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Abstract
Finding	an	appropriate	method	to	monitor	a	wide	range	of	mammal	species	simulta-
neously	is	notoriously	difficult,	as	each	method	has	its	limitations.	Here,	we	examine	
a	 formula,	 known	as	 the	Formozov–Malyshev–Pereleshin	 (FMP),	which	uses	mean	
daily	 travel	distances	 (day	 ranges)	 to	convert	 spoor	counts	 into	density	estimates.	
Availability	of	accurate	estimates	of	day	ranges	is	a	 limitation	of	the	FMP	formula.	
Here,	we	used	allometry	to	estimate	day	ranges	for	those	species	that	lacked	empiri-
cal	movement	data	and	general	additive	models	 (GAM)	to	assess	trends	 in	density	
estimates.	With	this	approach,	we	derived	density	estimates	for	10	mammal	species,	
regardless	 of	 whether	 they	 were	 abundant,	 or	 rare	 and	 elusive	 (e.g.	 carnivores).	
General	additive	models	suggest	that	six	species	are	stable	or	 increasing,	and	four	
declining,	although	all	nonsignificantly.	Use	of	allometric	estimates	in	lieu	of	empirical	
estimates	 led	 to	 falsely	 increased	 precision	 in	 density	 estimates,	 highlighting	 the	
need	to	fill	the	knowledge	gap	in	movement	ecology	for	certain	species.	Simulations	
were	used	to	examine	error	introduced	into	trend	estimates	by	this	bias.	We	conclude	
that	the	FMP	formula,	when	properly	employed,	can	be	an	efficient	method	for	si-
multaneous	monitoring	of	multispecies	in	different	functional	groups.

Résumé
Il	est	particulièrement	difficile	de	 trouver	une	méthode	appropriée	pour	surveiller	
simultanément	une	large	gamme	d’espèces	de	mammifères,	car	chaque	méthode	à	
ses	limitations.	Ici,	nous	examinons	une	formule	connue	sous	le	nom	de	Formozov‐
Malyshev‐Pereleshin	 (FMP),	qui	utilise	des	distances	de	déplacement	quotidiennes	
(écart	de	jours)	pour	convertir	le	nombre	de	traces	en	estimation	de	densité.	La	dis-
ponibilité	des	estimations	précises	d’écart	de	jours	est	une	limitation	de	la	formule	
FMP.	Ici,	nous	avons	utilisé	l’allométrie	pour	évaluer	les	écarts	de	jours	des	espèces	
pour	lesquelles	il	manquait	des	mouvements	de	données	empiriques	et	des	modèles	
additifs	généraux	(MAG)	pour	évaluer	les	tendances	des	estimations	de	densité.	Avec	
cette	approche,	nous	avons	calculé	des	estimations	de	densité	pour	10	espèces	de	
mammifères,	qu’elles	soient	abondantes	ou	rares	et	insaisissables	(par	exemple,	des	
carnivores).	Les	modèles	MAG	suggèrent	que	six	espèces	sont	stables	ou	en	augmen-
tation	et	quatre	en	baisse,	bien	que	toutes	de	façon	non	significatives.	L'utilisation	

www.wileyonlinelibrary.com/journal/aje
mailto:
https://orcid.org/0000-0001-5605-1999
mailto:ahlswedes@gmail.com


2  |     AHLSWEDE Et AL.

1  | INTRODUC TION

Namibia	is	a	leader	in	community	based	natural	resource	manage-
ment	(CBNRM)	with	about	20%	of	its	total	surface	area	allocated	to	
communal	conservancies	 (NACSO,	2016).	Through	conservancies,	
local	communities	have	been	empowered	to	benefit	legally	from	the	
sustainable	 utilisation	 of	 natural	 resources	 directly	 and	 indirectly	
(NACSO,	 2016).	 To	manage	wildlife	 sustainably,	 communities	 are	
obliged	to	conduct	annual	population	assessments	in	collaboration	
with	 supporting	 institutions	 such	 as	 the	Ministry	 of	 Environment	
and	 Tourism	 (MET)	 (NACSO,	 2016).	 Community	 assessments	 of	
wildlife	abundance	and	trends	provide	knowledge	to	stakeholders	
(e.g.	wildlife	managers,	scientists,	community	members)	about,	for	
example,	 the	effect(s)	of	management	actions	 (e.g.	yearly	hunting	
quotas),	 wildlife	 responses	 to	 environmental	 changes	 (Ogutu	 &	
Owen‐Smith,	 2003)	 or	 the	 effectiveness	 of	 monitoring	 schemes	
to	 adequately	 detect	 trends	 within	 a	 constituency	 (Danielsen,	
Burgess,	&	Balmford,	2005;	Hausser,	Tagand,	Vimercati,	Mermod,	&	
Fischer,	2016).	Thus,	conducting	monitoring	and	evaluation	of	wild-
life	trends	provide	insight	concerning	both	management	decisions	
and	resource	status.

Currently,	 distance	 sampling	 is	 employed	 to	monitor	wildlife	
populations	in	Namibian	communal	conservancies	(NACSO,	2017).	
While	 distance	 sampling	 can	 produce	 robust	 density	 estimates,	
the	method	may	not	be	suitable	for	species	with	small	body	size,	
cryptic	coloration,	nocturnal	activity,	or	 that	occur	at	 low	densi-
ties	(Witmer,	2005).	This	is	because	species	with	these	traits	often	
have	less	than	60	observations,	the	minimum	adequate	number	of	
observations	for	robust	density	estimation	(Buckland,	Cattanach,	
&	Anganuzzi,	 1992).	 In	 such	 cases,	 index	methods	 such	 as	 cam-
era	trapping	and	spoor	tracking	may	be	better	suited	as	they	are	
able	to	obtain	data	across	a	wider	range	of	species	(Carbone	et	al.,	
2001;	Keeping,	 2014).	However,	 indices	have	been	 criticised	 for	
being	inappropriate	proxies	for	true	abundance	(Anderson,	2001).	
This	criticism	is	to	a	large	extent	aimed	at	addressing	confounding	
factors	which	not	only	apply	to	index	methods,	but	would	affect	
any	 density	 estimation	 method	 (Bart,	 Burnham,	 Dunn,	 Francis,	
&	 Ralph,	 2004).	 Thus,	 any	 monitoring	 program,	 including	 those	

based	on	indices	provided	that	they	are	rigorously	designed	(e.g.	
use	probabilistic	methods	 to	 select	 sampling	 sites),	 is	 in	 fact	ap-
propriate	to	assess	trends	in	population	size	or	density	(Bart	et	al.,	
2004;	Engemann,	2003).

