simulated an AR(1) process with coefficient ρ =

0.8 and length n = 1000 (see figure 5.1). We then randomly sampled 100 observations

from this process and estimate ρ̂ based on the gappy time-series. Performing this

operation 100 times yielded a mean estimate ρ̂ = 0.797 with standard error 0.052.

The MLE estimate works excellently, even for extremely gappy data.
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Figure 5.2: Magellanic penguin foraging track (above), v cos(θ) time series (middle) and
log-likelihood profile for ρ estimation (below). The estimate ρ̂ is 0.448 1/hour.
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5.3.2 Example with data

Magellanic penguins (Spheniscus magellanicus) in Argentina were tagged with satel-

lite transmitters in early 2005 and their movement during foraging trips tracked using

the ARGOS tracking system (figure 5.2). Here we analyze a single foraging trip of a

penguin (P1) performed over eight days from January 28 to February 4. There were

163 positions recorded and the interval between the position fixes ranges from 1 to

278 minutes.

We extracted a ‘velocity tendency’ time-series, i.e. Vp = V (ti) cos(θ(ti)) where

V (ti) is the measured speed (distance traveled divided by time interval) and θ(ti) is

the turning angle at t(i) from the previous direction. We obtained ρ̂ using the MLE

estimation routine.

The resulting estimates are µ̂ = V̄P = 1.97 km/h, σ̂ = 1.79 km/day and ρ̂ = 0.448

(figure 5.2). Thus, if the penguin’s direction were sampled once an hour, the acf of

the resulting time-series would be γ(1) = 0.45. A preliminary conclusion from this

result is that the penguin exhibits multi-hour persistence in its movement.

5.4 Identifying structural shifts

We now address the question of how to expand the methods outlined in section 5.3

in order to identify structural shifts. A structural shift is a change in the underlying

continuous process, for example a behavioral change from a goal-oriented traveling

mode of movement to a search and forage kind of movement. The challenge is to

infer where a structural shift occurs within a gappy and error ridden time series

measurement of a process. We refer to the time at which the structural shift occurs

as the changepoint.

Consider a continuous stochastic process X(t) for 0 < t < T defined by parameter
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Figure 5.3: Simulation and estimation of gappy time-series with a single structural shift
generated by sampling 100 values from a time-series of length 2000 with a breakpoint at
Tbr = 1000 represented by the vertical dotted line in the top graph. The true parameter
values are µ1 = 5, µ2 = 2, σ1 = 10 σ2 = 5, ρ1 = 0.9 and ρ2 = 0.2. In this simulation, the
resulting parameter estimates were: µ̂1 = 4.6, µ̂2 = 0.24, σ̂1 = 8.75 σ̂2 = 4.73, ρ̂1 = 0.91,
ρ̂1 = 0.35, while the MLBP is at t = 1060.
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set Θ(t) whose values change at an unknown time point T1 such that:

Θ(t) =

 Θ1 if 0 < t ≤ T1

Θ2 if T1 < t ≤ T
(5.11)

We now take N samples from the continuous process X(t) to obtain a time series Xi

at times Ti. If n is defined as the number of measurements within the first regime,

such that Tn ≡ max(Ti < τ), then the likelihood of the parametrization (θ1, θ2, τ1)

given data Xi is given simply by the product of the two likelihoods:

L(Θ|X,T) =
n∏

i=1

f(Xi|Xi−1,Θ1)
N∏

j=n+1

f(Xj|Xj−1,Θ2) (5.12)

This likelihood can be maximized by sweeping over all possible values of n (from 1 to

N), and obtaining the MLE’s for the remaining parameters after the split using the

method described in section 5.3.

Thus, the parameter estimates can be expressed as:

n̂ = argmax
n

L(Θ|X,T) (5.13)

µ̂j = X̄j (5.14)

σ̂j = Sj (5.15)

ρ̂j = argmax
ρ

L(ρ|Xj,Tj, µ̂j, σ̂j) (5.16)

where j ∈ (1, 2) indexes the two regimes, such that if j = 1 the data and estimates

are taken in the range i = (1, 2, ..., n̂) and if j = 2, they are taken from the second

regime (i = n̂ + 1, n̂ + 2, ...N). We term the estimate for the changepoint (tbn) the

most likely changepoint, MLCP.

The corresponding estimates for the orthogonal component of velocity Vt are sim-

plified by the fact that the mean can safely be assumed to be 0. Indeed, analyses have
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verified that when this assumption is relaxed, the mean is almost never significantly

different from zero

5.4.1 Identifying models

Each of the three parameters that characterize a movement can change, and a change

in each of the values corresponds to a different behavioral interpretation. Thus, for

V cos(θ), an increase in µ corresponds to a combination of faster and more directed

movement. An increase in σ indicates more variable movement, e.g. more common

stopping and moving or a greater increase in diving. A higher ρ indicates more

directed and correlated movements, whether fast or slow. For V sin(θ), higher values

of σ indicate more turning or zig-zaggy movement, while higher values of ρ indicate

longer turning radii. It is consequently of great interest to be able to identify which,

if any, of the parameters actually change at the MLCP.

There are eight possible models to consider when analyzing a changepoint. These

are defined as follows: M0 is the null hypothesis (µ1 = µ2, σ1 = σ2 and ρ1 = ρ2); M1,

M2 and M3 have one inequality each while the other two parameters remain constant

(µ1 6= µ2, σ1 6= σ2, ρ1 6= ρ2 respectively); M4, M5 and M6 have one equality each

while two other parameters change (µ and σ, µ and ρ, σ and ρ respectively); and

M7 is the most “alternate” hypothesis, in which all parameter values change at the

MLBP.

Because the conditional likelihood is well-defined, we can apply a consistent cri-

terion to select our models. We compared two criteria, AIC (Akaike’s Information

Criterion) and BIC (Bayesian Information Criterion) defined as:

IA(X,T) = −2n log
(
L(θ̂|X,T)

)
+ 2d (5.17)

IB(X,T) = −2n log
(
L(θ̂|X,T)

)
+ d log(n) (5.18)
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Figure 5.4: Results of model selection simulation using both AIC (A and C) and BIC (B
and D) for breakpoints at n = 25 from a gappy time series of length N = 50 subsampled
from a true process of length T = 200 (A and B) and n = 50, N = 100 and T = 400 (C and
D). The true models are parameterized as in table 5.1, ranging from the null model (S0) of
no difference before and after the gap to the extreme model (S7) with differences in all three
parameters. 100 gappy time series were performed for each parameter set. The area of the
circles is proportional to the number of time a model is selected for a given parameter set.
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where L(X̂|θ) is the likelihood as defined in equation 5.12, d is the number of para-

meters in each of the eight models (ranging from d = 3 for M0 to d = 6 for M7). The

model with the lowest value of the information criterion is chosen. The BIC is more

conservative than the AIC at selecting models, since it additionally “penalizes” the

criterion according to the size of the dataset.

5.4.2 Simulation study

Figure 5.3 illustrates an example of the single changepoint estimation routine. The

simulated data in this example comes from an underlying process of length N = 2000

in which a discrete structural shift occurs at t = 1000 in which the mean drops from

5 to zero, the variance decreases from 10 to 5, and the autocorrelation coefficient

drops from 0.9 to 0.2. This simulation represents a shift from a highly variable,

positively biased, correlated process associated with directed movement to a zero

mean, lower variance, less correlated process that mimics random foraging and feeding.

We randomly sampled 100 points from the complete time series and obtained the

MLCP according to the method described above. The resulting estimated parameters

are listed in the figure caption.

The plots of the log-likelihoods given in figure 5.3 give an idea of how precise the

τ estimate might be. The log-likelihood profile seems adequately peaked around the

correct value. It should be noted that the time series in this example is particularly

gappy and the total dataset is relatively short.

We explored the properties of this experiment for a variety of parameter value

changes by simulating 100 gappy processes (N = 400, n = 50, Tbr = 200) for each

of eight different models (see table 5.1A) ranging from the null model of no change

in parameter values to the most alternate model of change in all parameter values.

Resulting parameter estimates appear unbiased and relatively precise (table 5.1B), all

falling well within one standard deviation of the true value. Perhaps most importantly,

the MLCP estimates are highly accurate, with means between 197 and 203. We also
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applied AIC and BIC to assess the eight models and report their results (table 5.1B

and figure 5.4). The BIC performs far better than the AIC at identifying the true

model, with, notably, a 78% rate of correctly identifying the null hypothesis and

72-94% probabilities of identifying parameters with a single parameter changing. For

those models where two parameters shift, BIC tends to falsely favor the most complex

model. In contrast, AIC performs miserably, never selecting the null model correctly

and in other cases almost always choosing more complex models than necessary.

When analyzing actual data, a researcher may have greater interest in identifying

the location and direction of significant, detectable structural shifts than in estimating

the parameters themselves. For this reason, we prefer the more conservative criterion.

A complete power analysis is very difficult to perform for the selection mechanism,

since the ability of the model to correctly identify the model depends in complicated,

non-independent ways on the magnitude of the difference between the parameters, the

extent of the gappiness in the dataset and the length of the series. However, an effort

was made in the simulation study to look at differences that are comparable if not

smaller than those in the actual data. The ability of the BIC to pick the appropriate

level of complexity inspires confidence in this method of model selection.

5.4.3 Multiple changepoints

Heretofore, we have only discussed the identification of a single most likely breakpoint.

Within the a single track, an organism likely exhibits multiple behaviors. Rigorously,

a continuous process X(t) can be defined such that for any interval between 0 <

t < τm defined by parameter set Θ(t) whose values change at unknown time points
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T = {τ1, ..., τm} such that:

Θ(t) =



θ1 if 0 < t ≤ τ1

θ2 if τ1 < t ≤ τ2

...
...

...

θm if τm−1 < t ≤ τm

(5.19)

Estimating the parametrization Θ for the multiple change-point model is non-trivial

problem that has generated some literature, though only for regular (non gappy)

time-series and applied primarily to financial markets (see, for example Chib, 1998).

Furthermore, there are complications with model selection and inference in selecting

the number of breakpoints in a longer dataset.

My approach to this problem is to pass a window over the complete time-series and

apply the single changepoint analysis described above at each window. The algorithm

can be summarized as follows:

1. Select a window of length l << N .

2. Find the most likely changepoint in a subsample of the data X1...Xl.

3. Use some criterion to accept or reject the “significance” of the changepoint for

each of the parameters µ, σ and ρ.

4. Based on the result of the test, log the location of the behavioral changepoint

and the resulting estimated parameter values: µ̂1, σ̂1, ρ̂1, µ̂2, σ̂2, and ρ̂2.

5. Shift the window up one datapoint, and repeat steps 1-4.

Throughout the running of this algorithm, we output the estimates according to

the model chosen by the BIC. Thus, if M0 is chosen, we estimate a single value for

each of the parameters for the entire dataset. If M7 is chosen, we separately estimate
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parameters at each side of the breakpoint. All of the estimates are logged and averaged

after the sweep is performed.

This method has the advantage of being able to capture arbitrarily many behav-

iors. Furthermore, by returning and averaging the model estimated parameters at

every timestep multiple times, we allow for gradual shifts in behavioral parameters

between the discrete structural shifts, and potentially dramatic jumps where the be-

havior does change suddenly and significantly The aggregated information including

both the parameter estimates, the significant breakpoints and their nature and di-

rection (i.e. increasing µ, decreasing ρ, etc.) can be considered a distilled behavioral

model of movement.

It should be noted that the one tunable variable in this method is the size of

the window. The greater the size of the window, the more consistent the estimates

provided will be and the higher the power of the model selection (figure 5.4), but

the probability increases that shifts at smaller scales will be lost. A smaller window

size will reveal finer-scale structure in the data, but the risk of spurious responses

increases. Furthermore, issues can arise when estimating means and variances with

small sample sizes, especially when the correlation is high. Because of the behavioral

complexity of the dataset in the application that follows, I chose a window of size 30

which is probably near the lower limit of an acceptable window size (see Results).

All analysis was performed using the freely available R programming package.1

5.5 Data

I applied the movement analysis method to GPS data collected on several foraging

trips taken by a nursing female northern fur seal (Callorhinus ursinus). Northern fur

seals aggregate annually during the summer months at large rookeries. The females

give birth usually in late June through July, and, after 8-10 consecutive days of

1http://www.R-project.org

http://www.R-project.org
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map indicates the study area.
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nursing, begin to take foraging trips of up to a week in length to replenish energetic

reserves (Gentry, 1998). The data analyzed here was collected from a female tagged

in summer of 2007 at Dolgaya Rock, one of the Lovushki Islands - a small group

in the central Kuril Island chain in Russia which runs between the Pacific Ocean

to the southeast and the Sea of Okhotsk to the northwest (see figure 5.5). The

Lovushki Islands are the location of one of the largest northern fur seal rookeries in

the northwestern Pacific (Loughlin et al., 1984, Burkanov pers. comm.).

The female discussed in this paper, labeled NFS07-03, was captured on June 21,

when her pup was one to three days old, and instrumented with a Fastloc R©GPS

data-logging device (MK10-F, Wildlife Computers Inc.) The tag allows for quick

fixes and relatively high accuracy, with at least 60% of the locations within 100 m

(Bryant, 2007). The MK10-F device was also equipped with dive depth, temperature

and light sensors, and the animal was instrumented with a separate stomach temper-

ature sensor. Here, we only consider the movement data; however, the existence of

corroborating evidence for foraging behaviors, such as diving and prey capture, makes

this an ideal system to explore what can be inferred from pure movement data.

