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Summary

1. Visitation rate is a measure of the frequency with which animals visit specific locations of interest.
This information is crucial for various problems in the conservation and management of animal
species, e.g. to determine the risk wildlife poses to human managed resources or the predation risks
of nests. An important assessment tool, especially for cryptic animals, is to count indirect signs of
presence, such as tracks or faeces.

2. Here we propose a maximum likelihood-based method that uses information on the age of
tracks or signs, and we show that existing visitation rate/probability estimators are special cases of
this more general approach.

3. Usingsimulated data, we compared the performance of the new visitation rate estimator to three
other estimators, including the most commonly used estimator. These estimators make use of either
fresh, aged or total signs, whereas our approach uses information simultaneously on both fresh and
aged signs. The new estimator is, on average, in excess of three times more accurate than the next
best estimator. Moreover, the new approach is very flexible and can be applied for sampling
regimens with irregular time intervals between sampling.

4. We demonstrate the application of the method to field data by estimating the visitation rate of
Eurasian otters (Lutra lutra) to a commercial fish pond. To facilitate the use of this method, we
provide an easy-to-use Excel workbook and give recommendations on the most efficient sampling
regimens.

5. Synthesis and applications. Visitation rate is an important quantity that can be estimated by
repetitive sampling of indirect signs. We demonstrate the advantage of incorporating information
explicitly on the age of signs over existing approaches. The new estimator can be applied to any
species for which it is possible to discriminate between aged and new signs or tracks, and should be
widely applicable in ecology and conservation biology.

Key-words: Eurasian otter, Lutra lutra, Mammalia: monitoring, maximum-likelihood estimate,
track counts, visitation probability, visitation rate

Introduction

Visitation rate is a measure of the frequency with which animals
visit specific locations or objects of interest. This information is
important for many management and conservation issues
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and also for many ecological questions, such as human-—
wildlife conflicts, measuring risks of predation or disease
transmission. For example, estimating visitation rates and
their dependence on pond/landscape factors can be critically
important to assessing the conflict between otters (Lutra
lutra) and pond owners in commercial fish farms (Schwerdtner
& Gruber 2007). Similarly, the attack rate of bears on sheep
depends on feeding possibilities, vegetation features (Wilson
et al.2006) and individual type of bears. Further examples are
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visitation rates of predators to nesting sites [e.g. lizards on
turtle nests (Doody et al. 2006) or foxes and crows to ground
breeding birds (Summers ef al. 2004)].

Examples where the frequency of interaction and its
distribution is more important than absolute numbers of
individuals include visitation frequency of pollinators in
different habitats (Tylianakis, Tscharntke & Klein 2006), the
frequency of bites of malaria-transmitting mosquitoes (Ye
et al. 2007), transmission of tuberculosis by badgers (Meles
meles) (Tuyttens et al. 2001) and the risk of foxes (Vulpes vulpes)
spreading rabies (Webbon, Baker & Harris 2004). In general,
visitation rates convey important information whenever the
exposed objects or areas have a scale at which the dispersion
of individuals or their spatial use matters more than their
absolute number.

Ideally, visitation rates are measured by direct observation,
video surveillance (Binner, Henle & Hagenguth 1996), scent
stations (Sargeant, Johnson & Berg 2003) or radio-telemetry
of allindividuals that might visit a location of interest. Unfor-
tunately, these approaches are time-consuming, expensive
and impossible for many systems, especially for cryptic
animals. Due to these difficulties, cryptic animals are studied
frequently with the use of indirect methods, such as counting
tracks, faeces, hairs, dens or nests (hereafter ‘signs’). Data
based on signs of animals are used to monitor the distribution
and abundance (for a review see Wilson & Delahay 2001),
presence/absence (Binner, Henle & Hagenguth 1996; Macdonald
& Mason 1987) and the visitation probability to particular
locations and their relationships to landscape factors.