Spoor	 tracking	 is	 an	 index	widely	 used	 globally	 (Norris,	 Peres,	
Michalski,	 &	 Hinchsliffe,	 2008;	 Southgate	 &	 Moseby,	 2008;	
Winterbach,	Ferreira,	Funston,	&	Somers,	2016).	However,	to	date,	
this	method	has	mostly	been	used	 for	monitoring	carnivore	mam-
mals	 (Bauer,	 Schiess‐Meier,	Mills,	 &	Gusset,	 2014;	 Fabiano,	 2007;	
Gusset	 &	 Burgener,	 2005)	 owing	 to	 the	 difficulty	 detecting	 and	
counting	 them	by	 other	means.	 Substantial	 effort	 has	 been	made	
towards	gaining	a	better	understanding	of	the	relationship	between	
large	carnivore	spoor	 indices	and	 true	density.	Strong	correlations	
have	been	noticed	between	spoor	indices	and	independent	density	
estimates	of	large	carnivores	(from	direct	monitoring	of	individuals	
and	 intensive	 collaring	 studies)	 using	 linear	 calibration	 equations	
(Funston	et	al.,	2010;	Stander,	1998;	Winterbach	et	al.,	2016).	Based	
on	 the	 success	 of	 linear	 calibration	 models	 for	 large	 carnivores,	
Funston	et	al.	(2001)	tentatively	suggested	extending	such	calibra-
tions	 to	 large	 herbivores.	 Ideally,	 such	 an	 approach	would	 require	
separate	species‐specific	linear	calibration	equations	because	differ-
ences	 in	 individual	 species	movement	 ecology	 theoretically	 affect	
the	slope	of	any	 linear	model.	However,	 the	effort	would	be	quite	
onerous,	 requiring	 multiple	 independent	 estimates	 of	 density	 for	
each	species	(Funston	et	al.,	2001).

The	 Formozov–Malyshev–Pereleshin	 (FMP)	 formula	 provides	 a	
theoretical	 foundation	 for	 converting	 spoor	 indices	 to	 true	density	
through	 the	 variable	 day	 range	 (Stephens,	 Zaumyslova,	 Miquelle,	
Myslenkov,	&	Hayward,	2006).	It	therefore	makes	possible	the	esti-
mation	of	density	without	the	necessity	of	making	several	indepen-
dent	 estimates	 of	 density.	 The	 FMP	has	 been	 used	 for	 decades	 in	
Russia	to	monitor	a	wider	range	of	taxa	including	ungulates	(Stephens	
et	 al.,	 2006),	 yet	 remains	 underappreciated	 outside	 the	 region.	 In	
Africa,	it	has	so	far	only	been	applied	in	Botswana,	generating	den-
sity	 estimates	 in	 close	 agreement	with	 independent	 aerial	 and	 line	
transect	 estimates	 (Keeping,	2014;	Keeping	et	 al.,	 2018).	The	FMP	
assumes	 that	 spoor	 density	 is	 a	 function	 of	 both	 the	 true	 density	
and	day	range	of	a	species	and	 is	 theoretically	 robust	 to	variations	

d'estimations	allométriques	à	 la	place	d'estimations	empiriques	a	donné	 lieu	à	une	
précision	faussement	accrue	des	estimations	de	densité,	soulignant	 la	nécessité	de	
combler	le	manque	de	connaissances	dans	le	mouvement	écologie	pour	certaines	es-
pèces.	Des	 simulations	 ont	 été	 utilisées	 pour	 examiner	 l'erreur	 introduite	 dans	 les	
estimations	de	tendance	par	ce	biais.	Nous	concluons	que	la	formule	FMP,	lorsqu'elle	
est	correctement	utilisée,	peut	être	une	méthode	efficace	pour	la	surveillance	simul-
tanée	de	plusieurs	espèces	dans	différents	groupes	fonctionnels.

K E Y W O R D S
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in	 patterns	 of	 animal	movement	 paths	 (Keeping	&	 Pelletier,	 2014).	
Application	of	the	FMP	is	challenged	by	the	unavailability	of	accurate	
empirical	day	range	estimates.	However,	day	range	estimates	can	be	
made	using	allometric	scaling	rules	between	body	mass	and	day	range	
(Keeping,	2014).

Spoor	 tracking	 is	 an	exceptionally	 efficient	means	 for	 commu-
nities	 to	 collect	 data	 for	monitoring	wildlife	 populations	 in	 south-
ern	Africa	(Keeping	et	al.,	2018),	and	in	many	areas,	 it	has	become	
routine.	 If	 such	 data	 could	 be	 interpreted	 as	 density	 and	 trends	
in	 abundance,	 it	 could	be	made	more	useful.	We	 thus	 applied	 the	
FMP	 formula	 using	 both	 empirical	 and	 allometric	 day	 range	 esti-
mates	to	spoor	data	collected	largely	by	community	members	of	the	
Salambala	Conservancy,	 in	north‐east	Namibia,	 for	 the	period	be-
tween	2010	and	2016,	to	determine	and	assess	trends	in	density	for	
a	range	of	mammal	species.

2  | METHODS

2.1 | Study area

The	Salambala	Conservancy	is	 located	in	north‐eastern	Namibia	
opposite	 the	 Chobe	 National	 Park	 in	 Botswana	 (Figure	 1).	 The	
conservancy	 encompasses	 an	 area	 of	 930	km2.	 The	 climate	 is	
characterised	 by	 a	 tropical	 climate	with	 high	 temperatures	 and	
heavy	 rainfall	 during	 the	 rainy	 season	 between	 December	 and	
March.	 Average	monthly	 temperatures	 are	 of	 30°C	 and	 annual	
rainfall	of	620	mm	(Laamanen	&	Otsub,	2002).	The	conservancy's	
source	 of	 water	 is	 the	 Chobe	 River,	 which	 runs	 along	 the	 bor-
der	of	the	conservancy	and	separates	it	from	the	Chobe	National	
Park.	Animals	are	able	 to	migrate	 freely	between	the	 two	areas	
by	crossing	the	river.

The	 area	 is	 characterised	 by	 floodplains	 and	 dry	 sandy	 areas.	
Floodplains	have	a	 lush	grass	 cover	 and	 sandy	areas	open	wood-
lands	dominated	by	Colophospermum mopane	(Mopane)	along	with	
Baikiaea plurijunga	 (Teak),	Guibourtia coleosperma	 (False	Mopane),	
Terminalia sericea	(Silver	Terminalia),	Burkea africana	(Wild	Seringa),	
Combretum spp.,	and	Acacia spp.	The	soil	is	mostly	deep	sand	with	a	
few	floodplain	areas	of	loamy	clay	to	pure	clay	(Laamanen	&	Otsub,	
2002).