The animal was monitored for 38 days in total, taking seven foraging trips in that

time. The first trip occurred 9 days after tagging, on July 1, and lasted just over five

days, while the last trip began on July 27 and lasted about two and a half days. On

all trips, the fur seal headed in a northwesterly direction toward the Sea of Okhotsk

(figure 5.5). A total of 763 position fixes were obtained over all seven trips, with

individual trips ranging from 30 and 33 datapoints (trips 5 and 6) to 205 datapoints

in length for trip 1. The time intervals between the fixes range widely from a less

than a minute to 700 minutes, with the majority (over 80%) clustered around 15,

30 and 45 minutes. The data was filtered to exclude implausible swim speeds (> 11

km/h) and were georeferenced using standard methods. Velocities were estimated by

dividing displacements by time intervals, and turning angles were calculated directly

from the positions.
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5.6 Results

I applied the analysis technique to five of the seven trips (those with more than

70 location fixes) with a window of size 30. At an average time interval between

measurements of 37 minutes, the window covered on average a period of 18 hours,

which seemed to allow for reasonable chance to pick up single behavioral shifts at an

acceptable cost to power. The output of analyses with window size 50, corresponding

to about a 24 hour period, seemed too insensitive since it is reasonable to expect that

behaviors can change significantly more than once in a day.

Model outputs for two of the trips (1 and 7) are presented graphically in figures

5.6 and 5.7. A trace of in parameter space of the Vp estimates as they evolve in time

is presented in figure 5.8.

Because the model output is somewhat complex, it is instructive to walk through

a single track from beginning to end. The first trip is the longest (5.1 days long)

and furthest (max. distance from rookery 96 km), as is typical for female fur seals

taking their first feeding trip after a fasting period associated with birth. The fur

seals’s initial departure from the rookery is marked by high values of of Vp (µ̂ around

5 km per hour) and a high estimated per-hour auto-correlation ρ = 0.36 (NB since

the time data is in hours, the ρ is an estimate of what the first order auto-correlation

coefficient at lag 1 would be if the movement data were collected once an hour exactly

without gaps). The first significant changepoint, occurring at 01:53 in the middle of

Night 1 was selected as the MLCP by every single one of the 25 windows that passed

over it. The models chosen by the BIC were split about evenly between M4 (µ and σ

change) and M7 (all three parameters change). The estimates for µ drop from near 4

km/h to around 2 km/h, estimates for σ drop from 1.5 to 0.7, estimates for ρ decrease

more gradually from 0.3 to under 0.1. A similarly dramatic changepoint occurs at

around 1900 before the fifth and last night of the trip, where fully 30 MLCP’s were

selected for at either 20:14 or 21:12. The BIC selected models were mixed between
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M2 (only σ changes), M4 and M7. The track indicates that this final changepoint is

associated with a sudden turn south, and a fairly correlated, moderately fast (around

3 km/hour) journey home.

The interim period between these two traveling bouts is marked most significantly

by lower autocorrelation, essentially staying below 0.14 during the entire period and

reaching near zero values during the fourth night. The mean persistence velocity and

deviances, however, vary considerably in this period, and, while significant change-

points are identified at evening/dusk and dawn on all three interim nights, the be-

havioral pattern at these times varies somewhat. Before Night 2 at 21:15 there is a

significant increase in both µ and σ (11 of 15 MLCP’s chose M4). At 00:20 there is

a notable drop in ρ only (4 of 4 MLCP’s chose M3), and at 4:18 there is a significant

drop in µ only (11 of 11 MLCP’s chose M1). The µ during the evening is fairly high,

at 2.5-3.0 km/h. During the day the mean velocity plummets to 0-0.5 km/hour, while

the deviance gradually increases until the evening before Night 3. Night 3 again shows

an increase in µ and a decrease in σ, but to a lesser extent that Night 2, and again

a drop in velocity during the day. Finally, Night 4 is marked by the lowest autocor-

relations (< .01), low velocities (< 0.5 km/hour) but a moderate deviance (around

0.5− 1.0 km/hour). The final day shows the greatest tightening of the deviance with

no appreciable increase in velocity, until the aforementioned burst home at 21:00.

The analysis of turning velocity Vt for the first track proves less informative than

the analysis of Vp. Of the 175 MLCP’s that were identified (one for each window), 121

returned M0, the null model of no significant changes in σ or ρ, (in contrast to only

23 of 175 M0’s in Vp), 51 selected M2 (change in σ), 3 selected M3 (change in ρ), and

none selected M6 (change in both). The value for ρ were all quite low, with a mean

value of 0.002 and about half of the estimates equaling zero. It is notable, however,

that at the very beginning of the trajectory, the ρ estimates are quite a bit higher (up

to 0.04) than in the remainder of the trip, when the animal was moving at its highest

velocity. The higher correlation here, and generally negative values for Vt near the
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beginning indicates that the animal is conducting a persistent, wide left-turning arc.

The deviance remained fairly consistent throughout this trajectory, around 1 km/h,

tightening most significantly to about 0.4 km/h during the intensive, low correlation,

low Vp deviance fourth night of foraging.

Trip 7 displayed some features that were unique compared to the other analyzed

trips. Notably, the velocities the fur seal moved at during Trip 7 were much, higher

with an aggregate Vp mean of 3.8 km/h (s.e. 1.1) compared to 2.0 (s.e. 1.25) for Trip

1. Somewhat atypically, it left in the evening, moving quickly (around 5 km/h) but

with low autocorrelation in its persistence velocity. It made a hairpin-like change in

direction at dawn after its first night, appearing to turn back to the rookery, turns

again in the afternoon to head NW. During Night 2, the fur seal exhibits considerable

slowing, low autocorrelations and loops on its own track several times, appears to

head out further to sea second time, spends a night moving at a relatively high mean

velocity and auto-correlations, and at dawn after Night 3 performs one last hairpin

turn and heads back at a very high pace, reaching the highest estimated persistence

velocity of all trips at 6.4 km/h, likewise attaining the highest autocorrelations of

any trips (0.73). It appears to be missing the rookery on its way home by several

kilometers, but adjusts near the end. This return trip is likewise marked by some of

the highest auto-correlations in the Vt time-series (up to 0.11), once again indicating

a large and consistent turning radius of movement

A comparison of all the aggregated parameter outputs of the model for all of

the trips are presented in figure 5.9. Violinplots are used in order to highlight the

multimodal nature of many of the parameters.

5.7 Discussion

The method presented here displays the ability to robustly identify complex behav-

ioral patterns in irregularly measured movement data. The maximum likelihood

method is sensitive enough to identify changepoints even in very gappy or noisy
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data, and the BIC model selection method is conservative enough to protect against

excessive complexity. The data considered in the application here is highly accurate

positionally, but marked with a “typical” level of gappiness for a marine species. In

general, however, the method is applicable to many kinds of data, including ARGOS,

archival tags or radio telemetry data. Furthermore, the algorithms are computation-

ally quite tractable. While the output is somewhat sensitive to the analysis window

size, this variable is easily tuned according to the temporal resolution of the dataset

and the consistency of the model output. Because the method is focused on identi-

fying the location and direction of structural shifts, it is also robust to error, though

this aspect is not explored in this paper.
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An important innovation in the method presented here is the explicit and tractable

analysis of the autocorrelation. This relies an analysis of persistence and turning

transformations, which, while not as biologically intuitive as raw speed and turning

angle data, have attractive statistical properties that allow for an explicit description

of the autocorrelation structure. This autocorrelation is readily interpreted in terms of

time-scales at which an organism’s basic movement patterns (persistence and turning)

change. For example, the most significant distinction between the traveling modes

and non-traveling behavioral modes in the fur seal tracks was associated with a change

in the auto-correlation. Often, this is an even more significant variable than mean

velocities. The fur seal’s return trips do not necessarily attain appreciably higher

velocities than those during the “foraging” phase (see for example Trip 1, Night 2).

Thus, the fur seal can have a high rate of persistence displacement in a given direction

but have a much more erratic movement pattern, punctuated by feeding bouts, dives,

turns and loops, whereas the steadiness of a directed movement is captured by a

higher persistence velocity autocorrelation. A useful index to consider is the time-

interval at which the first order correlation drops to some fixed number such as 0.5.

Using the relationship τh = log(0.5)/ log(ρ), we obtain an estimated “time to half-

autocorrelation” (τ̂h). For trip 1, this value is around ranges between 30 and 40

minutes for the traveling modes, and between 4 and 15 minutes during the remainder

of the trip. Similar patterns, broadly, hold for the remaining trips.

It is worth making a distinction between the information contained in the autocor-

relations of persistence and turning and the parameters of standard CRWs. Although

this commonly applied mechanistic model of movement is termed the “correlated

random walk”, in fact almost every application of the model assumes independent

turning angles and independent velocities and the smoothness of a CRW path is a

result of the clustering of the turning angles around zero degrees. In fact, there is a

fundamental distinction between independent turning angles and correlated turning

angles, which are manifested in larger turning radii. This is well-captured by the
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auto-correlation coefficient on the turning component of velocity, as, for example,

near the beginning or Trip 1 and the end of Trip 7, where the significant rise of the

turning velocity auto-correlation is associated with a longer scaled arcs of movement,

as contrasted with the smaller, independent directions shifts that dominate the bulk

of the movements. Similarly, any autocorrelation in the velocities is largely accounted

for in the persistence velocity correlation.

Returning to Trip 1, the analysis of the movement data over the three nights of

foraging indicate a higher behavioral complexity that might have been expected. The

primary prey items for fur seals are cephalopods and smaller pelagic fish that engage in

vertical diel migrations, particularly during the crepuscular hours. It is known that the

majority of feeding occurs at night (Goebel et al., 1991.) and the dive data associated

with NFS07-03 corroborates this expectation, with most dives beginning at around

23:00 and continuing through the early morning (Andrews pers. comm.). During the

day, northern fur seals are known to sleep at sea (Gentry, 1998). Thus, the movement

during daylight hours, which tended to be the least autocorrelated in Trip 1 for the

first three daylight periods is more likely to reflect a mixture of drifting with ambient

currents and periods of directed swimming. The distinct changes identified before

each of the evening bouts correspond to increased activity and changes in absolute

orientation, implying an active pursuit of prey. Interestingly, the mean velocities

were quite high, particularly during the first evening, implying perhaps that the prey

patch itself was moving, or that the animal is actively seeking prey over a larger

area. Again, the autocorrelations are relatively low throughout, indicating irregular

movements and many changes. The behavior during the third night of foraging reflects

the closest to the expectation of what active, successful foraging might look like, with

the lower variance and the lowest autocorrelations. However, even here there is a

distict, oriented, eastward movement.

The other important feature of the method presented here is the ability of the

analysis not only to estimate values of parameters, but to identify significant shifts,
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such that the model output provides both gradual changes in the parameter values

and more discrete differences that are presumably associated with behavioral choices.

The analysis of these behavioral shifts provides a window into the complexity of an

animal’s movements.

The violinplots of several of the aggregated parameter values do indicate that

types of movement are often clustered into several groups. Notably, the estimates

for the mean persistence velocity for Trips 2, 3 and 4 indicate a clustering of low

velocities (around 2 km/h) and a separate clustering of high velocities (around 5

km/h). Generally, the higher velocities appear less often at night. This pattern

is mirrored to a smaller extent in both the persistence and turning autocorrelation

coefficients. However, the behavioral trace in figure 5.8 suggests a striking complexity

in behavioral modes, especially as contrasted with the expectation of a few distinct

behaviors. While a marine organism is free of many of the landscape-related obstacles

that constraint terrestrial organisms, its movement, even at rest, can be confounded

by ambient currents. However, the sudden and dramatic shifts in the parameter space

trace strongly suggest that these signals are reflections of real behavioral choices.

Both a consideration of autocorrelations and the basic structure of behavioral

shift models can be productively implemented on datasets which lack the unavoidable

gappiness of marine organism tracking data.

5.8 Conclusions

A top predator like the fur seal is extremely well-adapted to exploiting the hetero-

geneous environment of the open ocean to fulfill its survival needs. Its movement is

a complicated manifestation of an organism’s internal state, access of information,

physiological constraints and behavioral responses to environmental cues. The data

collected on this movement is an irregular subsampling of this structurally complex,

continuously auto-correlated, multi-dimensional process. The analysis method pre-

sented here is a purely descriptive attempt to capture and distill the dynamics of
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the underlying process from noisy and gappy data. The output is a somewhat com-

plex array of estimates, model selections and aggregated averages, but many of the

nuanced patterns of movement behaviors emerge in a clear and tractable way.

The ultimate utility of the method, however, will be in its use for answering impor-

tant biological questions. The greatest mystery is: How does an organism successfully

exploit its environment? In order to approach this challenge, it is necessary to model

whatever information about the behavior the analysis method produces against po-

tentially informative covariates. In the study on fur seal movements in the Kuril

Islands, for example, detailed data has been collected in parallel on diving events,

ambient temperatures and foraging success via stomach temperature sensors. An

analysis of these data against the movement model can yield higher level insights into

the relationships between the estimated movement parameters and foraging strategies

and success. On a larger scale, comparisons can be made between animals in different

locations throughout the range, under varying environmental conditions, as well as

between different groups (e.g. older and younger, male or female).