Current methods to estimate visitation rates for cryptic
animals are based on repeated sampling of the site(s) of interest.
Usually, the number with positive records (presences) of a
sign divided by the total number of sampling occasions at that
location is taken as an estimate of the probability of visitation
(Rowe-Rowe 1992; Madsen & Prang 2001; Klenke 2002;
Rostain et al. 2004). Note that a similar approach is used to
estimate abundance of animals, but that in this case the detection
of signs is analysed across multiple sites (Caughley 1980;
Wilson & Delahay 2001) instead of separately for each
location, as in the case of estimating site-specific visitation
rates. This visitation rate estimator has been used extensively
in the literature (Tuyttens et al. 2001; Sadlier et al. 2004;
Prokesova, Barancekova & Homolka 2006).

The method in current use does not discriminate between
aged and new signs in the estimation of visitation rates/
probabilities. This means that in surveys in which it is possible
to make such a distinction, information that could potentially
improve estimates is neglected. Here, we propose a new
maximum-likelihood approach, which uses additional
information on the age of signs to improve the precision and
efficiency of estimates. We show that the current estimation
technique is a special case of our more general framework and
thus our work unifies the new method with existing tech-
niques under the same mathematical umbrella. We derive the
new estimator in the context of a particular field survey
design, quantify the performance of the method using simulated
data sets and, finally, apply the method to an empirical example
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to highlight its utility. To identify study designs that allow the
efficient estimation of visitation rates/probabilities, we quan-
tified the performance of the new estimator across a wide
range of different sampling schemes using simulated data.

Methods

SURVEY DESIGN

The approach is based on the repeated sampling of the presence or
absence of animal signs at locations of interest over a time interval
(¢ days). Times between sampling occasions need not be of equal
duration. The motivating example for this work was a data set of
weekly collections (¢ = 7) of otter spraints at commercial fish farms.
At the end of each visit, signs were recorded and then removed to
ensure that only new signs would be found during the next visit.
Observed signs were classified as fresh (from the previous night) and
aged (from the previous 7 — | nights). For otters, aged spraints can
be determined by their dried surface and solid consistency, whereas
fresh spraints from the last day have a wet and soft consistency
(Macdonald & Mason 1987). This can vary slightly, depending on
weather conditions and the time of day of the survey. Experienced
researchers are able to determine the age of spraints correctly but a
pilot study, where spraints are sampled daily, is reccommended. This
classification scheme was appropriate for otter spraints, but could
be adjusted easily to accommodate different situations.

This sampling design results in two types of information for each
location: the number of sampling occasions where (a) fresh or (b)
aged spraints were detected during the survey. The use of the second
piece of information requires that the sampling is sufficiently
frequent so that aged signs do not become obliterated between sam-
pling occasions, but not so long that aged signs are always present.
This imposes limits on the maximum and minimum time span between
sampling periods, which will depend upon the species and the type
of sign used. In the case of otters, spraints are obliterated typically
after about 7 weeks for L. lutra (Jenkins & Harper 1980) and 4-5
weeks for L. maculicollis (Rowe-Rowe 1992). Generally speaking,
the distinction between fresh and aged signs provides information
on the visitation rate on two different (a shorter and a longer) time
scales, therefore estimators that use this additional information
should perform better than those based on a single (shorter or longer)
time scale.

DERIVATION OF ESTIMATORS

In the following, we derive maximum likelihood estimators for
visitation rate and visitation probability for our new method and
for new and existing estimators. Table 1 provides a summary of the
notation used. Note that visitation rate and visitation probability
are different manifestations of the same matter. Visitation rate is
calculated as the number of visits per unit time, whereas the visitation
probability is the per-unit time probability that an animal visits a
site.

We assume that the visitation process to a site is a Poisson process
and that the visitation rate (number of visits/day) is constant for the
entire duration of a study (assumptions will be discussed below).
Under these assumptions, the probability that a site will receive / visits
in some time interval of length 7 is given by the Poisson distribution:

e—)»r( )\.l‘)/’

Pr(Z=h)=—"