Herbivore	 species	 inhabiting	 the	conservancy	 include	Syncerus 
caffer (African	 buffalo), Loxodonta africana	 (African	 elephant),	
Connochaetes taurinus	 (blue	 wildebeest),	 Sylvicapra grimmia	 (com-
mon	 duiker), Aepyceros melampus (common	 impala),	 Taurotragus 
oryx (eland),	Giraffa camelopardalis (giraffe), Tragelaphus strepsiceros 
(greater	 kudu),	Equus quagga (plains	 zebra), Phacochoerus africanus 
(warthog)	 and	Kobus ellipsiprymnus (waterbuck).	 Carnivore	 species	
include Crocuta crocuta (spotted	 hyena),	Panthera leo (African	 lion)	
and P. pardus (leopard).

2.2 | Data collection

Spoor	surveys	were	conducted	annually	over	2	days	during	the	dry	sea-
son	(September).	Surveys	were	conducted	along	13	parallel	transects	
running	north	to	south,	and	three	perpendicular	transects	crossing	eight	
of	the	13	transects	(Figure	1).	Transect	lengths	ranged	from	7	to	18	km	
(13.5	±	SD	4.2	km),	totalling	215	km	per	annum.	Transects	did	not	fol-
low	any	trails,	so	we	assumed	that	animal	interceptions	with	transects	
were	random.	Transects	traversed	all	habitat	types	in	the	conservancy,	
traversing	mostly	 sandy	 soils	with	 smaller	 patches	 of	 clay	 substrate.	
While	this	could	introduce	variations	in	spoor	detection,	the	ability	of	
indigenous	trackers	has	proven	to	be	highly	accurate	under	different	
environmental	conditions	(Stander,	Ghau,	Tsisaba,	&	Oma,	1997).

F I G U R E  1  Map	of	the	study	area	in	
relation	to	Namibia	and	Southern	Africa	
and	sampling	transects	(n	=	16)
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Transects	 were	 traversed	 by	 a	 team	 of	 3	 or	 4	 surveyors	 on	
foot	commencing	at	6:30	a.m.	and	ending	upon	completion	of	the	
transect	(ranging	from	8	a.m.	to	11:00	a.m.).	Surveyors	included	a	
combination	of	Ministry	of	Environment	and	Tourism	(MET)	rang-
ers,	 local	 community	 game	 guards	 and	 trained	 local	 community	
members.	The	community	game	guards	were	all	expert	trackers.	
The	 spoor	 survey	was	 conducted	 by	 the	 same	 observers	 simul-
taneously	 with	 line	 transect	 sampling.	 Upon	 detecting	 a	 spoor,	
the	 following	 was	 recorded:	 geographic	 location,	 species	 and	
the	 number	 of	 spoor	 detected.	All	 ungulate	 and	 large	 carnivore	
species	 were	 recorded.	 Surveyors	 recorded	 spoors	 that	 expert	
trackers	determined	 to	have	been	made	by	different	 individuals	
within	the	last	24	hr,	and	disregarded	duplicate	spoors.	Spoor	as-
sumed	 to	 have	 been	made	 by	 an	 individual	 animal	 that	 was	 di-
rectly	observed	were	also	disregarded,	 as	 these	direct	 sightings	
were	 recorded	 for	 distance	 sampling	 estimation.	 Accurate	 FMP	
estimates	 require	 all	 spoor	 intersections	 with	 transects	 to	 be	
recorded,	 including	multiple	 re‐crossings	by	 the	 same	 individual	
animals	 (Keeping	&	Pelletier,	2014).	We	acknowledge	the	poten-
tial	undercounting	bias	 introduced	by	our	data	collection	proce-
dures.	 This	 undercounting	 bias	may	 have	 been	 counteracted	 by	
the	proximity	of	parallel	transects,	and	perpendicular	intersecting	
transects,	whereby	individual	animals	were	presumably	recorded	
on	separate	transects.

2.3 | Density calculations

Species‐specific	 annual	 density	 estimates	 were	 determined	 as	
D= (𝜋∕2)(x∕S ̂M),	where	D = density	 (km2),	x	=	number	of	 spoor	 inter-
sections	on	a	transect,	S	=	length	of	the	transect	and	 ̂M = average	day	
range	estimate	of	a	species	(km).	Bootstrapping	was	applied	to	the	x/S 
(spoor	intersects	per	length	of	transect)	values	using	R	v.3.2.1	(R	Core	
Team,	2017).	Each	bootstrap	randomly	sampled	the	x/S	value	from	one	
of	the	16	transects,	with	replacement,	where	the	sample	size	of	each	

bootstrap	was	equal	to	the	number	of	transects.	Resampling	probabil-
ity	of	transects	was	calculated	by	dividing	transect	length	by	total	area	
surveyed	for	the	respective	year.	The	mean	of	each	bootstrap	 itera-
tion	was	then	determined	until	5,000	mean	values	of	x/S	were	created.	
These	were	randomly	combined	with	bootstrapped	mean	day	range	
estimates	( ̂M)	 into	the	FMP	formula	to	give	5,000	density	estimates.	
Percentile	confidence	 intervals	 (CI)	were	determined	using	the	func-
tion	boot.ci	from	the	package	boot	version	1.3‐19	in	R	v.3.4.1	(R	Core	
Team,	2017).