Both a consideration of autocorrelations and the basic structure of a behavioral

shift models can be productively implemented on datasets which lack the unavoid-

able gappiness of marine organism tracking data. Indeed, the output of the analysis

method as applied to terrestrial organisms can be modeled as a response landscape

features which are more readily measurable on land than at sea.
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Chapter 6

POPULATION-LEVEL HETEROGENEITY IN MODELS
OF DISPERSAL AND MOVEMENT

One fish, two fish, red fish, blue fish...

Some are fast. And some are slow...

Not one of them is like another...

But I bet they have come a long, long way.

One Fish, Two Fish, Red Fish, Blue Fish

Dr. Seuss (1960)

Summary

1

Behavioral heterogeneity among individuals is a universal feature of natural popu-

lations. Most diffusion-based models of animal dispersal, however, implicitly assume

homogeneous movement parameters within a population. Recent attempts to consider

the effect of heterogeneous populations on dispersal distributions have been somewhat

limited by the high number of parameters required to subdivide a population into sev-

eral groups. A solution to this problem is to characterize the value of a movement

parameter as continuously distributed within a population. We present several cases

in which this method is useful and tractable, applying the framework both to spatial

distribution data and closely related first passage times. The resulting models allow

ecologists to identify the extent to which the variability in dispersal distributions can

1This chapter is very close to an article of the same title by Gurarie, E., Anderson, J., and
Zabel, R. accepted with revisions to Ecology. A debt of gratitude is owed first and foremost to
the coauthors and the comments of several anonymous reviewers.
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be attributed to population level heterogeneity as opposed to intrinsic randomness.

We apply the formulation to two very different cases of dispersal: resident organisms

in a stream (freshwater chub Nocomis leptocephalus) and migrating organisms (ju-

venile salmonids Oncorhynnchus spp.). In both cases, accounting for heterogeneity

provides novel insights into the behavioral mechanisms of movements.

6.1 Introduction

Animal movement models have been dominated by the concept of “biodiffusion”,

where the spread of organisms is a consequence of individual random movements

that are commonly approximated as Brownian (Turchin, 1998; Okubo and Levin,

2001; Skellam, 1951; Zabel, 1994). Diffusion models owe their development in large

part to the field of statistical mechanics in physics, which deals with large numbers

of indistinguishable particles in a homogenous environment, such as gas molecules.

Consequently, a common implicit assumption behind diffusion models is that the

individuals that compose a population are identical. However, an important, indeed,

almost defining, difference between molecules and animals is that there exits genotypic

and phenotypic variability between organisms, and these differences can have an effect

on dispersal rates. Furthermore, animals disperse in natural environments that are,

as a rule, variable and heterogeneous both in space and time. Consequently, actual

dispersal data rarely conforms with the essential Gaussian distribution predicted by

idealized Brownian motion.

Commonly, in empirical dispersal studies, the data tend to show more distributions

with positive kurtosis, i.e. sharp peak and fatter tails than expected from a Gaussian

distribution (Price et al., 1994; Kot et al., 1996; Skalski and Gilliam, 2000; Coombs

and Rodŕıguez, 2007). These deviations from normality can be accounted for by Lévy

motion, where a power-scaled distribution of step lengths or waiting times between

steps can yield leptokurtic distributions (Viswanathan et al., 1996; Ramos-Fernández

et al., 2004; Uttieri et al., 2005; Fritz et al., 2003; Zhang et al., 2007) or with non-
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Gaussian movement kernels which lead to faster rates of invasion (Kot et al., 1996;

Coombs and Rodŕıguez, 2007). Nonetheless, these models still generally rely on the

assumption that individuals within a population follow the same set of rules.

Some investigators have proposed heterogeneity as an explanation of leptokur-

tic distributions, suggesting that they arise from populations where two or more

Gaussian dispersals are superposed (Fraser et al., 2001; Skalski and Gilliam, 2000,

2003; Coombs and Rodŕıguez, 2007). However, in these studies heterogeneity is lim-

ited to the number of discrete groups within which the behavior is homogeneous. In

this framework, greater realism requires a consequently greater number of parameters,

since each group requires it’s own set of movement parameters and a proportion of

the total population.

Here, we introduce a general framework for incorporating a continuous population-

level heterogeneity in dispersal models and present several analytically tractable so-

lutions. We demonstrate that population-level heterogeneity in the Brownian motion

variance parameter yields leptokurtic distributions for population spread without re-

quiring recourse to Lévy type behavior and loosely apply this result to observations

made of freshwater fish dispersal observed in streams.

Since it is generally a resource-intensive endeavor to obtain a series of “snap-

shots” of a dispersing population over an entire spatial domain directly, an alterna-

tive method for is to study the temporal flux through a fixed site or boundary. Fagan

(1997) surrounded mantids (Mantidae spp.) in a field with a sticky tape boundary and

inferred dispersal rates by measuring fluxes. Similarly, Zabel and Anderson (1997)

studied the migration and dispersal patterns of outmigrating juvenile salmonids (On-

chorhynchus spp.) by obtaining first-passage time distributions and inferring the

underlying advection diffusion process. We apply our heterogeneity framework to

first passage time (FPT) processes. Our analyses are capable of separating the effects

of intrinsic, Brownian randomness from population-level heterogeneity. The analysis

allows us to identify behavioral differences between species which would otherwise be
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masked.

6.2 Models

6.2.1 General framework

We confine the discussion to one-dimensional movement both for the sake of simplicity

and because this conforms roughly with the stream-bound movement discussed in the

applications.

Consider an organism whose spatial displacement in time X(t) is expressed as a

temporally evolving probability distribution function f(x|t, θ), where θ represents the

vector of parameters that determine the nature of the movement. If we consider a

population of N identical organisms, the spatial distribution function of the popula-

tion h(x) is the product h(x, t) = N×f(x|t, θ). More explicitly, the expected number

of organisms found in spatial interval ∆x is:

h(x + ∆x, t) = N × Pr[x < f(x|t, θ) < x + ∆x] (6.1)

This simple product is very commonly used as the transition between the description

of an individual’s movement and the distribution of an ensemble of individuals. It

contains within it the often unstated assumption of homogeneous behaviors within a

population.

Suppose now that some parameter θ is assigned individually to each individual

in a population, such that the i’th organism’s movement is determined by θi, and

that we know the distribution function g(θ) from which the θi’s are drawn. The total

population distribution is given as the sum of all the individual distributions:

h(x|t, θ) =
N∑

i=0

f(x|t, θi) (6.2)
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For large N , equation (6.2) is approximated as:

h(x|t) =

∫
D

f(x|t, θ)g(θ)dθ (6.3)

where D is the domain of θ. Equation (6.3) is an explicit way to account for

population-level heterogeneity in spatial distributions. This method applies equally

well to boundary-flux or first-passage time problems, where the distance x is known

and the arrival time t is the random variable. For this class of problems, equation

(6.3) is expressed as:

h(t|x) =

∫
D

f(t|x, θ)g(θ)dθ (6.4)

For two independently distributed parameters of movement, the expression be-

comes:

h(x|t) =

∫
D2

∫
D1

f(x|t, θ1, θ2)g1(θ1)g2(θ2)dθ1dθ2 (6.5)

and the principle can be extended for any number of parameters.

In the following section, we present several important cases for which analytical

results exist. Indeed, for many biologically reasonable distributions, population level

distributions exist for parameters of interest g(θ). These are analogous to conjugate

prior distributions for parameters encountered in Bayesian inference.

6.3 Examples

6.3.1 Deterministic movement with heterogeneous velocity

The simplest deterministic movement is a constant linear movement beginning at the

origin, such that X(t) = vt, where v is velocity. This equation of movement can be
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written as a probability density function (pdf):

f(x|t, v) = δ(x− vt) (6.6)

where δ(·) is the Dirac delta function. Now, we assume a normal distribution for the

velocities within the population:

g(v|µv, σv) =
1√

2πσv

exp

(
(v − µv)

2

2σ2
v

)
(6.7)

where µv and σ2
v are the mean and variance. Plugging equations (6.6) and (6.7) into

(6.3) yields:

h(x|t) =

∫ −∞

−∞
δ(x− vt)

1√
2πσv

exp

(
(v − µv)

2

2σ2
v

)
dv (6.8)

Substituting v = x′/t yields:

h(x|t) =

∫ −∞

−∞
δ(x− x′)

1√
2πσv

exp

(
x′/t− µ2

v

2σ2
v

)
1

t
dx′ (6.9)

The integrand is equal to zero everywhere except where x′ = x, thus:

h(x|t) =
1√

2πσvt
exp

(
(x− µvt)

2

2σ2
vt

2

)
(6.10)

The dispersal of this population increases in a Gaussian manner, with spatial mean

〈x〉 = µvt and variance 〈x2〉 = σ2
vt

2.

In the traditional biodiffusion literature, a Gaussian dispersal of organisms is a

consequence of intrinsically random movements and the rate of dispersal scales with

the square root of time. An important immediate result of this derivation is that
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deterministically moving individuals also disperse in a Gaussian way, but that the

rate of dispersal due to population heterogeneity is more rapid, scaling as t rather

than t1/2. Thus, the effects of intrinsic randomness and those of population-level

heterogeneity can easily be confounded and are not easily separated when analyzing

dispersal data.

In applications where there is a strong advective drift for moving organisms, data

are more commonly obtained as first passage times at some fixed distance. A travel

time distribution for this process is obtained in a similar fashion. The distribution of

arrival times for a single constant velocity organism is given by:

f(t|x, v) = δ
(
t− x

v

)
(6.11)

Plugging equations (6.11) and (6.7) into (6.4) yields:

h(t|x) =

∫ −∞

−∞
δ
(
t− x

v

) 1√
2πσv

exp

(
(v − µv)

2

2σ2
v

)
dv (6.12)

Substituting v = x/t′:

h(t|x) =

∫ −∞

−∞
δ(t− t′)

1√
2πσv

exp

(
x′/t− µ2

v

2σ2
v

)
x

t′2
dt′ (6.13)

and solving at t = t′ yields:

h(t|x) =
x√

2πσvt2
exp

(
(x− µvt)

2

2σ2
vt

2

)
(6.14)

Some care needs to be taken in considering distribution (6.14). The integral of this

function over the biologically meaningful range of 0 < t < ∞ is less than 1. This is
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because the distribution on velocities can be negative and consequently the domain

on travel times ranges from −∞ to ∞. In practice, when analyzing strongly advective

processes the probabilities of negative velocities are very small.

It should be noted that the spatial distribution given by equation (6.10) can be

obtained more directly by applying the well-known scalar transformation of the nor-

mal distribution (Casella and Berger, 1990), i.e. if V ∼ N {µ, σ2}, then X = tV ∼

N {tµ, t2σ2} (Casella and Berger, 1990). Similarly, the first passage time distribu-

tion (6.14) is the result of a straightforward change of variables: T ∼ x/V , yielding

the so-called reciprocal normal distribution. However, the derivations presented here

demonstrate an implementation of population-level heterogeneity according to equa-

tions (6.3) and (6.4).

6.3.2 Stochastic movement with heterogeneous velocities

The paradigmatic stochastic process used to model animal movement is the so-called

Brownian walk. In fact, a true Brownian walk implies infinite speeds at infinitesimal

time intervals. A similar but more biologically meaningful approach is to model

movement in terms of a Wiener process, which is a general Markovian process defined

by the following conditions:

• X(t) can be discretized at times t1, t2, ...tn with increment size ∆t, such that

X(ti+1)−X(ti) and X(ti+3)−X(ti+2) are independent;

• ∆X = X(ti+1)−X(ti) is distributed with some constant mean v∆t and variance

σ2
x.

The exact form of the distribution is irrelevant as the central limit theorem guarantees

that at a reasonably large number of steps, the spatial distribution of the population

is roughly normal, with mean vt and variance σ2
wt. The parameter σw is referred
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to as the Wiener variance. The resulting probabilistic description of the organism’s

position is given by:

f(x|t, v, σw) =
1√

2πσ2
wt

exp

(
−(x− vt)2

2σ2
wt

)
(6.15)

and the first passage time distribution at a fixed distance x is given by:

f(t|x, v, σw) =
x√

2πtσ2
wt3

exp

(
−(x− vt)2

2σ2
wt

)
(6.16)

Equation (6.16) is known to as the inverse Gaussian distribution and has been widely

applied for travel time processes (Tweedie, 1957; Chhikara and Folks, 1989; Zabel and

Anderson, 1997; Zabel, 2002).

We assume again the normal distribution for velocities (6.7) and apply equation

(6.3) and (6.15):

h(x|t) =
1

2πσvσwt

∫ ∞

−∞
exp

(
−(x− vt)2

2σ2
wt

− (v − µv)
2

2σ2
v

)
dv (6.17)

Solving the integral and simplifying yields:

h(x|t) =
1√

2π(σ2
vt + σ2

w)t
exp

(
− (x− µvt)

2

2(σ2
vt + σ2

w)t

)
(6.18)

The basic form of this distribution, a traveling, widening Gaussian, is a straightfor-

ward mixture of the Wiener and reciprocal normal processes such that the spatial

variance 〈x2〉 = σ2
wt + σvt

2.

