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Abstract
Finding an appropriate method to monitor a wide range of mammal species simulta-
neously is notoriously difficult, as each method has its limitations. Here, we examine 
a formula, known as the Formozov–Malyshev–Pereleshin (FMP), which uses mean 
daily travel distances (day ranges) to convert spoor counts into density estimates. 
Availability of accurate estimates of day ranges is a limitation of the FMP formula. 
Here, we used allometry to estimate day ranges for those species that lacked empiri-
cal movement data and general additive models (GAM) to assess trends in density 
estimates. With this approach, we derived density estimates for 10 mammal species, 
regardless of whether they were abundant, or rare and elusive (e.g. carnivores). 
General additive models suggest that six species are stable or increasing, and four 
declining, although all nonsignificantly. Use of allometric estimates in lieu of empirical 
estimates led to falsely increased precision in density estimates, highlighting the 
need to fill the knowledge gap in movement ecology for certain species. Simulations 
were used to examine error introduced into trend estimates by this bias. We conclude 
that the FMP formula, when properly employed, can be an efficient method for si-
multaneous monitoring of multispecies in different functional groups.

Résumé
Il est particulièrement difficile de trouver une méthode appropriée pour surveiller 
simultanément une large gamme d’espèces de mammifères, car chaque méthode à 
ses limitations. Ici, nous examinons une formule connue sous le nom de Formozov‐
Malyshev‐Pereleshin (FMP), qui utilise des distances de déplacement quotidiennes 
(écart de jours) pour convertir le nombre de traces en estimation de densité. La dis-
ponibilité des estimations précises d’écart de jours est une limitation de la formule 
FMP. Ici, nous avons utilisé l’allométrie pour évaluer les écarts de jours des espèces 
pour lesquelles il manquait des mouvements de données empiriques et des modèles 
additifs généraux (MAG) pour évaluer les tendances des estimations de densité. Avec 
cette approche, nous avons calculé des estimations de densité pour 10 espèces de 
mammifères, qu’elles soient abondantes ou rares et insaisissables (par exemple, des 
carnivores). Les modèles MAG suggèrent que six espèces sont stables ou en augmen-
tation et quatre en baisse, bien que toutes de façon non significatives. L'utilisation 
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1  | INTRODUC TION

Namibia is a leader in community based natural resource manage-
ment (CBNRM) with about 20% of its total surface area allocated to 
communal conservancies (NACSO, 2016). Through conservancies, 
local communities have been empowered to benefit legally from the 
sustainable utilisation of natural resources directly and indirectly 
(NACSO, 2016). To manage wildlife sustainably, communities are 
obliged to conduct annual population assessments in collaboration 
with supporting institutions such as the Ministry of Environment 
and Tourism (MET) (NACSO, 2016). Community assessments of 
wildlife abundance and trends provide knowledge to stakeholders 
(e.g. wildlife managers, scientists, community members) about, for 
example, the effect(s) of management actions (e.g. yearly hunting 
quotas), wildlife responses to environmental changes (Ogutu & 
Owen‐Smith, 2003) or the effectiveness of monitoring schemes 
to adequately detect trends within a constituency (Danielsen, 
Burgess, & Balmford, 2005; Hausser, Tagand, Vimercati, Mermod, & 
Fischer, 2016). Thus, conducting monitoring and evaluation of wild-
life trends provide insight concerning both management decisions 
and resource status.

Currently, distance sampling is employed to monitor wildlife 
populations in Namibian communal conservancies (NACSO, 2017). 
While distance sampling can produce robust density estimates, 
the method may not be suitable for species with small body size, 
cryptic coloration, nocturnal activity, or that occur at low densi-
ties (Witmer, 2005). This is because species with these traits often 
have less than 60 observations, the minimum adequate number of 
observations for robust density estimation (Buckland, Cattanach, 
& Anganuzzi, 1992). In such cases, index methods such as cam-
era trapping and spoor tracking may be better suited as they are 
able to obtain data across a wider range of species (Carbone et al., 
2001; Keeping, 2014). However, indices have been criticised for 
being inappropriate proxies for true abundance (Anderson, 2001). 
This criticism is to a large extent aimed at addressing confounding 
factors which not only apply to index methods, but would affect 
any density estimation method (Bart, Burnham, Dunn, Francis, 
& Ralph, 2004). Thus, any monitoring program, including those 

based on indices provided that they are rigorously designed (e.g. 
use probabilistic methods to select sampling sites), is in fact ap-
propriate to assess trends in population size or density (Bart et al., 
2004; Engemann, 2003).