Values	 for	 ̂M	 were	 either	 derived	 using	 allometric	 relation-
ships	 (after	 Carbone,	 Cowlishaw,	 Isaac,	 &	 Rowcliffe,	 2005)	 or	
empirical	 estimates	 obtained	 from	 published	 and	 unpublished	
sources	(Table	1).	 ̂M	estimates	obtained	from	the	literature	were	
either	from	populations	living	nearby	the	study	sampling	area	(i.e.	
Chobe	National	Park)	or	 living	 in	similar	conditions.	This	was	to	
minimise	error	as	 ̂M	tends	to	vary	with	resource	availability	and	
thus	 differs	 among	 populations	 occurring	 in	 different	 habitats	
(Leggett,	2009;	McQualter,	Chase,	Fennessy,	McLeod,	&	Leggett,	
2015).	 Only	 ̂M	 estimates	 obtained	 during	 the	 dry	 season	 were	
used	 to	 coincide	 with	 this	 study	 sampling	 period.	 Empirical	 ̂M 
estimates	were	 determined	 by	 applying	 the	 Euclidean	 distance	
formula	 to	 GPS	 data	 available	 for	 21	 African	 buffalo	 (Naidoo,	
Preez,	Stuart‐Hill,	Jago,	&	Wegmann,	2012)	and	five	Plains	zebra	
(Bartlam‐Brooks,	 Beck,	 Bohrer,	 &	Harris,	 2013).	 Buffalo	 collars	
were	programmed	 to	 take	 four	GPS	 fixes	per	day	 (941	 tracking	
days,	3,764	 fixes)	while	zebra	collars	 recorded	one	 fix	per	hour	
(190	 tracking	 days,	 4,560	 fixes).	 These	 day	 ranges	 were	 then	
bootstrapped	 5,000	 times	 with	 replacement,	 and	 the	 resulting	
mean	 day	 ranges	 were	 randomly	 combined	 with	 bootstrapped	
mean x/S	values	in	the	FMP	formula.

Nine	 ̂M	values	were	estimated	allometrically.	A	least‐squares	linear	
regression	model	was	fitted	on	the	loge	day	range	(km)	and	loge body 
mass	(kg)	of	22	species	belonging	to	the	order	Artiodactyla	(Carbone	
et	al.,	2005).	These	22	pairs	of	body	mass	and	day	ranges	were	then	

Species M̂ (km ± SD) Source Body Mass (kg)

African	buffalo 6.54	±	3.73 Naidoo	et	al.	(2012) 625

4.75	±	1.57 Allometrically	derived

African	elephant 9.12	±	5.11 Leggett	(2009) 4,400

Blue	wildebeest 4.79	±	0.70 Allometrically	derived 215

Common	duiker 2.5	±	1.03 Allometrically	derived 16

Common	impala 3.64	±	0.61 Allometrically	derived 45

Eland 5.8	±	1.23 Allometrically	derived 575

Giraffe 6.2	±	4.91 McQualter	et	al.	(2015) 1,005

6.45	±	1.69 Allometrically	derived

Greater	kudu 4.85	±	0.72 Allometrically	derived 215

Plains	zebra 10.67	±	6.10 Bartlam‐Brooks	et	al.	
(2013)

315

Spotted	hyena 26.5	±	1.7 Mills	(1990) 68

Warthog 3.93	±	0.56 Allometrically	derived 70

TA B L E  1  Surveyed	mammal	species,	
mean	daily	range	movement	̂M
(km)	±	standard	deviation	(SD)	estimates,	
literature	sources	(for	empirical	day	
ranges)	and	body	masses	taken	from	
Stuart	and	Stuart	(2001)
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resampled	 5,000	 times,	 with	 each	 iteration	 using	 sample	 sizes	 of	
n	=	22	and	sampling	with	replacement.	At	each	iteration,	a	linear	re-
gression	was	 fitted	 to	 the	 resulting	 sample,	 of	which	 the	 slope	and	
intercept	were	recorded,	resulting	in	5,000	pairs	of	intercept	and	slope	
values.	Species	which	lacked	day	range	estimates	from	the	literature	
had	their	loge	body	mass	plotted	against	bootstrapped	slope	and	in-
tercept	pairs,	resulting	in	5,000	estimates	of	 ̂M,	which	were	combined	
with	the	5,000	x/S values	to	give	a	range	of	density	estimates	from	
which	the	mean	and	CI	for	density	were	taken.	Body	mass	values	were	
taken	from	Stuart	and	Stuart	(2001)	using	the	average	value	between	
male	and	female.

Distance	sampling	density	estimates	were	also	calculated	for	each	
year	by	the	Namibian	Association	of	CBNRM	Support	Organizations	
(NACSO).	Distance	estimates	use	sighting	data	from	the	three	most	
recent	count	years	to	achieve	sufficient	sightings	per	species	(n	=	60)	
(e.g.	2016	estimates	are	comprised	of	2014,	2015	and	2016	surveys).	
The	data	are	available	online	at	http://www.nacso.org.na/resources/
game‐count‐data.	To	compare	precision	between	FMP	and	distance	
estimates,	 CI	 length	was	 calculated	 as	 percentage	 of	 the	mean	 for	
each	method	with	 lower	values	 indicating	higher	precision	 (Barnes,	
2002).

2.4 | Trend analysis

To	determine	trends	in	density	from	2010	to	2016,	we	used	a	gen-
eralised	 additive	model	 (GAM;	Wood,	2006)	 to	 smooth	 the	data,	
thus	 lessening	 the	 influence	 of	 annual	 fluctuations	 and	 allowing	
for	a	more	reliable	 indicator	of	trends	 (Di	Fonzo,	Collen,	&	Mace,	
2013).	GAM	is	more	suitable	when	dealing	with	relationships	that	
are	nonlinear	and	nonmonotonic,	which	can	often	be	the	case	for	
ecological	time	series	data	(Fewster,	Buckalnd,	Siriwardena,	Baillie,	
&	Wilson,	 2000).	 Furthermore,	 GAM	 does	 not	 restrict	 the	 func-
tional	 form	 of	 the	 relationship	 between	 variables	 and	 can	 inte-
grate	a	wider	range	of	probability	distributions	 (Guisan,	Edwards,	
&	Hastie,	2002).

General	 additive	models	 assumed	a	nonhomogeneous	Gaussian	
distribution,	with	density	estimates	being	a	function	of	survey	years	
and	mean	 annual	 rainfall	 values.	 The	model's	 smoothness	 parame-
ter	was	set	to	2	based	on	the	recommended	value	of	0.3	times	the	
length	of	the	time	series	(n	=	7)	(Fewster	et	al.,	2000).	GAM	analyses	
were	conducted	using	the	package	mgcv	version	1.8–20	in	R	v.3.4.1	
(R	Core	Team,	2017).	Average	rainfall	values	for	each	year	from	2010–
2016	were	 used	 (630,	 510,	 650,	 470,	 590,	 340,	 500	mm	 per	 year,	
respectively).