) eqn 1
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Table 1. Description of variables and parameters used in the derivation of the visitation rate/probability estimators

f Number of sampling occasions in which fresh signs/tracks were observed at a site
a Number of sampling occasions in which old signs/tracks were observed at a site
Number of sampling occasions in which signs/tracks are found without distinction between old and new
¢ signs/tracks
n Number of sampling occasions.
t Interval in number of days between sampling occasions
p True (simulated) daily visitation probability
p Estimator of daily visitation probability
A Visitation rate
i Estimator of visitation rate
i_,,, )z Estimator of visitation rate/probability using fresh signs only
l:,,g, Dag Estimator of visitation rate/probability using aged signs only
%“”" Dag Estimator of visitation rate/probability using aged and fresh signs without distinction (used in the literature)
Afeas Drea Estimator of visitation rate/probability using information on aged and fresh signs

where A is the per-day visitation rate we wish to estimate from the
data. The probability of observing no visits (absence) after 7 days is:

Pr(Z=0)=¢", eqn 2

whereas the probability of observing at least one visit (presence)
during ¢ days is simply the complement of the above:

Pr(Z>0)=1-¢. eqn 3

When only fresh signs are taken into account, ¢ = 1, and the prob-
ability of observing f presences and n — f'absences in n observations
is given by the binomial distribution:

n

/

where p;, =1 - e™*. As we are interested in the likelihood L, the
binomial coefficient, which is a normalization constant, may be
dropped, yielding:

Pr(Z=f)= ( ]p;;,(l )", eqn 4

L\ datay) = p)(1 = p,)"". eqn’5

The negative log likelihood is then:

—In(L(\ | data,) = S(data, | )= ~(f In(p,) +
(n—f)In(l - pg)).

eqn 6

Taking the first derivative of the negative log likelihood with
respect to A, setting this equal to zero and solving for A yields the
maximum likelihood estimator for A given only data on fresh signs:

Xﬁ = —ln[u]. eqn 7

n

Inserting equation 2 into equation 7, the maximum likelihood
estimator for the visitation probability is:

bp==. eqn 8
n
Next, we assume that a distinction can be made between fresh and
aged signs. When only aged signs are used, the time interval is
t— 1 days. Denoting a as the number of presences and »n — a as the
number of absences in n observations, the negative log likelihood
can be derived in the same manner as above, giving:

S(M| data,,) = —(aIn(p,) + (n—a)In(1 - p,)), eqn 10

where p,, = 1 — ¢, Taking the first derivative with respect to A,
setting it equal to zero and solving for A yields the maximum likelihood
estimator given aged data only:

In n—a
A ="

“ -1

eqn 11
The estimator for the probability of visitation over # — 1 days is:

ut=1)=2. eqn 12

: n

This can be converted into a daily visitation probability by noting
that 1 — a/n is the probability that no visit occurred in 7 — 1 days. The
(¢—1)th root of 1 —al/n is the per-day probability that the location
was not visited. The complement of this quantity is the daily visitation
probability:

|

. ol a
Plt=1)=1~ &31—;.
When no distinction between new and aged tracks is possible, or
when all data are combined into one presence/absence data set,
simply recording the number of presences, ¢, and absences in n
observations yields:

eqn 13

3(A | data,,) = —(c In(p,,) + (1 — ¢) In(1 - p,,,)),

om

eqn 14

where p,,, = 1 — e Taking the first derivative with respect to
A, setting it equal to zero, and solving for A yields the maximum

likelihood estimator given combined data only:

ln(n - CJ
7\’ _ n

= eqn 15
em p q
and for the (7)-days-visitation probability:
IOEES eqn 16
n
which can be converted into a daily visitation probability:
| N
o t=D=1-11-5. eqn 17
Von
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This is the only estimator for visitation rates/probabilities used
previously in the literature.

We now wish to incorporate the new and aged sign data together
in the same framework. Because we have assumed a Poisson process,
the presence or absence of signs in an interval of time does not affect
the probability of signs being deposited in the next time interval. We
may therefore multiply the likelihood for the fresh data and that for
aged data together to yield the likelihood for the full data set:

L(Aldatay,,)=pl(1=p)"” po, (1= p,)"™" eqn 18
The negative log likelihood is then:
S(Mldatay,,)==(f In(p;)+ (n = f)In(1-py)+

eqn 19

aln(p,) + (n—a)In(l - p,,)).