Spoor tracking is an index widely used globally (Norris, Peres, 
Michalski, & Hinchsliffe, 2008; Southgate & Moseby, 2008; 
Winterbach, Ferreira, Funston, & Somers, 2016). However, to date, 
this method has mostly been used for monitoring carnivore mam-
mals (Bauer, Schiess‐Meier, Mills, & Gusset, 2014; Fabiano, 2007; 
Gusset & Burgener, 2005) owing to the difficulty detecting and 
counting them by other means. Substantial effort has been made 
towards gaining a better understanding of the relationship between 
large carnivore spoor indices and true density. Strong correlations 
have been noticed between spoor indices and independent density 
estimates of large carnivores (from direct monitoring of individuals 
and intensive collaring studies) using linear calibration equations 
(Funston et al., 2010; Stander, 1998; Winterbach et al., 2016). Based 
on the success of linear calibration models for large carnivores, 
Funston et al. (2001) tentatively suggested extending such calibra-
tions to large herbivores. Ideally, such an approach would require 
separate species‐specific linear calibration equations because differ-
ences in individual species movement ecology theoretically affect 
the slope of any linear model. However, the effort would be quite 
onerous, requiring multiple independent estimates of density for 
each species (Funston et al., 2001).

The Formozov–Malyshev–Pereleshin (FMP) formula provides a 
theoretical foundation for converting spoor indices to true density 
through the variable day range (Stephens, Zaumyslova, Miquelle, 
Myslenkov, & Hayward, 2006). It therefore makes possible the esti-
mation of density without the necessity of making several indepen-
dent estimates of density. The FMP has been used for decades in 
Russia to monitor a wider range of taxa including ungulates (Stephens 
et al., 2006), yet remains underappreciated outside the region. In 
Africa, it has so far only been applied in Botswana, generating den-
sity estimates in close agreement with independent aerial and line 
transect estimates (Keeping, 2014; Keeping et al., 2018). The FMP 
assumes that spoor density is a function of both the true density 
and day range of a species and is theoretically robust to variations 

d'estimations allométriques à la place d'estimations empiriques a donné lieu à une 
précision faussement accrue des estimations de densité, soulignant la nécessité de 
combler le manque de connaissances dans le mouvement écologie pour certaines es-
pèces. Des simulations ont été utilisées pour examiner l'erreur introduite dans les 
estimations de tendance par ce biais. Nous concluons que la formule FMP, lorsqu'elle 
est correctement utilisée, peut être une méthode efficace pour la surveillance simul-
tanée de plusieurs espèces dans différents groupes fonctionnels.
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in patterns of animal movement paths (Keeping & Pelletier, 2014). 
Application of the FMP is challenged by the unavailability of accurate 
empirical day range estimates. However, day range estimates can be 
made using allometric scaling rules between body mass and day range 
(Keeping, 2014).

Spoor tracking is an exceptionally efficient means for commu-
nities to collect data for monitoring wildlife populations in south-
ern Africa (Keeping et al., 2018), and in many areas, it has become 
routine. If such data could be interpreted as density and trends 
in abundance, it could be made more useful. We thus applied the 
FMP formula using both empirical and allometric day range esti-
mates to spoor data collected largely by community members of the 
Salambala Conservancy, in north‐east Namibia, for the period be-
tween 2010 and 2016, to determine and assess trends in density for 
a range of mammal species.

2  | METHODS

2.1 | Study area

The Salambala Conservancy is located in north‐eastern Namibia 
opposite the Chobe National Park in Botswana (Figure 1). The 
conservancy encompasses an area of 930 km2. The climate is 
characterised by a tropical climate with high temperatures and 
heavy rainfall during the rainy season between December and 
March. Average monthly temperatures are of 30°C and annual 
rainfall of 620 mm (Laamanen & Otsub, 2002). The conservancy's 
source of water is the Chobe River, which runs along the bor-
der of the conservancy and separates it from the Chobe National 
Park. Animals are able to migrate freely between the two areas 
by crossing the river.