Analogously, the first passage time distribution (6.16) applied to (6.4):

h(t|x) =
x

2πσvσwt3/2

∫ ∞

−∞
exp

(
−(x− vt)2

2σ2
wt

− (v − µv)
2

2σ2
v

)
dv (6.19)
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can be solved:

h(t|x) =
x√

2π(σ2
vt + σ2

w)t3/2
exp

(
− (x− µvt)

2

2(σ2
vt + σ2

w)t

)
(6.20)

This distribution is similarly a mixture of the inverse Gaussian arrival time given

by (6.16) and the reciprocal normal arrival time given by (6.14); each of these distri-

butions are special cases of (6.20) where σv = 0 or σw = 0 respectively. Plots of this

distribution for several parameter values are presented in figure 6.2.

6.3.3 Stochastic movements with heterogeneous Wiener variances

Consider a population of N individuals, the movement of each of which is charac-

terized by a one-dimensional Wiener process with unique Wiener variance σ2
i . Since

variances are necessarily positive, an appropriate and flexible hypothesized distribu-

tion is the gamma distribution. Thus:

g(σ2
w|a, b) = xa−1 e−x/b

ba Γ(a)
for x > 0 (6.21)

where a and b are the shape and scale parameters respectively. Recall that the mean

of the gamma distibution is ab and the variance is ab2. Plugging (6.21) and the Wiener

process (6.15) into the spatial equation (6.3) gives:

h(x|t) =

∫ ∞

0

1√
2πtΓ (p/2) 2p/2

σp−3
w exp

(
−(x− vt)2

2σ2
wt

− σ2
w/2

)
dσw (6.22)

which yields the analytical solution:

h(x|t) =
1

Γ(a)

√
2

πtb

(
|x− vt|√

2tb

)a− 1
2

K 1
2
−a

(
|x− vt|√

(bt)/2

)
(6.23)

where Kn(x) is the modified Bessel function of the second kind. The modified Bessel
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functions exist in the positive domain and decreases monotonically; the absolute value

in the argument leads to a peak at x = vt with a symmetric decrease on both sides.

Thus, (6.23) is a unimodal, symmetric pdf on x that displays advection at rate v and

a characteristic widening typical of diffusion processes (fig. 6.3).

Distribution (6.23) has the following properties:

Mean : µ = E [X] = vt (6.24)

Variance : σ2 = E
[
(X − E [X])2

]
= abt (6.25)

Skew : γ =
E [(X − E [X])3]

σ3
= 0 (6.26)

Kurtosis : κ =
E [(X − E [X])4]

σ4
− 3 =

3a(1 + a)b2t2

(abt)2
− 3 =

3

a
(6.27)

The variance grows linearly with time as abt, an expected result since ab is the mean

value for the Wiener variance σw. The kurtosis is positive, constant, and inversely

proportional to the a parameter. This is an important result, since it provides an

explanation for leptokurtic dispersals observed in plants (Kot et al., 1996; Clark,

1998), insects (Dobzhansky and Wright, 1943), fish (Skalski and Gilliam, 2000), and

mammals (Sandell et al., 1991; Price et al., 1994) within the context of a Wiener

process.

The gamma distribution for Wiener variance can also be applied to the inverse

Gaussian first passage time (6.16), yielding:

h(t|x) =
x

Γ(a)

√
2

πt3b

(
|x− vt|√

2tb

)a− 1
2

K 1
2
−a

(
|x− vt|√

(bt)/2

)
(6.28)

We have presented a few cases which are analytically tractable (table 6.1, figure

6.1) and intend to demonstrate some applications in which these exotic looking dis-

tributions can be applied. However, these cases are probably approaching the limit

of what is useful or tractable to solve analytically. We were not, for example, able to
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obtain a movement process with both normally distributed velocities and gamma dis-

tributed Wiener variances. However, where data are available, an analogous process

can be applied to produce empirical distributions using numerical methods.

6.4 Model Applications

6.4.1 Spatial distribution of chub in a stream

Skalski and Gilliam (2000) performed a mark-recapture experiment on several fresh-

water fish species in a creek in Tennessee. In particular, 190 marked bluehead chub

(Cyprinidae: Nocomis leptocephalus) were released at a single location and recap-

tured over 50 detection sites at monthly intervals and the moments of the spatial

distribution were computed (table 6.2). The authors found that the dispersal of the

chub displayed significant a slight mean shift increasing in time and a linearly in-

creasing variance, consistent with Gaussian models of dispersal. The distributions

also displayed a relatively constant positive kurtosis and skewness. The authors pro-

pose that the kurtosis is a consequence of a process in which the fish display two

or more modes of movement: a ‘fast’ diffusion and a ‘slow’ diffusion (Skalski and

Gilliam, 2000, 2003). Their model yields solutions that are essentially the sum of

two Gaussians with different means and variances, which can be fitted to distribution

with non-zero skew and kurtosis. The authors suggest that leptokurtosis of spatial

dispersals essentially characterize the heterogeneity of the system.

While Skalski and Gilliam’s model is generalizable to any number n of different

modes of movement, the model is limited by the number of parameters that need to

be estimated: a velocity, a diffusion parameter and a proportion for each mode of

movement makes for 3n− 1 estimates in the fully parametrized case, leading to what

the authors refer to as the “spectre of parameter explosion”.
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Figure 6.2: Plots of the mixed inverse Gaussian and reciprocal normal (IGRN) distribution
for different parameter values. In (A) IGRN distributions are plotted for several values of
the velocity variance σv parameter; values for the remaining parameters are: d = 10, v = 2,
σw = 0.5. A value of σv = 0 corresponds to a homogenous Wiener process. In (B) the
IGRN is plotted for several values of the Wiener variance σw parameter. Values for the
remaining parameters are: d = 10, v = 2, σv = 0.5. A value of σw = 0 corresponds to a
heterogeneous, deterministic velocity process.
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various values for a and b and times t. The velocity parameter v for all of these distributions
is 0.
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Figure 6.4: Comparison of the 3-parameter gamma-distributed variance model (G-V) and
the five parameter Skalski-Gillam model (S-G) to histograms of bluehead chub disperal data
at four months of observation.

Table 6.2: Mean, variance, skewness and kurtosis estimates for spatial distribution of
bluehead chub (Nocomis leptocephalus) movements from (Skalski and Gilliam, 2000). The
fish were marked and released at one site and monitored over a 4-mo period. Dispersal
distance is measured in terms of number of sites.

Days Mean (se, n) Variance (se, n) Skew (se, n) Kurt (se, n)
0 0 (0,190) 0 (0,190) na na

30 1.13 (0.35,134) 22.29 (5.42,157) 0.44 (0.43,134) 7.34 (0.39,157)
60 1.57 (0.5,86) 27.40 (7.86,101) 0.95 (0.31,86) 6.37 (0.48,101)
90 3.19 (0.8,59) 45.64 (14.03,69) 0.87 (0.25,59) 4.58 (0.57,69)

120 2.44 (0.77,32) 66.62 (30.69,44) 1.08 (0.22,32) 7.51 (0.7,44)
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Table 6.3: Parameter estimates for the gamma-distrubuted variance model for the chub
dispersal data.

parameter symbol (units) estimate (95% confidence interval)
shape parameter a (unitless) 0.47 (0.426,0.506)
scale parameter b (sites/day) 1.15 (0.497,1.809)
mean velocity v (sites/day) 0.03 (0.0172,0.0352)

Estimating parameters

The gamma-variance process GVP (6.23) resolve this parameter explosion by summa-

rizing all the possible kinds of movement of a population into a single two-parameter

distribution. We estimated the parameters of the GVP by exploiting the simple ex-

pressions for the theoretical expected mean µ = vt (6.24), variance σ2 = abt (6.25)

and kurtosis κ = 3/a (6.27) where v is the velocity parameter and a and b are the

shape and scale parameters of the gamma-distributed Wiener variance. Thus, we

obtain v̂ by regressing the mean measurements µ against time t, obtain an estimate

for a × b by regressing the variance σ̂2 against time, and use the measured kurtosis

κ̂ to obtain a. Estimates of the standard error were obtained by performing these

estimations 10,000 times over simulated measurements using Skalski and Gilliam’s

reported standard errors.

The results of our parameter estimates and model fits are presented in table 6.3.

In figure 6.4, we compare our three parameter model with Skalski and Gilliams two

Gaussian fish groups which fits five parameters: fast and slow fish diffusions (Df , Ds),

fast and slow fish advections (βf , βs) and a proportion of fast fish to slow fish (Z).
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6.4.2 Migration times of outmigrating salmonids

Data

We applied the first passage time distribution with heterogeneous velocities (6.20)

to data on seaward migration of juvenile salmon (Oncorhynchus spp.) in the Snake

and Columbia rivers in the northwestern of the United States. Since the 1990’s, hun-

dreds of thousands of juvenile salmonids have been implanted with passive integrated

transponder (PIT) tags and detected at hydroelectric projects downstream. PIT tags

are small tags inserted into the body cavity and retained for life. Each tag contains

a unique code that is recorded with the time of passage when the fish passes near

detectors placed at fish bypass systems further downstream (Prentice et al., 1990).

In this study, we analyze data from spring-run Chinook salmon (O. tschawytcha)

and steelhead trout (O. mykiss) released in groups throughout their migratory season

over a ten year period from 1996 through 2005. Details of the capture and tagging

methods for each of the four groups are given by Marsh et al. (1997); Buettner and

Brimmer (1998); Smith et al. (2000). The PIT-tag data were downloaded from a re-

gional database available to the public (Pacific States Marine Fisheries Commission,

1996).

We chose to focus on these two species because they are of similar size (typically

between 100 and 230 mm) and display similar migration timing. Both are listed as

an threatened ESU’s under the Endangered Species Act (USNMFS, 1992, 1998). We

further focus our analysis on travel times between Lower Granite and Little Goose

dams, a distance of 37.2 miles (59.9 km), and on fish traveling between April 10 and

May 20, thereby capturing the largest number of both species in all years.

Flows were also measured at both dams and analyzed as a covariate in the para-

meter estimations. The average flow over the 40 day period varied from a maximum

of 4530.7 m3s−1 in 1997 to a minimum of 1868.9 m3s−1 in 2004.

The numbers of fish released each year are quite large (mean 8457) but varied



152

widely between 254 Chinook detected in 1997 and 30460 steelhead detected in 2000.

This variability reflects both the number of fish tagged and the detection probability,

which could be compromised by high flows, as in 1997.

Statistical methods

We fit and assessed three models, the inverse Gaussian (IG) model (eq. 6.16), which

assumes homogeneous organisms with Wiener-movement; the reciprocal normal (RN)

model (eq. 6.14), model which assumes a fully heterogeneous population of determin-

istic organisms; and the combined IGRN model (eq. 6.20). Estimates for these models

were obtained by using maximum likelihood estimation.

For the IG model, the maximum likelihood estimates for v and σw are given by:

v̂ =
d

t̄
(6.29)

σ̂2
w =

d2

N

N∑
i=1

(
1

ti
− 1

t̄

)
(6.30)

There is a slight bias in the MLE estimator for σw. An unbiased uniform minumum

variance estimator (Tweedie, 1957; Folks and Chhikara, 1978) is given by:

σ̂2
w =

d2

N − 1

N∑
i=1

(
1

ti
− 1

t̄

)
(6.31)

The RN model can be readily transformed into a normally distributed variable

via the transformation Y = 1/X, such that the MLE estimates are:
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v̂ =
d

t̄
(6.32)

σ̂v
2 =

1

N

N∑
i=1

(
d

ti
− v̂

)2

(6.33)

For the IGRN model µ̂v can be obtained in terms of the other parameters:

µ̂v =
n∑

i=1

x

σ̂2
wti + σ̂2

v

/
n∑

i=1

ti
σ̂2

wti + σ̂2
v

(6.34)

There are, however, no analytical expressions for MLE’s of the IGRN model variances,

however these can be readily estimated using an optimization routine to maximize the

log-likelihood function. All estimates were obtained using the R statistical package.

In order to obtain confidence intervals around the estimates for the IGRN model,

we used a bootstrapping routine where estimates were generated for 1000 resamplings

with replacement of each dataset and 95% empirical quantiles were obtained from

the bootstrap distribution (Moore and McCabe, 2006). Quality of model fits were

assessed used the Kolmogorov-Smirnov goodness of fit test, which measures the largest

vertical distance between the empirical cumulative density and the theoretical density

(Massey Jr., 1951). We used Akaike’s information criteria (AIC) to compare models,

which adjusts the likelihood function according to the number of parameters estimated

(Akaike, 1974). Parameter estimates were regressed against mean flows using standard

linear regression. Quality of distribution fits to data was further assessed visually

using percentile (P-P) plots (Wilk and Gnanadesikan, 1968).

We summarize the role of heterogeneity in describing a migration process with a

dimensionless index of heterogeneity φ defined as:

φ =

√
σ2

vv

σ2
vv + σ2

wd
(6.35)
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This index corresponds to the amount that population-level heterogeneity contributes

to the total spatial variance of the migrating population when the spatial mean of the

population distribution at some distance d. For these data, we choose the distance

at which the data is collected (37.2 miles). For a homogeneous (σv = 0) population,

φ = 0; for a fully heterogeneous (σw = 0) population of deterministic travelers, φ = 1.

Results

In almost all cases, the IGRN model was the best fitting and most parsimonious

model according to the AIC index (table E.1, figure 6.5). The only exceptions were

when the IGRN model estimates a Wiener variance of zero, essentially collapsing into

the RN model, as occurs in 1997, 1999 and 2003 for the steelhead travel time data.