In contrast to the estimators above, this maximum likelihood
estimator cannot be solved for in general. Analytical solutions are
available only for 7 <5 days, but can be extremely cumbersome even
for these cases. However, for ¢ = 2, it has a particularly simple form:
2n—f — a]

eqn 20

A t=2)= —ln[ 5

Other cases can be solved numerically.

In the above derivations, the time intervals among sampling oc-
casions have been assumed to be constant. This assumption may
be relaxed and different time intervals between sampling occasions
may be used. Then the likelihoods for the sampling occasions of
different time intervals may be multiplied. Upon taking the negative
log of this likelihood, one obtains:

S(Mldata,,,)=~(fIn(p)+(@n—f)In(1-p,)+

> (@ () + - a) (- p0n N
k

for k groups of sampling occasions with time intervals identical
within, but different among, groups. Now, g, and n, represent the
number of presences of aged signs and the number of occasions in
sampling group k, respectively. The probability p,, , is calculated by
substituting ¢ in equation 1 by 7, the length of time of sampling
group k. Note that the terms dealing with fresh signs are unaffected,
because by definition the time interval for fresh signs is always
1 day. Therefore, f'and » remain the total number of presences and
the total number of sampling occasions, respectively, across all time
intervals. All the above-derived estimators are different cases of the
same general framework. They rely on the same basic assumptions
and they differ only in the data they use.

Approximate confidence intervals can be constructed for all
estimators based on the likelihood-ratio test statistic (Hilborn &
Mangel 1997: 162). The -2 log-likelihood of the maximum likelihood
parameter estimate has an approximate x’ distribution with nr
degrees of freedom, where nr is the number of fitted parameters. For
example, in the case of 1 degree of freedom, the upper and lower
95% (99%) confidence limits are those parameter values for which
the corresponding -2 log-likelihood is larger by 3-84 (6:63) than the
minimum -2 log-likelihood.

To make this method as accessible as possible, we provide an Exel
workbook, ‘DoubleTrack’, which contains a worksheet-based user
interface and embedded macros that implement the numerical pro-
cedures described above. The workbook and a detailed description
of how to use it to estimate visitation rates, visitation probabilities
and confidence intervals for both regular and irregular time intervals
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between sampling occasions may be found for download in the
online appendix (see Supplementary material, Appendices S1, S2)
and on the authors’ website [http://www.ufz.de/index.php?en = 1902].

SIMULATION EXPERIMENT

We used simulations to compare the performance of the different
estimators. A Poisson arrival process was simulated to generate data
sets using weekly sampling occasions (constant time intervals ¢ = 7).
We varied the number of sampling occasions (1) between 2 and 42
(21 levels), and the daily visitation probability (P) between 0-05 and
0-95 (19 levels). Although the Poisson process is defined in terms of
a rate, we used visitation probabilities in the following examples to
maintain consistency with the literature (Marques et al. 1987,
Tuyttens et al. 2001; Webbon, Baker & Harris 2004; Prokesova,
Barancekova & Homolka 2006). The visitation rate can be calculated
directly from the visitation probability using equation 2. All estimators
showed an almost exact fit when more than 42 sampling occasions
were used; hence we restrict our analyses to a maximum of 42 weeks.
The trivial cases of P =0 and P = 1 are exact for all estimators and
were also omitted.

For each of the 21 x 19 = 399 scenarios (combinations of parameter
values), we simulated r = 100 repetitions and calculated relative bias,
relative precision and relative accuracy for each estimator (Hellmann
& Fowler 1999). We used relative performance metrics to be able to
combine all runs in a meaningful way because, for example, absolute
differences of 0-05 are much more severe when the true visitation
probability is P =0-1 compared to when the true probability is
P=09.