To	determine	whether	a	 trend	 in	density	was	 statistically	 signifi-
cant,	 we	 used	 an	 informal	 test	 described	 by	 Buckland	 et	 al.	 (1992).	
They	indicate	that	if	the	85%	CI	associated	with	two	years	in	a	series	
do	not	overlap,	the	magnitude	of	difference	between	the	abundance	
estimates	is	considered	to	be	significant	at	roughly	the	5%	level.	A	CI	of	
exactly	83.4%	achieves	a	5%	significance	level	if	abundance	estimates	
have	equal	coefficients	of	variation	(CV);	however,	if	one	estimate	has	
a	CV	twice	the	magnitude	of	the	other,	then	an	85.6%	CI	corresponds	
to	a	5%	significance	level	(Buckland	et	al.,	1992).	Thus,	using	an	85%	CI	

we	allow	for	differences	in	CV.	Selected	years	are	assumed	to	be	in-
dependent	and	normally	distributed	with	comparatively	sized	standard	
errors.	We	chose	the	first	and	last	years	in	the	time	series.

2.5 | Simulations

Simulations	were	conducted	to	assess	the	effect	on	trends	in	den-
sity	resultant	from	surveyors	failing	to	record	any	spoor	believed	
to	have	been	created	by	a	directly	sighted	individual.	An	unknown	
number	of	direct	sighting	data	represented	unrecorded	spoor	data.	
Thus,	we	created	an	additional	data	set	in	which	all	direct	sightings	
were	 considered	 as	 spoor	 data	 (100%)	 and	 re‐calculated	 density	
estimates.	GAM	models	were	 then	 applied	 to	 the	 resulting	 den-
sity	estimates,	 and	 retrieved	 trends	were	compared	 to	our	origi-
nal	 trends.	Here,	we	 included	only	 species	which	had	≥10	direct	
sightings.

All	analyses	were	conducted	in	R	v.3.4.1	(R	Core	Team,	2017).

3  | RESULTS

3.1 | Density calculations

Across	 the	 seven	 years,	 17	 total	 mammal	 species	 were	 recorded	
(13	±	SD	 1	 per	 annum).	 Of	 these,	 annual	 density	 estimates	 were	
derived	 for	 only	 10	 species,	 as	 the	 other	 seven	 (buffalo,	 jackal,	
steenbok,	 leopard,	 reedbuck,	 roan	and	waterbuck)	either	had	very	
low	 spoor	 detections	 (3	±	1)	 or	 were	 only	 detected	 in	 very	 few	
years	 (range	 2–4).	 Species	with	 the	 highest	 average	 annual	 densi-
ties	 (100	 per	 km2)	 were	 common	 impala	 (34.5	±	SE	 4.0),	 blue	wil-
debeest	 (23.8	±	SE	4.7),	common	duiker	 (16.1	±	SE	1.3)	and	greater	
kudu	(15.2	±	SE	1.4)	(Table	2).	Species	with	the	lowest	densities	were	
eland	(5.4	±	SE	0.6),	giraffe	(3.9	±	SE	0.3)	and	Spotted	hyena	(0.2	±	SE 
0.03)	(Table	2).

3.2 | Trend analysis

General	additive	models	explained	≥75%	of	the	variation	for	blue	
wildebeest,	eland,	duiker,	giraffe,	impala	and	warthog	population	
time	series,	between	40%	and	75%	for	elephant	and	zebra,	and	
<30%	for	kudu	and	Spotted	hyena	(Table	3).	GAM	models	showed	
a	negative	temporal	trend	for	three	species	(eland,	elephant	and	
warthog),	 and	 stable	 or	 positive	 temporal	 trends	 for	 the	 other	
seven	 species	 (blue	wildebeest,	 common	 impala,	 duiker,	 giraffe,	
hyena,	kudu	and	zebra)	(Figure	2).	Trends	for	blue	wildebeest,	im-
pala	and	giraffe	showed	a	recent	increase	after	having	declined	in	
earlier	years.	None	of	these	trends	were	significant	as	the	85%	CI	
between	2010	and	2016	overlapped	for	all	species.

3.3 | Simulations

General	additive	models	based	on	simulated	data	sets	showed	in-
creases	for	blue	wildebeest,	impala	and	giraffe,	and	decreases	for	

://www.nacso.org.na/resources/game-count-data
://www.nacso.org.na/resources/game-count-data
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elephant,	warthog	and	zebra.	Kudu	trends	showed	a	decrease	in	
early	years	(2010–2013),	followed	by	a	recovery	in	the	second	half	
of	 the	time	series	 (2013–2016)	 (Figure	3).	The	models	explained	
a	substantial	amount	of	variation	in	the	data	(92%–75%)	for	blue	
wildebeest,	 giraffe,	warthog	and	 impala	and	explained	 less	 than	
50%	of	the	variation	for	kudu,	zebra	and	elephant	(Table	4).	None	
of	these	trends	were	significant	as	all	85%	CI	overlapped	between	
2010	and	2016	for	all	species.

3.4 | Comparison between spoor and distance 
survey estimates

Density	 estimates	 between	 spoor	 and	 distance	 surveys	 showed	
relative	agreement	 for	most	species	 (Figure	4).	CIs	showed	 large	
overlap	between	the	two	methods,	with	the	largest	discrepancies	
seen	in	impala,	zebra	and	warthog	density	estimates.	Comparison	
of	precisions	showed	the	methods	to	produce	similar	results,	with	
a	mean	 difference	 in	 precision	 of	 77%.	Of	 the	 29	 comparisons,	
distance	sampling	estimates	were	more	precise	in	15	cases,	while	
FMP	estimates	were	more	precise	in	13	cases,	and	one	case	result-
ing	in	equal	precision	(Table	5).

4  | DISCUSSION

An	 integral	 component	 underpinning	 sustainable	 utilisation	 of	
natural	resources	is	monitoring.	In	this	study,	the	FMP	approach	
was	applied	for	the	first	time	to	ecological	data	collected	largely	
by	community	members	in	a	communal	conservancy	in	Namibia	to	
estimate	and	explore	trends	in	density.	Through	achieving	density	
estimates	 for	 10	 species,	 including	 cryptic	 species,	 we	 demon-
strated	the	value	of	the	FMP's	application	to	spoor	count	data	for	
monitoring	a	wide	range	of	species	in	different	functional	groups.	
Findings	 suggest	 a	 general	 but	 nonsignificant	 positive	 temporal	
trend	for	five	species	(blue	wildebeest,	common	impala,	common	
duiker,	 giraffe	 and	 kudu)	 and	 a	 negative	 trend	 for	 four	 species	
(eland,	elephant,	plains	zebra	and	warthog).	Nonetheless,	the	de-
rived	density	estimates	and	observed	temporal	trends	suffer	from	
several	limitations	in	both	the	spoor	index	and	day	range	compo-
nents	of	density	estimation	using	the	FMP	formula.