We present values of velocity estimates (v̂) and heterogeneity index estimates (φ̂)

with bootstrapped 95% confidence intervals and averaged flows in table 6.4 and plot

these results in figure 6.6.

The velocity parameter estimates v̂ were significantly higher for steelhead (mean

13.26, s.e. 3.71) than for Chinook (mean 7.64, s.e. 1.61, paired t-test p-value 0.001,

table 6.4). Similarly φ̂ is much higher for steelhead (mean 0.665, s.e. 0.26) than for

Chinook (mean 0.200, s.e. 0.16, p-value � 0.001). We performed simple linear regres-

sions of these these estimates against flow. Steelhead showed significant responses

in both v̂ (slope 0.12 miles/day/kcfs, p-value � 0.001) and φ̂ parameters (slope 0.13

kcfs−1, p-value 0.037), while Chinook showed no response (p-values 0.48 and 092 for

v̂ and φ̂ respectively, figure 6.6).

6.4.3 Seattle marathon analysis

Finally, we applied the IGRN model (6.20) to the results of the University of Wash-

ington Medical Center Seattle Marathon, run on Sunday, November 26, 2006. Par-

ticipants in the marathon included women (n=741) and men (n=1314) aged 10 to 99

years, ranging from walkers to sub-elite competitive marathoners. Each participant
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Figure 6.5: Examples of travel time model fits to travel times data. On all plots, the
solid line is the IGRN model (6.20), the dashed line represents the homogeneous popula-
tion of Wiener movers (IG model 6.16) and the dotted line represents the heteregeneous,
deterministic fish model (RN model 6.14). The histograms represent travel times for (A)
steelhead and (C) yearling chinook released at Lower Granite and detected at Little Goose
dam, 37.2 km downstream, between May and June, 2005. The P-P plots (B) and (C) are
a visual way to assess the fit of data to different theoretical distributions, with the 45 deg
line representing a perfect fit. In all of these plots, the IGRN model is the best fit. For the
steelhead the RN model is a very close second.
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Figure 6.6: Plots of (A) velocity estimate (v̂) and (B) heterogeneity index estimates (φ̂)
over all years against mean flow (in kcfs). The crosses represent results for steelhead, the
circles represent results for chinook. The solid and dashed lines represent linear regressions
against flow for steelhead and chinook respectively. The vertical bats are bootstrapped 95%
confidence intervals. Steelhead clearly show both higher values of v̂ and φ̂ and stronger
responses to flow.
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Figure 6.7: Histrograms of Seattle marathon results, broken up into two halves, with fitted
IGRN model distributions.
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was fitted with a timing chip that recorded the exact time of leaving the starting gate,

passing the half-way mark (13.1 miles) and reaching the finish line (26.2 miles). The

course is described as moderately hilly, beginning at 100 ft above sea level, dipping to

40 feet, and topping out at 200 ft. The first four miles are rather hilly, followed by a

gradual downward slope and a long (11 mile) flat stretch, while the final eight miles is

hilliest, including the steepest climb. The second half of the race is thus considerably

more strenuous than the first.

All results for the 2006 Seattle marathon as well as a description of the course are

publicly available on their website at http://www.seattlemarathon.org/.

Results

Distributions of race times for men and women are presented in figure 6.7. Race times

ranged widely from 2.46 hours to 7.84 hours for men and 3.02 hours to 7.38 hours

for women. Parameter estimates of the IGRN model fits are presented in table 6.5

and plotted in figure 6.7. The mean velocity estimates (presented in figure 6.8A) was

significantly lower for the women’s race time distribution (v̂=5.7 miles/hour) than for

the men (v̂ = 6.2) and for the second half of the race (v̂=5.6) than for the first half

of the race (v̂=6.5), as is to be expected. Bootstrapped 95% confidence intervals for

velocity estimates were fairly narrow (between 0.13 and 0.17).

Results of the heterogeneity index are plotted in figure 6.8B. Confidence intervals

were much wider for women (from 0.36 to 0.64) than for men (0.24 to 0.29), due

primarily to the smaller sample size. Men displayed a constant φ̂ around 0.40 (C.I.:

{0.23,0.48}), while women showed a low φ (0.23, {0.04,0.42}) for the first half, but a

much higher one for the second half of the race (0.6, {0.29,0.91}).

Discussion of marathon results

The participants in the Seattle marathon are clearly a heterogeneous group of racers

with a wide range of abilities. If each runner were to pace themselves at a constant

h


160

pace throughout the race our model predicts that heterogeneity would dominate the

dispersal of race times and φ would be around 1.0. In fact it tends to be much lower

(mean estimates between 0.23 and 0.60). This result suggests that homogeneity and

intrinsic randomness play a significant role in predicting race times. Homogeneity

is reflected in the considerable clumping between racers, who tend to “buddy-up”,

especially in a pool where most participants are not running competitively. Intrinsic

randomness is reflected in the considerable variability in the pacing itself, as individual

racers speed up and slow down as a function of the difficulty of the run.

The most striking result is the dramatic increase in the heterogeneity parameter

for women in the second half of the race. The much lower value of φ in the first half of

the race for women might a reflection a greater tendency for clumping among women,

while the great increase in the second might be interpreted as a greater differentiation

or spreading in the field of women racers during the second, more arduous half of the

course. Hopkins and Hewson (2001) present evidence suggesting that female runners

are less variable in their race results than male runners. If this is interpreted as

a better ability in general to pace oneself, this would be consistent with the high

heterogeneity index identified for the female racers.

Again, a thorough analysis of the data would consider other covariates, such as age

and experience, and consider alternative underlying assumptions behind the models.

However, this application illustrates the wide applicability and potential informative

nature of fitting models that explicitly incorporate population-level heterogeneity.

6.5 Summary and general discussion

6.5.1 Dispersing chub

The gamma-distributed variance process captures the important features of the blue-

head chub data, namely linearly increasing spatial variance and positive, constant

kurtosis, while neatly taking care of Skalski and Gilliam’s potential ‘parameter ex-
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plosion’. It demonstrates how a direct incorporation of continuous population-level

heterogeneity within the framework of a standard diffusive processes can yield lep-

tokurtosis.

The major drawback of our model is that it can not account for the skewness,

though a model built on the same framework that includes a continuous distribution

of velocities for the population would. Unfortunately, we were not able to obtain an

analytical distribution that could account for both a continuous distribution of mean

velocities and Wiener variances.

On the other hand, a particularly attractive feature of our model is the simplicity

of the parameterization, i.e. the surprisingly straightforward relationship between the

a and b parameters which describe the distribution of the Wiener variance and the

predicted spatial variance σ2 and kurtosis κ. At no point did we require a fitting

algorithm or a minimization routine.

It should be noted that we chose a flexible distribution with ‘nice’ properties to

describe the variance parameter. It is, however, empirically unsupported. Within

the heterogeneity framework, one might collect data on some parameter of the fish

and empirically estimate the predicted distribution of a dispersion parameter. For

example, lengths and weights of fish are routinely collected and might be used to

motivate prior estimates of population-level heterogeneity. Our models provide a

framework within which laboratory experiments can be extrapolated to field studies.

6.5.2 Migrating salmonids

The IGRN travel time model, which allocates the spatial dispersal of a migrating pop-

ulation to intrinsic randomness and population-level heterogeneity, fit the salmonid

migration data significantly better than the inverse Gaussian model. Differences in

the nature of the dispersal yield fresh insights into the nature of migration for mi-

grating salmon. That steelhead trout migrate faster than yearling chinook salmon

is a well-documented observation (Cada et al., 1997; Giorgi et al., 1997). However,
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Figure 6.9: Comparison of parameter estimates as the season develops between 1997, an
abnormally high flow year, and 2005, a relatively low flow year. The circles represent
estimates for spring chinook; the pluses represent steelhead. In order to obtain sufficient
sample sizes to produce reliable estimates, they are obtained from data pooled over a 7 and
5 day period around a given day respectively in 1997 and 2005.
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the estimation of an additional parameter captures an additional behavioral signal.

If the underlying assumptions of the dispersal models are valid, our results indicate

that steelhead exhibit more heterogeneity-dominated migration (φ ≈ 1), i.e. each in-

dividual selects it’s own velocity and moves in a relatively constant and directed way

downstream with relatively little milling or randomness. Furthermore, steelhead ap-

pear to track very closely the flow of the river, with a strong linear interyear response

to velocity. The relationship between the heterogeneity index φ and flows is most

likely a result of greater variability in the flow regimes in higher flow years. This is

consistent with the observation by Dauble et al. (1989) that steelhead in particular

prefer the faster, deeper central channels of the river.

Chinook, in contrast, exhibit a more diffusion-like migration, likely engaging in

diurnal feeding and station-holding behaviors during migration. The lack of a response

to higher flows indicates that their behavior is less dictated by river velocity. A

possible explanation might be that they cling closer to the slower moving waters near

the riverbanks or have a stronger diel pattern of migration.

To further explore these hypotheses, the data needs to be scrutinized more closely.

Notably, distributions within narrower migration windows need to be analyzed for

more detailed responses to environmental variation. In figure 6.9, I present

For the purposes of this paper, however, it is most noteworthy that the construc-

tion of a model with the explicit incorporation of population level heterogeneity has

provided a strong behavioral signal, reinforced by the consistency in the results and

the robustness of the estimation routine. This signal is undetectable with standard

diffusion models and inverse Gaussian arrival time distributions.

6.5.3 General Discussion

Though rarely stated, an implicit assumption of homogeneity underlies many appli-

cations of diffusion-based models of animal movements. This, despite the fact that

one of the few safe generalizations one can make about populations of organisms is



164

that individuals are not identical and that natural environments are heterogeneous

in space in time. Indeed, it would seem population-level heterogeneity should play at

lease as central a role as random movement models in cases where dispersal processes

are being modeled.

We have seen that a heterogeneity model is highly successful at capturing the

main features of observed cyprinid fish dispersal in a stream observed by Skalski and

Gilliam (2000). While certainly simplistic, the population level distribution assumed

for the Wiener variance parameter is more realistically continuous and is very effi-

ciently parameterized. Furthermore, a population level heterogeneity is in principle

measurable in a laboratory environment. Thus, for example, swimming speeds can

be assessed in terms of fish size, age or sex, as can less physical phenotypic traits such

as ‘boldness’ (Fraser et al., 2001).

In the case of travel time data for directed, migrating organisms in a essentially

one-dimensional geometry (e.g. migrating salmonids in a river) we can explicitly sep-

arate the contribution of intrinsic, random effects and population-level effects to the

total dispersal with a single first-passage time dataset. The consistency of differences

between populations which are experiencing similar environments and constraints

provides strong evidence that a real behavioral difference is being observed.

It should be emphasized that there are many kinds of heterogeneity. An individual

can display heterogeneous behaviors, a population can be heterogeneous in a given

trait, and an environment can be spatially and temporally heterogeneous in some

variable. In our formulation, heterogeneous behaviors are absorbed into the descrip-

tion or random movement, while heterogeneous populations are modeled using some

simple assumptions about distributions within populations in parameters related to

movement (velocities and Wiener variances). Appropriate ways of incorporating en-

vironmental heterogeneity is specific to the problem.

In the analysis of salmonid data, for example, while we have described a process

with heterogeneous velocities, there is no way of knowing to what extent this hetero-
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geneity is intrinsic to the population and to what extent it is a reflection of variable

environmental conditions. Analysis of the data for narrower temporal windows is

reflected by a decrease in heterogeneity, since organisms migrating in a narrower time

window experience a narrower range of environments. By comparing the rate of de-

crease of the heterogeneity index to the size of a temporal window it might be possible

to identify more exactly the ‘intrinsic’ heterogeneity of a population on the one hand,

and to formulate more sophisticated models of immediate environmental response

on the other. This approach is ultimately constrained by the data since parameter

estimates for smaller cohorts are obtained at the cost of greater uncertainty.

At the smallest level, an individual organism responds in well-defined ways to it’s

immediate environment and internal state. From its perspective, there is presum-

ably little that is truly ‘random’ about its movements. The more information that

one has to explain a movement, the less random it becomes; a point quantified by

Zabel (2002). When describing a system that consists of many different individu-

als in a complex environment moving in space and in time, notions of randomness

or stochasticity, heterogeneity, variance and error have a tendency to blur together.

However, when precisely defined they all refer to very distinct ideas. Here we have

developed and presented a theoretical framework that explicitly separates stochastic-

ity from heterogeneity. Under certain specific but biologically reasonable assumptions

the framework yields analytical results in which parameters can be readily estimated.

The framework, however, is very general. Where analytical results do not exist, it is

tractable to empirically posit population-level distributions in parameters of move-

ment and predict dispersal distributions and rates.
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1.00
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0.40
(0.365,0.439)

11.13
(11.04,11.24)

1.00
(1,1)

2004
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(8.03,8.17)

0.18
(0.166,0.191)

10.54
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0.14
(0.13,0.152)

11.74
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0.50
(0.46,0.55)
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Table 6.5: Results of IGRN model (6.20) fitting to Seattle Marathon data. The confidence
intervals were calculated using a bootstrapping procedure. Velocity (v) and velocity devia-
tion (σv) are measured in miles per hour, Wiener deviation (σw) is measured in miles/hour2.

Section para- Men (n = 1314) Women (n = 741)
meter MLE 95% C.I. MLE 95% C.I.