The area is characterised by floodplains and dry sandy areas. 
Floodplains have a lush grass cover and sandy areas open wood-
lands dominated by Colophospermum mopane (Mopane) along with 
Baikiaea plurijunga (Teak), Guibourtia coleosperma (False Mopane), 
Terminalia sericea (Silver Terminalia), Burkea africana (Wild Seringa), 
Combretum spp., and Acacia spp. The soil is mostly deep sand with a 
few floodplain areas of loamy clay to pure clay (Laamanen & Otsub, 
2002).

Herbivore species inhabiting the conservancy include Syncerus 
caffer (African buffalo), Loxodonta africana (African elephant), 
Connochaetes taurinus (blue wildebeest), Sylvicapra grimmia (com-
mon duiker), Aepyceros melampus (common impala), Taurotragus 
oryx (eland), Giraffa camelopardalis (giraffe), Tragelaphus strepsiceros 
(greater kudu), Equus quagga (plains zebra), Phacochoerus africanus 
(warthog) and Kobus ellipsiprymnus (waterbuck). Carnivore species 
include Crocuta crocuta (spotted hyena), Panthera leo (African lion) 
and P. pardus (leopard).

2.2 | Data collection

Spoor surveys were conducted annually over 2 days during the dry sea-
son (September). Surveys were conducted along 13 parallel transects 
running north to south, and three perpendicular transects crossing eight 
of the 13 transects (Figure 1). Transect lengths ranged from 7 to 18 km 
(13.5 ± SD 4.2 km), totalling 215 km per annum. Transects did not fol-
low any trails, so we assumed that animal interceptions with transects 
were random. Transects traversed all habitat types in the conservancy, 
traversing mostly sandy soils with smaller patches of clay substrate. 
While this could introduce variations in spoor detection, the ability of 
indigenous trackers has proven to be highly accurate under different 
environmental conditions (Stander, Ghau, Tsisaba, & Oma, 1997).

F I G U R E  1  Map of the study area in 
relation to Namibia and Southern Africa 
and sampling transects (n = 16)
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Transects were traversed by a team of 3 or 4 surveyors on 
foot commencing at 6:30 a.m. and ending upon completion of the 
transect (ranging from 8 a.m. to 11:00 a.m.). Surveyors included a 
combination of Ministry of Environment and Tourism (MET) rang-
ers, local community game guards and trained local community 
members. The community game guards were all expert trackers. 
The spoor survey was conducted by the same observers simul-
taneously with line transect sampling. Upon detecting a spoor, 
the following was recorded: geographic location, species and 
the number of spoor detected. All ungulate and large carnivore 
species were recorded. Surveyors recorded spoors that expert 
trackers determined to have been made by different individuals 
within the last 24 hr, and disregarded duplicate spoors. Spoor as-
sumed to have been made by an individual animal that was di-
rectly observed were also disregarded, as these direct sightings 
were recorded for distance sampling estimation. Accurate FMP 
estimates require all spoor intersections with transects to be 
recorded, including multiple re‐crossings by the same individual 
animals (Keeping & Pelletier, 2014). We acknowledge the poten-
tial undercounting bias introduced by our data collection proce-
dures. This undercounting bias may have been counteracted by 
the proximity of parallel transects, and perpendicular intersecting 
transects, whereby individual animals were presumably recorded 
on separate transects.

2.3 | Density calculations

Species‐specific annual density estimates were determined as 
D= (𝜋∕2)(x∕S ̂M), where D = density (km2), x = number of spoor inter-
sections on a transect, S = length of the transect and ̂M = average day 
range estimate of a species (km). Bootstrapping was applied to the x/S 
(spoor intersects per length of transect) values using R v.3.2.1 (R Core 
Team, 2017). Each bootstrap randomly sampled the x/S value from one 
of the 16 transects, with replacement, where the sample size of each 

bootstrap was equal to the number of transects. Resampling probabil-
ity of transects was calculated by dividing transect length by total area 
surveyed for the respective year. The mean of each bootstrap itera-
tion was then determined until 5,000 mean values of x/S were created. 
These were randomly combined with bootstrapped mean day range 
estimates ( ̂M) into the FMP formula to give 5,000 density estimates. 
Percentile confidence intervals (CI) were determined using the func-
tion boot.ci from the package boot version 1.3‐19 in R v.3.4.1 (R Core 
Team, 2017).