Firstly,	density	estimates	were	likely	underestimated	because	
the	sampling	protocol	used	at	Salambala	and	other	conservancies	
in	 Namibia	 requires	 trackers	 to	 record	 individual	 animals’	 spoor	
once	 only,	 and	 to	 disregard	 spoors	 linked	 to	 animals	 directly	
sighted.	Thus,	many	spoor‐transect	interceptions	that	are	required	
for	 accurate	 FMP	 density	 estimation	 are	 unrecorded	 by	 pres-
ent	 sampling	 protocols.	 This	 is	 illustrated	 by	 the	 zebra	 data	 set,	
whereby	a	potential	total	of	10,174	spoors	were	not	recorded	over	
the	seven	years	(10,828	direct	sightings	–	654	spoors).	The	impact	
of	 this	shortcoming	on	density	estimates	 is	 therefore	potentially	
substantial	in	confounding	trends	if	detectability	varied	between	
years.
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Secondly,	 both	 accuracy	 and	 precision	 of	 density	 estimates	
were	 likely	affected	by	applying	allometrically	derived	substitutes	
for	empirical	day	range	estimates.	We	were	constrained	to	this	ap-
proach	by	the	general	scarcity	of	precise,	regional,	day	range	esti-
mates,	particularly	for	herbivores	species.	The	sources	used	likely	
failed	to	capture	all	heterogeneity	in	movements.	While	the	use	of	
allometric	 relationships	 to	 derive	 day	 range	 estimates	 is	 a	 scien-
tifically	 valid	method	 (Aguilar‐Trigueros,	 Rillig,	&	Crowther,	 2017;	
Carbone	et	al.,	2005;	Keeping,	2014),	our	allometric	movement	es-
timates	captured	 less	variation	compared	 to	movement	estimates	
based	on	empirical	methods	such	as	 tracking	or	GPS	collars.	This	
is	 because	 a	 single	mean	 estimate	 of	 day	 range	 for	 each	 species	
was	used;	thus,	the	allometric	approach	utilised	inter‐species	vari-
ation	 rather	 than	within‐species	variation.	For	example,	 empirical	
GPS	 tracking	data	 for	African	buffalo	had	higher	 variation	 in	day	
range	 (SD	3.73	km)	 than	those	derived	allometrically	 in	 this	study	
(SD	1.57	km).	Thus,	allometrically	derived	movement	estimates	led	
to	an	overestimate	in	density	estimate	precision.	Future	efforts	to	
utilise	allometric	estimates	of	day	 range	applied	 to	FMP	could	be	
improved	by	creative	analyses	that	incorporate	the	within‐species	
variation	in	day	range	to	estimate	variance	more	fairly.

Thirdly,	 empirical	 movement	 estimates	 for	 mammal	 species	
are	 typically	 determined	 from	 telemetry	 data	 with	 coarse	 tem-
poral	 resolutions	 (Owen‐Smith,	 Fryxell,	 &	Merrill,	 2010;	 Naidoo	
et	al.,	2012).	This	 is	also	a	potential	source	of	bias.	 In	this	study,	
time	 intervals	 between	 GPS	 fixes	 were	 ≥1	hr	 (Bartlam‐Brooks	
et	al.,	2013;	Naidoo	et	al.,	2012).	GPS	fixes	set	 to	such	 intervals	
can	 severely	underestimate	 total	day	 range	 (Rowcliffe,	Carbone,	
Kays,	Kranstauber,	&	 Jansen,	2012),	 as	 they	 fail	 to	capture	 fine‐
scale	movement,	such	as	movement	during	foraging	(Owen‐Smith	
et	 al.	 2010).	 These	 same	 constraints	 apply	 to	 literature‐based	
range	 estimates	 as	 these	 are	 often	 based	 on	 telemetry	 data.	
Underestimating	day	range	results	 in	an	overestimation	of	FMP‐
based	 density.	 Possibilities	 to	 correct	 this	 include	 technological	
advances	 in	 micro‐transmitters	 that	 record	 animal	 movements	
at	 sub‐second	 intervals	 (Wilson,	 Shepard,	 &	 Liebsch,	 2008).	

However,	in	many	tracking	environments	in	which	the	FMP	can	be	
applied,	it	also	possible	to	simply	follow	(trail)	the	tracks	of	animals	
using	hand‐held	GPS	units	to	obtain	near‐perfect	tracings	of	their	
day	ranges	(Keeping	&	Pelletier,	2014;	Stephens	et	al.,	2006).

The	main	 limitation	and	potentially	confounding	 factor	 to	esti-
mating	 trends	was	our	 assumption	 that	day	 ranges	 remained	con-
stant	 from	2010	 to	2016.	Any	 trends	were	 thus	 resulting	 entirely	
from	 the	 spoor	 count	 component	of	FMP	density	 estimates	while	
inter‐annual	species	day	ranges	were	assumed	constant.	The	degree	
to	which	this	assumption	 is	 likely	 to	have	been	violated	 implicates	
our	confidence	in	trends.	There	were	fluctuations	in	annual	rainfall	
(CV	20%)	across	the	study	period.	Such	variable	rainfall	 influences	
ungulate	 movement	 in	 response	 to	 resource	 availability	 (Ogutu,	
Piepho,	Dublin,	Bhola,	&	Ried,	2008;	Ogutu	et	al.,	2016).	Notably,	the	
assumption	 of	 constant	 day	 range	 is	 implicitly	 assumed	whenever	
spatial–temporal	 comparisons	 of	 repeat	 spoor	 surveys	 are	 made,	
including	 index‐density	calibration	approaches	 (e.g.	Winterbach	et	
al.,	2016),	unless	re‐calibrated	to	local	conditions	every	survey.	The	
extent	by	which	average	day	range	fluctuates	from	year	to	year	re-
quires	further	investigation.

Trends	 generated	 from	 the	 simulated	 data	 set	 (all	 spoors	 and	
all	direct	sightings)	retrieved	similar	trends	as	those	based	only	on	
spoors.	 This	 suggests	 sampling	 error	 was	minimised	 as	 observers	
were	relatively	consistent	year	to	year	omitting	tracks	made	by	ani-
mals	that	were	also	directly	sighted.	Indeed,	many	of	the	same	com-
munity	members	participated	 in	multiple	surveys	across	the	seven	
years	and	a	consistent	protocol	was	used.	For	these	reasons,	we	are	
confident	that	observed	trends	most	likely	do	reflect	true	trends	for	
these	species.