1st Half v̂ 6.779 (6.71,6.84) 6.07 (5.99,6.16)
(13.1 miles) σ̂v 0.724 (0.502,0.914) 0.375 (0,0.649)

σ̂w 1.063 (0.695,1.304) 1.086 (0.763,1.249)

φ̂ 0.44 (0.294,0.586) 0.229 (0.04,0.42)
2nd Half v̂ 5.858 (5.78,5.93) 5.45 (5.37,5.52)
(13.1 miles) σ̂v 0.859 (0.641,0.998) 0.824 (0.521,0.953)

σ̂w 1.18 (0.829,1.474) 0.711 (0,1.166)

φ̂ 0.438 (0.313,0.563) 0.599 (0.29,0.91)
Total v̂ 6.281 (6.21,6.35) 5.73 (5.65,5.81)
(26.2 miles) σ̂v 0.802 (0.57,0.951) 0.638 (0.337,0.824)

σ̂w 1.466 (0.973,1.849) 1.268 (0.625,1.73)

φ̂ 0.354 (0.231,0.478) 0.316 (0.14,0.5)
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Chapter 7

CONCLUDING THOUGHTS

Nil actum reputa si quid superest agendum.

Don’t consider that anything has been done if anything is left to be done.

Lucan (39-65 AD)

This dissertation has been primarily methodological, covering thoroughly the

“Quantitative” component of the degree I am hoping to have conferred upon me.

The rest of the degree title, however, includes the words “Ecology” and “Resource

Management”,1 so I conclude the dissertation with some thoughts about the role of

movement models in asking ecological questions, and the role of movement studies in

general in the very applied field of conservation.

7.1 Movement models and the science of ecology

Ecology as a field of scientific inquiry is highly empirical and hypothesis-driven. Typ-

ical studies in ecology might be broken down into the following generic steps: First,

a question is asked (e.g. how does presence or absence of birds affect plant com-

position in tropical forests). This question is often formalized in the context of an

existing theory or hypothesis (e.g. Janzen-Connell hypothesis of density dependence

and distance-related survival for seeds). Second, An appropriate study system is se-

lected (e.g. bird-free Guam versus unaffected neighboring islands) and measurements

of some appropriate variable are obtained (e.g. measurements of dispersal distance

1as well as “Philosophy”!



169

and germination success of seeds).2 Third, the data is distilled using some statistical

summaries (e.g. means and variances of log-transformed dispersal distances and esti-

mated probabilities of germination success). Fourth, rigorous hypothesis tests of the

data are performed (e.g. factorial analysis of variances or generalized linear models

mortality). Finally, depending on the results of the tests, support for or against the

theory or prediction is obtained (e.g. the absence of birds in Guam significantly affects

the reproductive success and dispersal of seeds3).

In the chapters of my dissertation, nowhere do I propose or test an ecological

hypothesis or explore any underlying theories. Indeed, in the context of the model

outlined above, most of my work has been confined to developing elaborate versions

of the standard summary statistics. I supplant the typical double prong of means and

variances with a veritable hydra of mean advections, measures of net variability, and

time-length scales of significant autocorrelation, all further complicated by decom-

position into orthogonal components, the inclusion of rotational tendencies, and/or

population-level heterogeneities. Because these variables all have specific mathemat-

ical meaning and statistical properties, rigorous analyses can be performed allowing,

for example, for the identification of discrete behavioral shifts or the quantification

of significant population-level heterogeneity. However, interpretations of movement

data in terms of actual behavior models, bioenergetics, individual responses to en-

vironmental covariates, or in an evolutionary context are largely absent. The only

theoretical predictions are those that relate the encounter rate models to individual

movement parameters. The grand goal of inferring the heuristic behavior function

f(·) presented in the Introduction (equation 1.1) remains largely unfulfilled.

Clearly, informative mathematics and robust statistics are essential to the func-

tioning of the generic version of the scientific method outlined above. However, the

2In practice, of course, it is the existence of a particular study system that dictates the question,
but the logical structure of studies in ecology are rarely presented in that order of precedence.
3Example inspired by H. Rogers (pers. comm).
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complexity of some of the methods begs the question of how these mathematical and

statistical models can be applied to develop behavioral and ecological models. While

there is no simple answer to this question, the first-order theory-derived hypothesis-

testing framework outlined above might in practice be too narrow. In very general

terms, I would advocate a sort of iterative process that boils down to the following

steps: (1) develop informative movement models with a certain number of assump-

tions to distill the data; (2) use model-derived observations of unexplained phenomena

of the system to inform further questions; (3) obtain data on potential explanatory

variables; (4) construct further models based on the availability and quality of the

explanatory variables, using an arsenal of statistical tools to identify, compare and

parsimoniously choose the most informative refined models; (5) return, if necessary,

to step (2).

Within this framework in mind, much of my work has been constrained to steps

1 and 2. For example, the heterogeneous migration model (chapter 6) reveals that

different species of salmon reveal different extents of “heterogeneity domination”, and

that the response of this parameter tracks to flow regimes in different ways for dif-

ferent species. Furthermore, both travel times and survivals vary significantly within

different reaches of a single reservoir (appendix C). These observations are essentially

empirical in nature, though the require the filter of a movement model. They also

immediately suggest several further directions of research: direct investigations of

variability of individual movements, studies on predator distributions and movements

within different reaches of a reservoir, statistical models that relate the value of var-

ious movement parameters to other measurable variables such as temperature and

turbidity. In the Columbia River and other watersheds, many of these kinds of data

are being collected. The mathematical movement model provides more than anything

a structure and some guidance for integrating as much of the measurable variables as

possible. Because there is a specific management goal in the river, namely the maxi-

mization of survival, the measure of success of a model is straightforwardly quantified
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by its ability to fit survival estimates. Within the iterative modeling strategy, the

study of salmon survival in the Columbia River is one that benefits from many, many

iterations, as long as fresh kinds of explanatory data are being collected.

The implementation of the behavioral change-point analysis to fur seal data (chap-

ter 5), revealed first and foremost that movement behaviors are extremely variable

and show rather sudden and discrete shifts. Two consistent patterns emerge: the

strongly autocorrelated signal during travel away and toward the home rookery and

a increased activity between sunset and sunrise. Beyond these generalizations, it is

difficult to know from the movement data alone what the fur seal is responding to.

However, since the fur seal in the study was also tagged with stomach temperature

and dive depth recorders, an analysis of the movement patterns with respect to forag-

ing success will give extraordinary good information, and it is difficult to predict what

kinds of further questions will emerge from even a cursory comparison. Measurable

environmental covariates include depth and, perhaps, remotely sensed measures of sea

surface temperature and primary productivity. Again, it is difficult to hypothesize

what patterns may or may not emerge, but there exist several methodological options

for making rigorous model comparisons. In the case of the analysis of individual move-

ment tracks, experience with the complexity and variability of the data suggests to

me that the most information can be obtained with the fewest preconceived hypothe-

ses. Again, integrating a model of the foraging behavior of the fur seal to parallel

information about its bioenergetic costs and diet can provide a very complete picture

of foraging strategies. Furthermore, such an integrated model might provide some

indirect infromation about the distribution and movement of prey objects, something

that is very difficult to measure directly.

As a rule, human beings have terrible intuition about probabilities and statistics,

but their ability to recognize and find meaning in patterns is remarkable.4 It is

4This observation is paraphrased from the linguist Marc Rosenfelder, who addresses the many
non-professionals that provide examples of remarkable resemblances between unrelated languages
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the former unfortunate condition that requires sometimes intricate applications of

probability theory and fancy mathematics when confronting data. But if the tools of

statistical analysis can be used to filter away all but the most robust and significant

patterns, than this shortcoming is more than redeemed by the latter gift. I believe that

a great insights about the natural world can be obtained from a judicious awareness

and manipulation of these very fundamental human qualities.

7.2 Movement ecology and conservation

By virtue of its incremental nature and excellent documentation, scientific process

is inherently ratchet-like; forward and outward are essentially the only directions it

knows. The related forward march of technological advances has contributed mightily

to acquiring data on animal movements. The kinds of detailed information on loca-

tions and movements of organisms that are standard now were unimaginable twenty

years ago. They have been made possible by the proliferation and improvement of

satellites, the development of transistor circuitry, the epoxies for attaching the tags,

the sedatives, the transmission and reception platforms, the exponential growth in the

ability to access, process, organize, simulate the data. The mathematical language

of interpreting movement data has moved forward in its own idiosyncratic pace, but

ultimately it, too, is driven by the availability of the data and computational power.

And so the science of animal movements has made significant steps forward, shedding

light on questions as basic as “where does the organism go in winter?” to such sophis-

ticated ones as “how does natural selection and environmental variability contribute

to the evolution of the behavioral algorithms with which the organism optimizes it’s

exploitation of a heterogeneous environment?”

(e.g. Basque and Ainu, Welsh and Mandan, Hebrew and every other language) as evidence of
deep connections between distant people. He presents a simple probabilistic model of phonemic
combinations to show that, for example, the resemblance between the Japanese gaijin and the
Hebrew goyim is easily explained by random chance. See http://www.zompist.com/chance.htm
for details.

http://www.zompist.com/chance.htm
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As irrevocably as science moves forward, global biodiversity appears to be moving

in the opposite direction. The rate of extinctions now is generally agreed to be higher

than at any point since the evolutionary arrival of humans, and virtually all of the

pressures exacted on species are directly traceable to anthropogenic causes. The

usefulness of animal movement studies to conservation is limited to the strength of

the results and the application of the conclusions. While it rarely hurts to have the

information obtained from movement studies, ultimately it is just information. No

amount of hydroacoustic tagging and fractal analysis is going to help the seven or so

Chinese river dolphin (Lipotes vexillifer) remaining in the Yangtze.5

Arguments can be made that some conservation efforts devote a disproportion-

ate amount of resources to technological innovation and information gathering. The

extraordinary amount of money devoted to Steller sea lion research ($120 million dol-

lars since 2001) was the result of a successful effort in the U.S. Senate to suppress an

attempt by a federal judge to temporarily shut down some areas in Alaska to fishing

(Dalton, 2005). This windfall was a welcome boon to sea lion researchers, especially

in light of the severity and remoteness of the sea lions’ habitat and the high expense of

doing research, and a flurry of projects were initiated. In a relatively short amount of

time, a great amount of money was spent on obtaining information on the movement

behavior, dispersal, reproductive physiology and behavior, diet, genetics, pathogens,

pollutants and metabolism of Steller sea lions; but the science was no closer to ob-

taining a consensus on the effects of fisheries on sea lion populations. A subsequent

panel of researchers did, however, make a concrete recommendation that the best

way to test the hypothesis of fisheries interactions was to temporarily shut down

fishing in some selected areas and follow up with intensified monitoring. Even this

straightforward recommendation (guided, incidentally, in part by movement studies)

was politically impossible to implement. In the study of Steller sea lions, politics and

5Two months after I first wrote that sentence in October 2006, the Yangtze river dolphin was
declared “functionally extinct”.
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economics readily trumps the science when it comes to implementing conservation

strategies.

While a single number is difficult to acquire (or comprehend), the resources in-

vested in studying salmon in the Columbia river easily dwarf the Steller sea lion

research budget, and the explosion of high-tech installations and data-acquisition

tools and bypass systems and biological stations and propane-fueled avian predation

dissuasion cannons has been commensurate. But ultimately the uncertainty behind

the causes of salmon mortality in the river itself remains large, and the extremely

important ocean phase remains even less well understood. These uncertainties means

that whatever management recommendations are made can, are, and will be assailed

in the courts. Certainly, the scientific body of knowledge becomes richer for the data

obtained. But whatever the details of the court-mediated management strategy set-

tled upon by the constellation of vested interests on the Columbia River at any given

moment, little can or will be done about the bottom line: that the salmon themselves

are still out- and inmigrating in a heavily impounded, predator-rich cascade of rela-

tively warm and slow flowing reservoirs; that their populations are still going to rely

heavily on hatchery supplementation; and that their survival is going to be largely

dependent on the whim of highly unpredictable large-scale climatic conditions in the

river and the ocean. In this context, the application of the few crude levers to assist

outmigrating juveniles, such as augmenting water velocities or manipulating the ratio

of powerhouse to spillway flow, can seem a bit like applying a bandage to a severed

head.

As both of these cases and countless others demonstrate, conservation as an activ-

ity is driven first by political will, with all the associated entanglements with economic

interests and cultural values, and only secondarily by science. Indeed, the science of

movement often benefits more from a conservation agenda then the objects of conser-

vation benefit from the science of movement.

Despite these caveats, there is no question that science is essential. All policy
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must be predicated on knowledge, however inefficient the mechanics of that transition.

Certainly, the most fundamental information to obtain for the protection of a rare

species is the identification of habitat, and the most direct impact of movement studies

has been the determination of critical habitats. Should the two Koreas reunite, it

certainly behooves the both of them to be aware that their border is essential for the

iconic red-crowned crane, a symbol (perhaps auspiciously) for good luck and marital

bliss.