Values for ̂M were either derived using allometric relation-
ships (after Carbone, Cowlishaw, Isaac, & Rowcliffe, 2005) or 
empirical estimates obtained from published and unpublished 
sources (Table 1). ̂M estimates obtained from the literature were 
either from populations living nearby the study sampling area (i.e. 
Chobe National Park) or living in similar conditions. This was to 
minimise error as ̂M tends to vary with resource availability and 
thus differs among populations occurring in different habitats 
(Leggett, 2009; McQualter, Chase, Fennessy, McLeod, & Leggett, 
2015). Only ̂M estimates obtained during the dry season were 
used to coincide with this study sampling period. Empirical ̂M 
estimates were determined by applying the Euclidean distance 
formula to GPS data available for 21 African buffalo (Naidoo, 
Preez, Stuart‐Hill, Jago, & Wegmann, 2012) and five Plains zebra 
(Bartlam‐Brooks, Beck, Bohrer, & Harris, 2013). Buffalo collars 
were programmed to take four GPS fixes per day (941 tracking 
days, 3,764 fixes) while zebra collars recorded one fix per hour 
(190 tracking days, 4,560 fixes). These day ranges were then 
bootstrapped 5,000 times with replacement, and the resulting 
mean day ranges were randomly combined with bootstrapped 
mean x/S values in the FMP formula.

Nine ̂M values were estimated allometrically. A least‐squares linear 
regression model was fitted on the loge day range (km) and loge body 
mass (kg) of 22 species belonging to the order Artiodactyla (Carbone 
et al., 2005). These 22 pairs of body mass and day ranges were then 

Species M̂ (km ± SD) Source Body Mass (kg)

African buffalo 6.54 ± 3.73 Naidoo et al. (2012) 625

4.75 ± 1.57 Allometrically derived

African elephant 9.12 ± 5.11 Leggett (2009) 4,400

Blue wildebeest 4.79 ± 0.70 Allometrically derived 215

Common duiker 2.5 ± 1.03 Allometrically derived 16

Common impala 3.64 ± 0.61 Allometrically derived 45

Eland 5.8 ± 1.23 Allometrically derived 575

Giraffe 6.2 ± 4.91 McQualter et al. (2015) 1,005

6.45 ± 1.69 Allometrically derived

Greater kudu 4.85 ± 0.72 Allometrically derived 215

Plains zebra 10.67 ± 6.10 Bartlam‐Brooks et al. 
(2013)

315

Spotted hyena 26.5 ± 1.7 Mills (1990) 68

Warthog 3.93 ± 0.56 Allometrically derived 70

TA B L E  1  Surveyed mammal species, 
mean daily range movement ̂M
(km) ± standard deviation (SD) estimates, 
literature sources (for empirical day 
ranges) and body masses taken from 
Stuart and Stuart (2001)
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resampled 5,000 times, with each iteration using sample sizes of 
n = 22 and sampling with replacement. At each iteration, a linear re-
gression was fitted to the resulting sample, of which the slope and 
intercept were recorded, resulting in 5,000 pairs of intercept and slope 
values. Species which lacked day range estimates from the literature 
had their loge body mass plotted against bootstrapped slope and in-
tercept pairs, resulting in 5,000 estimates of ̂M, which were combined 
with the 5,000 x/S values to give a range of density estimates from 
which the mean and CI for density were taken. Body mass values were 
taken from Stuart and Stuart (2001) using the average value between 
male and female.

Distance sampling density estimates were also calculated for each 
year by the Namibian Association of CBNRM Support Organizations 
(NACSO). Distance estimates use sighting data from the three most 
recent count years to achieve sufficient sightings per species (n = 60) 
(e.g. 2016 estimates are comprised of 2014, 2015 and 2016 surveys). 
The data are available online at http://www.nacso.org.na/resources/
game-count-data. To compare precision between FMP and distance 
estimates, CI length was calculated as percentage of the mean for 
each method with lower values indicating higher precision (Barnes, 
2002).