We calculated relative bias for each scenario as:

c pi—p

bias(p) = H——— 2 s
,

eqn 22
where P is the true visitation probability and p is the estimated
visitation probability in the ith simulation. The relative bias can be
interpreted as percentage away from the true value, i.e. a relative
bias of +0-1 means that, on average, the estimator is 10% higher
than the true value. A perfect estimator has a relative bias of zero
and the distribution of relative biases over all 399 runs should be
symmetrical around zero.
Relative precision is measured by the relative variance:

Relative precision is a measure of how much variation in estimates
exists around the true parameter value. Note that precision is ex-
pressed in a somewhat counterintuitive way, such that a value of
zero indicates the highest precision. We combined relative bias and
relative precision into a single quantity, relative accuracy (Hellmann
& Fowler 1999), which is expressed as a mean square error (MSE):
accuracy = MSE(p) = var(p) + (bias(p)). eqn 24

A perfect estimator would result in a relative accuracy value of
zero. The closer the relative accuracy of an estimator is to zero across
the whole parameter space, the better its overall performance.
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Fig. 1. Boxplot of relative bias for all estimators based on all
21 x 19 = 399 scenarios. Boxes indicate quantiles, whiskers indicate
the 1-5 times the interquartile distance and the dots represent outliers
larger than 1-5 times the interquartile distance.

Results

The relative bias was lowest for j,, and g, (Fig. 1). p,, and p..,,
showed considerable positive bias, which would result in
overestimation of the visitation probability. j, was the only
unbiased estimator, whereas p., is biased only to a slight
degree. The outliers of relative bias, where estimates are
bigger than 0-1 (hence a relative bias of more than 10%) for
Dra and p,, are due to cases with very low sampling effort
(n < 4) and/or very low visitation probability (P < 0-1).

Precision is a measurement of the magnitude of the vari-
ation in an estimate. In principle, an estimator can be
completely unbiased but, due to its high variation, still be
very imprecise. The relative precision of p, is lowest of all
the estimators (Fig. 2). All other estimators show a considerable
variance across the parameter space. Again, p .., the estimator
that uses only aged spraints, and p,,,, the estimator that does
not distinguish between aged and new spraints, score last. The
least biased estimator j, has a relatively high variance and is
less precise than j ... The outlying values of relative precision
for p.,, where estimates are higher than 0-1, are due to low
sampling effort (n < 6) and low visitation probabilities (P <
0-15), whereas the variance of j, remains high (> 0-2) even
for higher sampling efforts when visitation probabilities are
fairly low (P < 0-2).

The mean values for relative bias, precision and accuracy
are shown in Table 2. Overall relative bias of ., and j, are
low (3% and 0-15%, respectively), in contrast to p,, and .,
(36% and 44%, respectively). Overall relative precision is lowest
for p.,, followed by p,, p,, and p,,,, and the same ranking
results when relative accuracy is considered. In summary, p.,
performs best (three times more accurate than the next best
estimator j;) and is only slightly more biased than p .
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Fig. 2. Boxplot of relative precision for all four estimators based on
all 399 scenarios. Boxes indicate quantiles, whiskers indicate 1-5 times
the interquartile distance and the dots represent outliers larger than
1-5 times the interquartile distance.

Table 2. Summary statistics for all estimators. Mean relative bias,
mean relative precision, and mean relative accuracy over all 399
scenarios

Estimator Prra P Pug Pem

Bias 0-0300 0-0015 0-3606 0-4356
Precision 0-0731 0-2465 0-3551 0-4609
Accuracy 0-0768 0-2501 0-6062 0-8153

In addition to average performance, it is important to know
how an estimator performs across the entire parameter space
(Fig. 3). A perfect estimator would exhibit a perfectly flat
plane with all values of relative accuracy close to zero. p,
shows the best performance and is inaccurate only for either
low sampling effort or low visitation probabilities (Fig. 3a).
It also shows the preferable characteristic that its relative
accuracy approaches zero at moderate sampling effort. j,,
shows the flattest plane and is the most accurate across all
scenarios. In contrast, j,, and p,,, do not have values of zero
at even high sampling efforts, which reflects the consistent
lack of performance of these estimators.