On a deeper if more nebulous level, the exploration of movement and behavior has

consequences for a more complete understanding of the interactions between agents

in ecological systems. In the scientific community, conservation is seen less and less in

terms of isolated crises (like Salmon! or Spotted Owl! or Panda Bear! ) and more in

terms of a complex system of interactions. Note for example the increasing emphasis

on Marine Protected Areas and so-called “Integrated Conservation” approaches to

wildlife management. It seems that there is a tendency for public perception to follow

suit. This phenomenon is surely encouraged by an increasing popular awareness of

global warming, which many people appreciate as being a diffuse and highly uncertain

threat, the effects of which shall be and already are being felt not by a single victim

(like Manatee! or Albatross! or Atlantic Cod! ) but by integrated ecological, human

and economic systems.

Some of the most interesting work that has been done in the field of movement is

that which is able to explain how organisms are successful at interacting with their

complex, temporally and spatially heterogeneous environments; work that attempts

to relate how the classical ecological variables like growth rates, carrying capacities

and predation rates can be explained in terms of what they actually are: the product

of movements and encounters and behaviors and the environment. While appearing

‘fundamental’ in nature, the success of such an endeavor and a deeper understanding

of the mechanisms of ecological interactions will serve to inform not just the practice

but the philosophy of conservation.
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albatrosses, bumblebees and deer. Nature 449:1044–1048.

Evans, G. T., 1989. The encounter speed of moving predator and prey. Journal of
Plankton Research 11:415–417.

Fagan, W. F., 1997. Introducing a ”boundary-flux” approach to quantifying insect
diffusion rates. Ecology 78: 2:579–587.



180

Fedak, M., P. Lovell, B. McConnell, and C. Hunter, 2002. Overcoming the constraints
of long range radio telemetry from animals: Getting more useful data from smaller
packages. Integrative and Comparative Biology 42:3–10.

Firle, S., R. Bommarco, B. Ekbom, and M. Natiello, 1998. The influence of movement
and resting behavior on the range of three carabid beetles. Ecology 79:2113–2122.

Fisher, N. I., 1993. Statistical Analysis of Circular Data. Cambridge University Press,
Cambridge, New York.

Fisher, N. I. and A. Lee, 1994. Time series analysis of circular data. Journal of the
Royal Statistical Society. Series B (Methodological) 56:327–339.

Folks, J. L. and R. S. Chhikara, 1978. The inverse Gaussian distribution and its
statistical application - a review. Journal of the Royal Statistics Society. Series B
(Methodological) 40:263–289.

Forester, J. D., A. R. Ives, M. G. T. andD. P. Anderson, D. Fortin, H. L. Beyer, D. W.
Smith, and M. S. Boyce, 2007. State-space models link elk movement patterns
to landscape characteristics in yellowstone national park. Ecological Monographs
77:285–299.

Fortin, D., H. L. Beyer, M. S. Boyce, D. W. Smith, T. Duchesne, and J. S. Mao, 2005a.
Wolves influence elk movements: behavior shapes a trophic cascade in Yellostone
National Park. Ecology 86:1320–1330.

Fortin, D., J. M. Morales, and M. S. Boyce, 2005b. Elk winter foraging at fine scale
in Yellowstone National Park. Oecologia 145:334–342.

Fraser, D. F., J. F. Gilliam, M. J. Daley, and A. N. L. andG. T. Skalski, 2001. Ex-
plaining leptokurtic movement distributions: intrapopulation variation in boldness
and exploration. The American Naturalist 158:124–135.

Fritz, H., S. Said, and H. Weimerkirsch, 2003. Scale-dependent hierarchical adjust-
ments of movement patterns in a long-range foraging seabird. Proceedings of the
Royal Society of London B 270:1143–1148.

Geisel, T., 1960. One Fish, Two Fish, Red Fish, Blue Fish. Random House Children’s
Books.

Gentry, R., 1998. Behavior and Ecology of the Northern Fur Seal. Princeton Univer-
sity Press.

Gerritsen, J. and J. Strickler, 1977. Encounter probabilities and community structure
in zooplankton: a mathematical model. Journal of the Fisheries Reserve Board of
Canada 34:73–82.



181

Giorgi, A. E., T. W. Hillman, J. R. Stevendon, S. G. Hays, and C. M. Pevin, 1997. Fac-
tors that influence the downstream migration rates of juvenile salmon and steelhead
through the hydroelectric system in the mid-Columbia river basin. North American
Journal of Fisheries Management 17:268–282.

Goebel, M., J. Bengtson, R. DeLong, R. Gentry, and T. Loughlin, 1991. Diving
patterns and foraging locations of female northern fur seals. Fisheries Bulletin
89:171– 179.

Goodwin, R., J. Nestler, J. Anderson, L. Weber, and D. Loucks, 2006. Forecasting
3-D fish movement behavior using a Eulerian-Lagrangian-agent method (ELAM).
Ecological Modelling 192:197–223.

Gove, J. H., 2003. Moment and maximum likelihood estimators for weibull distri-
butions under length- and area-biased sampling. Environmental and Ecological
Statistics 10:455–467.
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Appendix A

R-CODE FOR ESTIMATING τ1/2 FOR WRAPPED
CAUCHY MODEL WITH IRREGULAR INTERVALS.

A.1 Adjusted wrapped Cauchy distribution (AWCD, eq. 2.14)

dawrpcauchy <- function(theta,tau,halftau)
# This function returns the distribution function for a continuous
# wrapped-cauchy variable theta with half-time equal to "halftau" at
# interval "tau".
{

rho<-(halftau/((sqrt(2)-1)*tau+halftau))^2
return(dwrpcauchy(theta,0,rho))

}

A.2 Generating numbers from AWCD

rawrpcauchy <- function(n,tau,halftau)

# This function provides random numbers generated from an adjusted
# wrapped-cauchy variable with half-time equal to "halftau" at interval
# "tau".
{
rho<-(halftau/((sqrt(2)-1)*tau+halftau))^2
return(rwrpcauchy(n,0,rho))
}

A.3 Obtaining MLE estimate for τ1/2 from data

awrpcauchy.mle <- function(thetas,gaps)
# This function provides the mle estimate for "halftau" from data,
# where "theta" is the vector of angles and "gaps" is the associated
# gap intervals.
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{
LL <- function(halftau)
{

LL <- sum(log(dwrpcauchy.gap(thetas,gaps,halftau)))
return(-LL)

}
o<-optimize(f=LL,interval=c(0,1000))

return(o$min)
}



192

Appendix B

R-CODE FOR IMPLEMENTING DUNN-BROWN-ALT
MOVEMENT

B.1 Complex velocity auto-correlation function

CVAF <- function(V, p.lagmax=0.5){
# This function returns the CVAF of complex velocity vector "V".
# "p.lagmax" is the maximum lag as a proportion of the length of "V".

lag <- 1:round(length(V)*p.lagmax)
cvaf<-mean(Mod(V)^2)
for(i in lag)

cvaf[i+1] <- mean(V[-(1:i)] * Conj(V[-((length(V)-i+1):length(V))]))
return(data.frame(lag, cvaf))}

B.2 Simulating a Dunn-Brown-Alt walk

DBAwalk <- function(muv,alpha,beta,N,scale){
# This function simulates a DBA walk of length "N" with the given
# parameter values. Any of these parameters can be complex, but
# "beta" typically won’t be. The scaling parameter, typically an
# integer greater than 1, can be set as high as needed to guarantee
# a well-behaved solution.

V <- muv
for(i in 1:N){

dV <- alpha*(muv-V[i])/scale +
beta*complex(re=rnorm(1),im=rnorm(1))/sqrt(scale)

V <- c(V,V[i]+dV)}
return(V)}
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B.3 Estimating DBA parameters from movement data

GetPnull <- function(V,re.cvaf=NA,l=0.5)
# This function returns the initial estimates of the parameters,
# i.e. p-tilde, from the velocity vector "V".
# "l" refers to the amount of the vector we use for analysis and is
# a tunable function that ultimately has little impact on the estimates.
{

# Mean term
Vbar.null <- mean(V)

# use acf of real part to get "a2"
# (related to the trough of the acf)

myacf<-acf(re.cvaf,lag.max=600,plot=T)$acf
t<-1:length(myacf)-1

HalfPeriod <- t[myacf==min(myacf)]
a2.null <- pi/HalfPeriod

# An exponentially decaying cosine function ...
theory <- function(p,t)

return(exp(-p[1]*t) * cos(p[2]*t))

# and its minimization...
minme <- function(p)

return(sum((theory(p,t)-myacf)^2))

# are used to find an estimates of a1...
p.null <- c(1,a2.null)
p.hat <- optim(p.null,minme)$par
a1.null <- p.hat[1]

# which is used to get an initial estimate of b
b1.null <- 2*a1.null*(mean(Mod(V)^2)-Mod(Vbar.null)^2)

return(c(a1.null,a2.null,b1.null))
}

GetPhat <- function(V,l=0.5)
# This function returns pinal estimates of the parameters,
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# (i.e. p-hat), from the velocity vector "V" using a fit
# to the Complex Velocity Autocorrelation Function
{

mycvaf <- CVAF(V,l,plot=0)
re.cvaf <- Re(mycvaf)
t <- 1:length(re.cvaf)-1

# obtain initial parameter estimates (from above)
p.null <- GetPnull(V,re.cvaf)

Vbar <- mean(V)

theory <- function(p,tau=t)
# Theoretical complex velocity correlation function
{

a1 <- p[1]
a2 <- p[2]
b.squared <- p[3]

return(Mod(Vbar)^2 + (b.squared / (2 * a1)) * exp(-a1*tau) * cos(a2*tau))
}

MinimizeMe <- function(p)
return(sum((theory(p,t)-re.cvaf)^2))

p.hat <- optim(p.null, MinimizeMe)$par

Vbar.hat <- Vbar
a.hat <- complex(re=p.hat[1],im=p.hat[2])
b.hat <- sqrt(p.hat[3])

return(c(Vbar.hat,a.hat,b.hat))
}
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Appendix C

ANALYSIS OF JUVENILE SALMON SURVIVAL IN
MID-COLUMBIA RIVER RESERVOIRS

C.1 Introduction

The following is a brief analysis of travel times and survivals of salmon smolt in

several reservoirs of the mid-Columbia River. The data was collected in 2005 by

Chelan County Public Utility District 1 using hydroacoustic tags implanted in juvenile

chinook (O. tshawytscha), sockeye (O. nerka) and steelhead (O. mykiss) salmon.

Whereas the bulk of outmigrating salmon survival data comes from PIT tags which

are detected only at dams, hydroacoustic detecting arrays were placed in several mid-

reservoir locations, allowing for an analysis of migration timing and survival within

a reservoir. Detection probabilities are quite high with hydroacoustic arrays, as they

cover the entire width of the river. The data also provides longitudinal distribution of

migration paths across the river and three dimensional tracks of the fish at the dams

themselves, though these dimensions are not analyzed in this report.

The purpose of the analysis is to identify some of the inter-reservoir structure of

the migration and survival patterns. The results are intended to motivate a more

detailed and process oriented understanding and modeling of salmon migration, and

can be at least conceptually applied to other reservoirs in the Columbia River. The

ultimate goal is to guide management decisions that mitigate salmon survival.

Commonly, probability of survival is assumed to decay exponentially with time,

a common model of time-dependent mortality. However, studies have shown that,

in fact, distance traveled is possibly a stronger indicator of survival. This can be

explained by the number of predators encountered depending more strongly on dis-
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tance traveled downstream than time spent in a reservoir, a process referred to as the

“gauntlet effect”. Anderson et al. (2005) have proposed a simple model where the

strength of the time and distance dependence of survival is determined by a parameter

which reflects the net amount of randomness in the trajectories of both the smolt and

their predators. Their model is referred to as the XT-model, reflecting dependence on

space (x ) and time (t). The XT-model, and its rigorous parameterization in chapter

4 is the conceptual framework that guides this analysis.

Figure C.1: Map of release and detection locations along the mid-Columbia river

C.2 Data

Hydroacoustic tags developed by HTI were implanted by Chelan County Public Utility

District 1 in a total of 4476 juvenile chinook, sockeye and steelhead salmon during
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spring outmigration between April 18 and June 9, 2005. The juveniles were released

in groups of 24 individuals (chinook and steelhead) or 20 individuals (sockeye) from

various locations on the Columbia River in Chelan county, WA: the tailrace of Wells

dam (river mile 515.8), the juvenile salmon bypass system at Rocky Reach dam

(r.m. 473.7), the tailrace of Rocky Reach dam, and the tailrace of Rock Island dam

(r.m. 453.4). Detector arrays were located at Rocky Reach and Rock Island dams

in a manner that allows for 3-d tracking of the salmon as it approaches either the

bypass system, the turbines or the spillway at each dam. Arrays of detectors were

also placed across the river a locations in the mid-reservoirs. These were: Beebe

Bridge (r.m. 503.9) between Wells and Rocky Reach, Hydro Park station (r.m. 462.7)

between Rocky Ridge and Rock Island and Crescent Bar (r.m. 442.52) and Sunland

Estates (r.m. 431.08) downstream from Rock Island. The mid-reservoir arrays are

designed to detect the passing fish, but do not provide 3-d tracking resolution. Each

hydroacoustic tag emits a pulse at a frequency specific to each fish, thereby identifying

fish singly, as well as providing the exact time of passage. Lengths and weights were

also obtained for each individual. See Figure C.1 for detector locations, Table C.1 for

details about the releases and Figures C.2 for passage tracks of all the fish.

C.3 Results

Table C.1: Table of hydroacoustically tagged salmon smolt releases in spring and summer
2005. R refers to the number of releases at each location. The smolt were released into the
river typically every other day in the date interval indicated in the Date column.