Comparisons	between	FMP	and	distance	sampling	showed	that	
most	estimates	and	CIs	between	the	two	methods	were	in	relative	
agreement.	 Precision	 of	 estimates	 showed	 little	 difference,	 with	
distance	 sampling	 producing	more	 precise	 estimates	 in	 15	 of	 the	
29	cases,	but	representing	data	from	three	years.	However,	a	linear	
relationship	between	CIs	and	density	estimates	has	been	shown	by	
Barnes	(2002),	whereby	CIs	tend	to	decrease	as	estimates	increase.	

Species
Variation explained 
(%) 85% CI (2010) 85% CI (2016)

African	Elephant 65 2.7–27.3 0.5–18.4

Blue	Wildebeest 99 10.0–35.5 22.0–69.0

Common	duiker 84 7.2–23.6 10.3–36.6

Common	impala 90 21.2–44.8 32.8–70.3

Eland 68 3.1–12.2a  1.9–6.7

Giraffe 89 1.5–17.0 1.3–17.6

Greater	Kudu 63 12.2–27.7 14.6–27.3

Plains	Zebra 45 0.0–16.1 0.0–17.2

Spotted	hyena 25 0.03–0.1 0.03–0.3

Warthog 75 5.7–13.9 2.6–7.2

aEland	time	series	begins	in	2012	rather	than	2010.	

TA B L E  3  Summary	of	species‐specific	
generalised	additive	model	analysis	that	
includes	variation	explained	and	85%	
confidence	interval	(CI)	for	years	2010	and	
2016.	Variation	explained	values	
represent	the	degree	of	the	model	fit	to	
the	data.	Lack	of	overlap	between	
confidence	intervals	of	first	and	last	time	
series	points	suggests	a	significant	
(p	≤	0.05)	trend



8  |     AHLSWEDE Et AL.

As	FMP	density	 estimates	were	 lower	 than	distance	 sampling	es-
timates	 in	 25	 of	 the	 29	 comparisons,	 higher	 precision	 from	 FMP	
results	should	be	expected	 if	all	spoors	had	been	recorded	during	
sampling.	Zebra	 and	 impala	density	 estimates	 varied	 considerably	
between	 the	 two	methods,	with	 FMP	producing	 lower	 estimates.	
Both	 species	 exhibit	 gregarious	 behaviour,	 therefore	 making	 for	

improved	probability	of	direct	sighting,	and	thus	a	decrease	in	spoor	
data	 due	 to	 the	 sampling	 protocol	 excluding	 tracks	 of	 animals	 di-
rectly	sighted.

Distance	sampling	density	estimates	have	been	calculated	using	a	3‐
year	moving	average	of	the	sampling	data	due	to	insufficient	sightings	in	
annual	surveys.	Using	composite	estimates	creates	difficulties	regarding	

F I G U R E  2  Species‐specific	trend	
in	annual	density	estimates	based	on	
generalised	additive	(GAM)	models.	
Dotted	lines	represent	the	GAM	model	
95%	confidence	intervals	for	the	entire	
time	series.	For	eland,	the	distance	
between	the	confidence	intervals	and	the	
GAM	model	line	is	too	small	to	distinguish	
between	the	two
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the	interpretation	of	results,	as	well	as	possibly	compromising	their	va-
lidity.	Moving	averages	mask	sudden	changes	in	the	data	within	certain	
years,	thus	leading	to	potential	bias	in	decisions	made	on	an	annual	basis	

(e.g.	hunting	quotas).	Pooling	data	from	three	survey	years	also	implies	
that	distance	sampling	requires	three	times	the	current	sampling	effort	
in	order	to	calculate	robust	annual	density	estimates.

F I G U R E  3  Species‐specific	trend	
in	annual	density	estimates	based	on	
generalised	additive	(GAM)	models.	
Models	use	complete	data	from	both	
spoor	and	observational	data	sets	
(simulation	100%).	Dotted	lines	represent	
the	GAM	model	95%	confidence	intervals	
for	the	entire	time	series.	For	eland,	the	
distance	between	the	confidence	intervals	
and	the	GAM	model	line	is	too	small	to	
distinguish	between	the	two

Species
Variation Explained 
(%) 85% CI (2010) 85% CI (2016)

Blue	Wildebeest 92 11.5–42.3 35.6–96.8

Common	impala 75 30.1–60.0 54.2–123.3

Elephant 39 3.6–52.4 2.9–64.5

Giraffe 88 2.5–8.2 2.4–11.0

Greater	Kudu 42 14.5–31.5 16.3–33.9

Plains	Zebra 46 0.0–930.3 0.0–124.3

Warthog 78 12.3–26.0 5.0–18.2

TA B L E  4  Summary	of	species‐specific	
generalised	additive	model	analysis	for	
simulated	data	sets	that	includes	variation	
explained	and	85%	confidence	interval	(CI)	
for	years	2010	and	2016.	Variation	
explained	values	represent	the	degree	of	
the	model	fit	to	the	data.	Lack	of	overlap	
between	confidence	intervals	of	first	and	
last	time	series	points	suggests	a	
significant	(p	≤	0.05)	trend
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By	using	the	FMP,	we	were	able	to	derive	estimates	for	species	
that	are	elusive	 (e.g.	carnivores)	or	occurring	 in	 low	densities.	 In	
only	two	cases	could	densities	not	be	calculated	using	spoor	data	
(eland	in	2010	and	2011),	while	distance	sampling	data	combined	
from	three	years	failed	to	calculate	densities	 in	many	cases.	The	
FMP's	ability	 to	monitor	multiple	species	 is	worth	noting	as	 this	
is	a	prerequisite	for	monitoring	community	structure	(Cromsigt	&	

Olff,	2008),	functional	diversity	and,	consequently,	in	preserving	
ecosystem	functions	(Cadotte,	Carscadden,	&	Mirotchnick,	2011).