To assist the study design we further simulated the effect of
different time intervals (¢) on the accuracy of the estimators
(Table 3). This table can be used to design studies, if the visita-
tion probability can be estimated roughly from previous
studies or by a pilot study. In accordance with intuition, the
optimal sampling interval is longer for low values of P. Here,
more time is required to obtain a large enough number of
presences to yield precise estimates. If P is higher than about
0-8, one must sample every other day to extract the maximum
amount of information from fresh and aged samples (otherwise
all aged samples are likely to be presences). Whereas the
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Fig. 3. Relative accuracy of all four estimators over the complete simulated parameter space. An optimal estimator has a flat plane of zero across

the whole parameter space.

number of sampling occasions increases the precision of
estimates, it has only a minor influence on the optimal time
interval. At very low values of P (< 0-1), the optimal interval
is shortened, when sampling effort is low.

EMPIRICAL EXAMPLE

We applied the new method to an empirical example. The
data set consists of observations of otter spraints at a pond in
Upper Lusatia, Germany. The survey was carried out for
12 weeks (n = 12) and the time interval between sampling
occasions ¢ was 7 days (¢ = 7). The complete data set is
provided in Table 4. We used ‘DoubleTrack’ (see Supplementary
material, Appendix S2) to calculate the daily visitation rate,
the daily visitation probability and the 95% confidence
intervals on these estimates (Table 5).

The results show more precise estimates (smaller con-
fidence intervals) when aged and new spraints are used.

Table 3. Optimal time interval of surveys for different visitation
probabilities

Optimal interval

P (time units)
<0-05 =30
0-05-0-15 10-20
0-15-0-25 5-10
0-25-0-55 4-5
0-55-0-8 3

>0-80 2

Another way to demonstrate the gain in precision is to
determine how many more sampling occasions are needed to
achieve the same level of precision. When using the estimator
for fresh and aged signs, we achieve a similar precision after 10
sampling occasions compared to the precision achieved by
the other estimators after 12 sampling occasions.
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Table 4. Example data set on visits of the European otter (Lutra
lutra) to a fish pond. The study lasted 12 weeks (n = 12), with weekly
sampling occasions (z = 7) for fresh and aged spraints. 0: absence,
1: presence

Table 5. Results are shown for the example on the European otter
(Lutra lutra). For each method, the point estimates for visitation
probability and visitation rate and the associated confidence intervals
(CI) are presented

Survey no. Fresh Aged Time interval
1 0 1 7
2 0 0 7
3 0 1 7
4 1 1 7
5 0 1 7
6 1 1 7
7 0 1 7
8 0 1 7
9 1 1 7
10 0 0 7
11 0 1 7
12 0 1 7
Discussion

Overall, the new maximum likelihood estimator that com-
bines information from new and aged spraints performed
best across the entire examined parameter space. In the case
of weekly sampling occasions, it provides precise, almost
unbiased estimates. It fails only in cases of low sampling effort
(n<4) and low visitation probabilities (P <0-1). In such
cases, none of the other estimators perform better. The
estimator based on fresh tracks provides accurate estimates
only when the survey lasts at least 8 weeks and the visitation
probabilities are larger than 0-3. When this is the case it is
possible to use this estimator, although one should be cautious
in doing so as relying solely on fresh signs can lead to imprecise
estimates when the visitation probability is low. When the
visitation probability is low, it is possible that no fresh
spraints will be observed leading to a §, estimate of zero, thus
underestimating the true visitation probability.

The use of aged signs alone does not provide accurate
estimates unless the visitation probabilities are either very low
(< 0-25) or very high (> 0-8). However, crude estimates may
still be possible for other visitation probabilities, provided the
survey lasts at least approximately 30 weeks. The estimator
P showed the worst performance as it is both heavily biased
and very imprecise, which is alarming as it is the estimator
used in the literature. It performs well only with a very high
sampling effort (> 30 sampling occasions) or if visitation
probability is very high (> 0-8).