Species Dates Wells tailrace R.R. bypass R.R. tailrace R.I. tailrace N
R n R n R n R n

Chinook 4/18-5/28 20 483 - - 20 500 - - 983
Steelhead 4/18-5/29 20 984 - - 20 1000 20 501 2485
Sockeye 5/15-6/9 24 499 24 498 24 497 24 496 1990
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Table C.2: Table summarizing mortality events and mean intensity of mortality. N refers to
the number of smolt entering a reservoir and MI represents intensity of mortality presented
as percent probability of mortality per river mile. Standard errors are measured using the
variance from a standard binomial model σ̂ =

√
p(1− p)/N scaled to the length of the

reach.

A: Chinook

Reach of Distance N Events MI SE
river (miles) (%/mile)
A: W to BB 11.6 483 8 0.143 0.050
B: BB to RR 30.12 475 23 0.161 0.033
C: RR to HP 16.73 952 48 0.301 0.042
D: HP to RI 3.55 904 7 0.218 0.082
E: RI to CB 10.88 897 37 0.379 0.061
F: CB to SE 11.44 860 35 0.356 0.059
TOTAL 84.32 984 158 M total: 0.161

B: Sockeye

Reach of Distance N Events MI SE
river (miles) (%/mile)
A: W to BB 11.6 499 25 0.432 0.084
B: BB to RR 30.12 474 7 0.049 0.018
C: RR to HP 16.73 1462 77 0.315 0.035
D: HP to RI 3.55 1385 4 0.081 0.041
E: RI to CB 10.88 1877 51 0.250 0.034
F: CB to SE 11.44 1826 34 0.163 0.028
TOTAL 84.32 1991 198 M total: 0.099

C: Steelhead

Reach Distance N Events MI SE
(miles) (%/mile)

A: W to BB 11.6 984 29 0.254 0.046
B: BB to RR 30.12 955 40 0.139 0.022
C: RR to HP 16.73 1915 66 0.206 0.025
D: HP to RI 3.55 1849 18 0.274 0.064
E: RI to CB 10.88 2332 147 0.579 0.046
F: CB to SE 11.44 2185 118 0.472 0.042
TOTAL 84.32 2845 418 M total: 0.147
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C.4 Mortality intensity

When a fish ceases to be detected, a mortality event can be inferred. From these

events, probabilities of mortality can be calculated, as can a mortality intensity, de-

fined as the probability of death per mile traveled. In total, out of 5820 total implanted

fish 774 mortality events occurred: 158 of 984 chinook (16%), 198 of 1991 sockeye

(10%), and 418 of 2845 steelhead (15%). The distribution of mortality events over

reservoirs is, however, not uniform (table C.2 and figure C.5).

In most reservoirs, the highest mortality intensity occurs in the reaches imme-

diately after a dam. This effect is most striking for sockeye. In the Rocky Reach

reservoir, the mortality intensity drops from 0.432 % per mile in the initial 11.6 mile

reach between Wells dam and Beebe Bridge by nearly an order of magnitude to 0.048

% per mile in the remaining 30 miles to Rocky Reach dam. Chinook smolt on the

other hand show an insignificant increase in mortality intensity within the first reser-

voir. In general chinook and steelhead, display a net increase in mortality intensity

as they migrate downstream, with slight increases immediately after passing dams.

Steelhead in particular show a significant rise in mortality after passing Rock Island

dam.

It should be noted that specific causes of mortality are unknown. Presumably, in

the mid-reservoir the bulk of mortality is due to predation. In the tailraces, however, it

is difficult to separate the effects of mortality due to dam passage from the possibility

of greater predation in the tailraces. A good explanation for the differences in the

mortality distribution of the three species requires greater knowledge of the biology of

the organisms and the mechanisms of mortality. It should be noted that the sockeye

are the smallest of the three species (µ̂ =117 mm, σ̂ =7.26 mm, compared to chinook:

µ̂ =163 mm, σ̂ =13.1 mm, and steelhead mean µ̂ =184 mm, σ̂ =18.7 mm), possibly

resulting in greater stress-induced mortality during dam passage. The large size of

the steelhead might make them more susceptible in general to predation. Differences
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in predator concentrations (pikeminnow, bass, walleye, birds) in the reservoirs, as

well as differences in swimming behavior might further explain these differences. The

later migration of the sockeye relative to the other species by a month might also be

a factor.

The take-home message from this analysis is that when modeling survival for

migrating salmon, one cannot assume that mortality is distributed uniformly between

reservoirs, or even within a single reservoir. The results suggest that an aggregate

model of down-migrating salmon survival would benefit from separating mortality at

the dams from mortality in the mid-reservoir, with the general implication and the

per mile mortality in the mid-reservoir is less than at the dam. This holds especially

true for sockeye salmon.

The reaches of the river where velocities are highest tend to correspond with those

where mortality intensity is also highest. This contradicts a widely held assumption

that mortality is most closely correlated to amount of time spent in a reservoir, and

provides some indirect support for a gauntlet-like process. A thorough analysis of

the factors that determine the travel velocity of smolt can be applied more widely to

reservoirs throughout the Columbia River.

There is little biological reason for migrating smolt to move with any significant

randomness. This is supported both by theoretical arguments against increasing

encounter probabilities with predators and with empirical evidence that suggests that

survival of migrating smolt is dominated by a non-random ‘gauntlet’-like process (in

the context of the XT-model).

C.5 Concluding comments

There are two somewhat contradictory messages that emerge from this analysis re-

garding salmon smolt survival. The first is that, not surprisingly, the processes of

migration and survival are complicated and heterogeneous. There are significant

differences between the species, with sockeye in particular displaying the greatest re-
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sponse to dam passage while simultaneously showing the highest overall survival. The

significant differences in survival probabilities and travel velocities between the upper

and lower reaches of the dams should be taken into account as most models of sur-

vival assume a homogeneous process, a constraint due in part to the lack previously

of higher resolution migration data.

The second important message is that some things might actually be simpler

than one might have guessed. For example, the differences in travel velocities are

exceptionally consistent between species. This seems to indicate that migration might

be less determined by differences in behavior and rather by the hydrological conditions

of the river. This gives hope that a robust physical model of migration might be

obtainable which could be generalizable to multiple reservoirs. The apparent lack of

any kind of apparent selection on the fish, either for size or migration speed, similarly

simplifies modeling of predation. It is clear from the distribution of mortality events

that predation is an important source of mortality. The lack of any strong dependence

of mortality on time spent in the reservoir is compelling evidence for a gauntlet-like

process of survival. The juvenile salmon must necessarily move through a reservoir

in a way that appears to be largely determined by the features of the reservoir. It

is my own hunch that the spatial distribution of predators is the most significant

factor in determining survival. If this is the case, then that is probably the most

fruitful direction to focus work on: isolating the sources of mortality and separating

the effects and distributions of the various predators.

An analysis of the 3d tracks of salmon approach to the dams might also be fruitful,

if only to explore how mortality depends on the path the smolt chooses (bypass,

turbine, spillway). It might also suggest the extent of mortality at the dam, though

the power of the inference will be relatively diminished.

While PIT-tag data necessarily lacks the high detections and finer resolution of

hydroacoustic data, it is far more voluminous and spatially wide-ranging. Elsewhere,

efforts are being made to relate survival estimates of migrating smolt obtained from
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PIT-tag data to factors such as migration distance, travel time, spill and flow at dams,

temperature, turbidity and season. Hopefully, the information that can be obtained

from hydroacoustic data can provide some process-based motivations for guiding the

modeling that is done basin-wide.
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Figure C.2: Travel tracks for chinook juveniles. Darker blue colors represent smaller
fish, while yellower colors represent larger fish. While the separate locations of release are
separated for clarity, the actual date of release of is not reflected in the plot. Distance
traveled is presented along the y-axis while days of travel are on the x-axis; a steeper track
represents a fish that spends relatively little time in a given stretch. A track that terminates
is a mortality event.
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Figure C.3: ravel tracks for migrating sockeye.
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Figure C.4: ravel tracks for migrating steelhead.
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Figure C.5: Intensity of mortality per stretch of each species’ travel. Bold faced vertical lines
indicate dams. Error bars indicate 95% confidence intervals calculated using the estimated
variance from a binomial mortality model (see Table C.2). The area of each rectangle is
proportional to the total probability of mortality in the corresponding section.
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Appendix D

R-CODE FOR ANALYZING GAPPY MOVEMENT DATA

D.1 Estimating continuous correlation coefficient ρ.

GetRho <- function(x,t)
# Obtains MLE estimate of rho for a gappy time-series
{

# Negative log-Likelihood function
getL <- function(rho)
{

dt <- diff(t)
s <-sd(x)
mu <- mean(x)

n<-length(x)

x.plus <- x[-1]
x.minus <- x[-length(x)]

Likelihood <- dnorm(x.plus,mean=mu+(rho^dt)*(x.minus-mu),
sd=s*sqrt(1-rho^(2*dt)))

logL <- sum(log(Likelihood))

return(-logL)
}

# Optimisation routine
o<-optim(0.5,getL,method="L-BFGS-B",lower=0,upper=0.999))
return(data.frame(rho=o$par,LL=-o$value))}

D.2 Obtaining log-likelihood of single structural breakpoint τ .

GetDoubleL <- function(x,t,tbreak){
# This function obtains estimates for mu sigma and rho
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# before and after a given break

x1<-x[1:tbreak]
t1<-t[1:tbreak]
x2<-x[(tbreak+1):length(x)]
t2<-t[(tbreak+1):length(t)]

o1<-GetRho(x1,t1)
o2<-GetRho(x2,t2)

mu1 <- mean(x1)
sigma1 <- sd(x1)
rho1 <- o1$rho

mu2 <- mean(x2)
sigma2 <- sd(x2)
rho2 <- o2$rho

LL1 <- o1$LL
LL2 <- o2$LL

return(data.frame(mu=c(mu1,mu2),sigma=c(sigma1,sigma2),
rho=c(rho1,rho2),LL=c(LL1,LL2)))}
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Appendix E

TRAVEL TIME MODEL COMPARISONS: TABLE OF
PARAMETER ESTIMATES

Table E.1: Parameter estimates for all three travel time distributions (IG, RN, and IGRN)
fit to Snake River spring chinook and steelhead salmon detected at Lower Granite and
Little Goose dams between April 10 and May 20 in all years from 1996 to 2005. The Akaike
information criteria (AIC) summarizes the quality of the model, taking into account the
amount of parameters estimated: a less negative number indicates a better fit.

Spring Chinook Steelhead
Year Model N v̂ σ̂2

v σ̂2
w AIC N v̂ σ̂2

v σ̂2
w AIC

1996 IG 5292 6.94 8.875 −24285 509 14.21 11.143 −1497
1996 RN - 9.06 4.64 −25563 - 17.55 6.8 −1421
1996 IGRN - 7.31 1.56 8.063 −24205 - 16.86 5.82 5.061 −1415
1997 IG 254 7.37 8.285 −1100 826 17.37 12.326 −2096
1997 RN - 9.22 4.32 −1149 - 21.46 7.78 −1862
1997 IGRN - 7.53 1.07 7.922 −1097 - 21.46 7.78 0 −1860
1998 IG 6287 5.36 7.805 −31970 4310 11.7 9.649 −14110
1998 RN - 7 3.23 −32121 - 14.2 5.31 −13469
1998 IGRN - 6.12 1.96 5.714 −31612 - 13.63 4.45 4.622 −13408
1999 IG 8584 9.46 7.201 −29377 4916 11.81 9.908 −16087
1999 RN - 10.86 3.42 −27665 - 14.45 5.1 −14604
1999 IGRN - 10.69 3.15 2.461 −27635 - 14.45 5.1 0 −14602
2000 IG 20499 7.79 6.836 −79813 30460 11.79 8.85 −94973
2000 RN - 9.05 3.18 −78759 - 13.9 4.59 −87013
2000 IGRN - 8.53 2.27 4.389 −77996 - 13.75 4.35 2.394 −86964
2001 IG 10949 5.11 7.894 −57267 8436 6.24 10.762 −41829
2001 RN - 6.78 3.33 −58394 - 9.36 4.58 −40344
2001 IGRN - 5.61 1.55 6.606 −56900 - 8.43 3.46 5.872 −40043
2002 IG 7185 5.34 9.969 −38421 7014 8.94 8.612 −26917
2002 RN - 8.01 4.44 −39116 - 10.93 4.06 −25545
2002 IGRN - 6.16 2.05 8.284 −38155 - 10.71 3.74 2.883 −25516
2003 IG 10609 7.94 8.617 −43918 5365 9.5 7.785 −18887
2003 RN - 9.94 3.79 −41457 - 11.13 3.53 −17205
2003 IGRN - 9.55 3.23 3.782 −41316 - 11.13 3.53 0 −17203
2004 IG 10431 7.29 7.999 −44851 7803 8.26 10.153 −33036
2004 RN - 9.01 3.79 −45032 - 11.03 4.69 −31365
2004 IGRN - 8.1 2.27 5.806 −43907 - 10.54 4.05 4.263 −31257
2005 IG 9925 5.81 8.891 −49898 9480 9.78 9.452 −35299
2005 RN - 7.94 3.92 −50373 - 12.18 4.74 −33675
2005 IGRN - 6.71 2.25 6.76 −49449 - 11.74 4.13 4.022 −33584
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