Temporal	 trends	 suggest	 that	 six	 of	 the	 10	 species	 popula-
tions	are	stable.	This	is	of	importance	to	conservancies	and	vari-
ous	stakeholders	as	on	one	hand	it	reflects	the	effects	of	current	
management	efforts,	and	on	the	other	 the	need	to	concentrate	
efforts	 to	 species	 identified	 as	 potentially	 declining.	 Species	

F I G U R E  4  Species‐specific	annual	density	estimates	and	95%	confidence	intervals	comparing	spoor	counts	(solid	line)	to	distance	
sampling	(dotted	line).	Years	with	no	estimates	are	years	where	distance	sampling	was	unable	to	produce	estimates	due	to	insufficient	
sightings.	Estimates	without	confidence	intervals	are	due	to	intervals	not	being	reported
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which	showed	steep	but	nonstatistically	significant	decreases	in	
population	size	were	eland,	elephant,	warthog	and	zebra.	Eland	
was	 re‐introduced	 into	 the	conservancy	 in	2012	and	 the	popu-
lation	may	have	not	yet	established	itself.	It	is	also	possible	that	
the	population	is	failing	to	persist	in	the	study	area	or	that	other	
factors	 may	 be	 suppressing	 its	 growth.	 Human	 encroachment,	
poaching	 and	 policy	 do	 negatively	 affect	 ungulate	 abundance	
(Ogutu	 et	 al.,	 2016).	 Eland	 in	 particular	 are	 sensitive	 to	 human	
disturbance,	highly	sought	after	for	their	meat,	and	hunted	read-
ily	without	 firearms	 (D.	Keeping	personal observation).	Warthog	
decreases	may	be	due	to	retaliation	and	or	poaching,	as	warthogs	
can	 cause	 agricultural	 damages	 and	 are	 often	 hunted	 opportu-
nistically	 (Kalher	&	Gore,	 2015;	 Swanepoel,	 Leslie,	 &	Hoffman,	
2016).	 Elephant	 populations	 have	 declined	 across	 the	 African	
continent	 (with	 the	 exception	 of	 a	 few	 national	 park	 areas)	
(Chase	et	al..,	2016)	with	poaching	possibly	being	a	major	driver	
in	 Namibia	 (Nakale,	 2017).	 Zebra	 declines	 have	 been	 linked	 to	
fluctuations	in	rainfall	(Georgiadis,	Hack,	&	Turpin,	2003),	and	as	
the	largest	decrease	in	population	occurred	in	the	year	with	the	
least	rainfall,	it	is	possible	that	the	observed	trend	is	linked	with	
rainfall	 patterns.	 Since	Salambala	Conservancy	 is	 not	 fenced	 in	
any	way,	 it	 is	 possible	 that	 the	 zebra	 population	 relocated	 into	

the	Chobe	National	Park	during	 the	 recent	drier	 years.	Hyaena	
are	often	implicated	in	human–wildlife	conflict	incidents	and	re-
moved	 at	 times	 (NACSO,	 2016).	 For	 the	 10	 stable	 species,	 the	
lack	 of	 relationship	 between	 dry	 season	 density	 estimates	 and	
annual	rainfall	may	be	because	these	species	respond	differently	
to	 rainfall	 patterns	 (Ogutu	 et	 al.,	 2008).	 Thus,	 these	 findings	
demonstrate	 that	 there	 is	 a	 need	 to	 acquire	 improved	 density	
estimates	 and	 implement	 a	more	 fine‐scale	 demographic	moni-
toring	that	can	allow	for	proper	assessment	of	how	these	species	
respond	to	environmental	changes.	The	FMP	approach,	given	an	
adjustment	of	spoor	survey	protocol	and	improved	day	range	es-
timation,	could	make	a	valuable	contribution	to	future	monitoring	
and	the	inference	derived	therefrom.

Only	two	species,	zebra	and	blue	wildebeest,	showed	trends	that	
differed	between	those	retrieved	using	only	the	spoors	data	set	ver-
sus	the	simulated	data	set.	We	suggest	the	simulated	trend	is	likely	
more	accurate	for	both	species	given	the	large	proportion	of	spoor	
neglected	 for	 direct	 sightings.	 Also,	 the	 gregarious	 behaviour	 of	
these	two	species	may	lead	them	to	be	undercounted	by	their	spoor	
if	 group	 sizes	 are	 large	 (Keeping	 et	 al.,	 2018),	 and	 since	 they	 are	
both	highly	visible	and	relatively	abundant,	direct	sightings	methods	
might	rather	be	preferred	(Caro,	2016).

Species

Percentage confidence length

2010 2011 2012 2013 2014 2015 2016

African	elephant

Spoor	count 351 328 360 357 329 347 403

Distance	sample N/A N/A N/A 330 N/A N/A N/A

Blue	wildebeest

Spoor	count 160 150 138 134 131 127 148

Distance	sample N/A N/A N/A 315 222 N/A N/A

Common	duiker

Spoor	count 153 157 170 167 252 166 165

Distance	sample 175 150 N/A 159 134 99 202

Common	impala

Spoor	count 102 110 176 121 159 113 100

Distance	sample 253 161 110 111 121 113 N/A

Giraffe

Spoor	count 380 411 415 385 446 428 406

Distance	sample N/A 189 N/A N/A N/A N/A N/A

Greater	Kudu

Spoor	count 111 104 105 109 112 87 85

Distance	sample N/A N/A 201 203 251 259 225

Plains	zebra

Spoor	count 544 476 498 422 465 449 542

Distance	sample N/A N/A N/A 309 N/A N/A N/A

Warthog

Spoor	count 119 95 132 191 184 113 136

Distance	sample 146 133 83 85 88 78 99

TA B L E  5  Percentage	confidence	
length	for	spoor	count	and	distance	
sampling	density	estimates.	Calculated	as	
confidence	interval	length	divided	by	
mean	density	estimate	×	100.	Lower	
values	indicate	higher	levels	of	precision



12  |     AHLSWEDE Et AL.

In	 conclusion,	 by	 applying	 the	 FMP	 formula	 to	 routine	 moni-
toring	data	collected	by	community	members	of	a	communal	con-
servancy	it	was	possible	to	derive	density	estimates	for	10	species	
recorded	 in	 the	 study	 area	 between	 2010	 and	 2016.	 This	was	 an	
improvement	over	 the	currently	employed	distance	method	which	
only	 generated	 density	 estimates	 for	 eight	 species,	 of	which	 only	
two	 species	 had	 density	 estimates	 for	 the	 entire	 range	 of	 2010–
2016.	These	findings	demonstrate	the	potential	of	this	technique	to	
monitor	a	wider	number	of	species	than	the	conservancy's	distance	
surveys.	However,	as	the	reliability	of	FMP	depends	on	appropriate	
day	range	estimates	which	remain	a	substantial	knowledge	gap,	we	
recommend	double	sampling	using	simultaneous	line	transects.	We	
also	recommend	that	future	surveys	in	this	and	other	conservancies	
record	all	spoors	regardless	of	individual	identity	or	whether	those	
animals	are	doubly	recorded	as	line	transect	observations	and	that	
accurate	day	range	estimates	are	obtained	over	a	period	of	several	
years.	The	latter	might	be	accomplished	through	local	experienced	
trackers	trailing	animals.	If	these	recommendations	are	met,	then	the	
FMP	method	could	be	an	invaluable	tool	for	monitoring	and	conserv-
ing	multispecies.
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