It is intuitively obvious that an estimator that uses both
kinds of information should produce superior estimates. Our
analyses support this intuition, showing that the new estimator
performs robustly across the widest range of parameter space.
As fresh signs give unbiased information on the last day only,
this source of information is superior in cases of high daily
visitation probabilities, whereas aged signs accumulate infor-
mation over a longer time period and are therefore beneficial
if visitation probabilities are low. The length of the sampling
intervalis also important if visitation rates are extreme (either

Visitation probability Visitation rate

Method (95% CI) (95% CI)

fi 0-250 (0-069—0-528) 0-288 (0-071-0-750)
ag 0-258 (0-131-0-443) 0-299 (0-140—0-585)
em 0-258 (0-131-0-443) 0-299 (0-142-0-585)
f+a 0-256 (0-144—0-405) 0-295 (0-156—0-520)

very low or very high). In the case of low visitation rates, fresh
signs alone contain little information and lead to highly
imprecise results if the number of sampling occasions is low.
In such cases, the information gained from aged signs is better
suited to estimate visitation probability. In contrast, if the true
visitation probability is extremely high (around 0-8) and the
sampling interval fairly long (¢ > 5), aged spraints will be
found in almost all sampling occasions, hence the visitation
rate based on p, is nearly always 1. Here, information based
on fresh spraints is crucial for a more precise estimate. Thus,
if possible, any effort should be made to distinguish between
aged and new tracks/signs and to use this information with
the combined maximum likelihood estimator. Although care
should be taken to classify the age of signs as accurately as
possible, our simulations demonstrate that the new estimator
performs well even if the classification is uncertain, as long as
it is not systematically biased.

The independent increments assumption of the Poisson
arrival process we have modelled (i.e. the presence or absence
of visits in one time interval does not depend upon the
presence or absence of visits in another, disjoint time interval)
is a relatively strong assumption. Current methods — both for
visitation rates and for abundance — also rely on this assump-
tion, although this is often not stated explicitly. Note,
however, that this assumption does not require that each
individual animal moves randomly among the site of interest —
a much stronger assumption. Rather, the aggregate pattern of
arrivals of all animals of the focal species to a site of interest
over time must resemble a Poisson process. This can happen
for a variety of different, non-random individual behaviours
if individuals act independently of one another and the total
number of individuals is not too small. It is beyond the scope
of the present paper to explore the range of individual beha-
viours and population sizes that would lead to arrivals at a site
approximating a Poisson process. If a strong violation of
the independent increments assumption is suspected from the
data (e.g. all of the presences in a series of surveys are
clustered together in time), another arrival process model
could be used in place of the Poisson. In the case of the Eurasian
otter, visitation rate estimates obtained using our approach
and an approach based on radio-tracking data (Polednik
2005) were very similar, suggesting that the Poisson processes
and its independent increments assumption is reasonable.
Nevertheless, in some cases it may be preferable to use the

© 2007 The Authors. Journal compilation © 2007 British Ecological Society, Journal of Applied Ecology, 45, 728 -735



estimators only as an ordering index when comparing the
visitation rate among sites, if strong violations of the assump-
tion of independence are expected. In conclusion, although
these methods may be inaccurate (Stander 1998) and/or rely
on assumptions that are sometimes difficult to meet
(Sargeant, Johnson & Berg 1998; Stephens ef al. 2006), they
are often the best that can be achieved and are still suitable as
relative indices (Caughley 1980). The method can, in principle,
be applied to any species that leaves traces of its presence
which can be dated to a certain time span. For example, it may
be possible to date the remains of eaten fruits, leaves or animal
carcasses or burrows as new or old.

We can think of several ways to extend the method. First, as
mentioned previously, it is possible to derive estimators for
sampling regimens with irregular time intervals. In principle,
it is also possible to use more than two different age classes if
objective criteria are available for such a classification of
tracks. This should further improve estimates of visitation
rates and probabilities. Also, an accumulation period of
> 1 day for fresh signs may be more appropriate in some spe-
cific systems. Finally, it is also possible to assign the signs at
each occasion to a number of individuals (as opposed to
presence/absence) when such an assignment can be made
reliably and then multiply the visitation rate by the average
number of individuals (similar to line-transect methods) to
obtain the average number of animals visiting a site (please
note this extension implies a further assumptions on the
independence of visits of groups of animals). In summary,
we believe our approach has the potential to improve
considerably the precision of visitation rate/probability
estimates across a wide range of situations in which cryptic
animals must be monitored.
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