2.4 | Trend analysis

To determine trends in density from 2010 to 2016, we used a gen-
eralised additive model (GAM; Wood, 2006) to smooth the data, 
thus lessening the influence of annual fluctuations and allowing 
for a more reliable indicator of trends (Di Fonzo, Collen, & Mace, 
2013). GAM is more suitable when dealing with relationships that 
are nonlinear and nonmonotonic, which can often be the case for 
ecological time series data (Fewster, Buckalnd, Siriwardena, Baillie, 
& Wilson, 2000). Furthermore, GAM does not restrict the func-
tional form of the relationship between variables and can inte-
grate a wider range of probability distributions (Guisan, Edwards, 
& Hastie, 2002).

General additive models assumed a nonhomogeneous Gaussian 
distribution, with density estimates being a function of survey years 
and mean annual rainfall values. The model's smoothness parame-
ter was set to 2 based on the recommended value of 0.3 times the 
length of the time series (n = 7) (Fewster et al., 2000). GAM analyses 
were conducted using the package mgcv version 1.8–20 in R v.3.4.1 
(R Core Team, 2017). Average rainfall values for each year from 2010–
2016 were used (630, 510, 650, 470, 590, 340, 500 mm per year, 
respectively).

To determine whether a trend in density was statistically signifi-
cant, we used an informal test described by Buckland et al. (1992). 
They indicate that if the 85% CI associated with two years in a series 
do not overlap, the magnitude of difference between the abundance 
estimates is considered to be significant at roughly the 5% level. A CI of 
exactly 83.4% achieves a 5% significance level if abundance estimates 
have equal coefficients of variation (CV); however, if one estimate has 
a CV twice the magnitude of the other, then an 85.6% CI corresponds 
to a 5% significance level (Buckland et al., 1992). Thus, using an 85% CI 

we allow for differences in CV. Selected years are assumed to be in-
dependent and normally distributed with comparatively sized standard 
errors. We chose the first and last years in the time series.

2.5 | Simulations

Simulations were conducted to assess the effect on trends in den-
sity resultant from surveyors failing to record any spoor believed 
to have been created by a directly sighted individual. An unknown 
number of direct sighting data represented unrecorded spoor data. 
Thus, we created an additional data set in which all direct sightings 
were considered as spoor data (100%) and re‐calculated density 
estimates. GAM models were then applied to the resulting den-
sity estimates, and retrieved trends were compared to our origi-
nal trends. Here, we included only species which had ≥10 direct 
sightings.

All analyses were conducted in R v.3.4.1 (R Core Team, 2017).

3  | RESULTS

3.1 | Density calculations

Across the seven years, 17 total mammal species were recorded 
(13 ± SD 1 per annum). Of these, annual density estimates were 
derived for only 10 species, as the other seven (buffalo, jackal, 
steenbok, leopard, reedbuck, roan and waterbuck) either had very 
low spoor detections (3 ± 1) or were only detected in very few 
years (range 2–4). Species with the highest average annual densi-
ties (100 per km2) were common impala (34.5 ± SE 4.0), blue wil-
debeest (23.8 ± SE 4.7), common duiker (16.1 ± SE 1.3) and greater 
kudu (15.2 ± SE 1.4) (Table 2). Species with the lowest densities were 
eland (5.4 ± SE 0.6), giraffe (3.9 ± SE 0.3) and Spotted hyena (0.2 ± SE 
0.03) (Table 2).

3.2 | Trend analysis

General additive models explained ≥75% of the variation for blue 
wildebeest, eland, duiker, giraffe, impala and warthog population 
time series, between 40% and 75% for elephant and zebra, and 
<30% for kudu and Spotted hyena (Table 3). GAM models showed 
a negative temporal trend for three species (eland, elephant and 
warthog), and stable or positive temporal trends for the other 
seven species (blue wildebeest, common impala, duiker, giraffe, 
hyena, kudu and zebra) (Figure 2). Trends for blue wildebeest, im-
pala and giraffe showed a recent increase after having declined in 
earlier years. None of these trends were significant as the 85% CI 
between 2010 and 2016 overlapped for all species.

3.3 | Simulations

General additive models based on simulated data sets showed in-
creases for blue wildebeest, impala and giraffe, and decreases for 

://www.nacso.org.na/resources/game-count-data
://www.nacso.org.na/resources/game-count-data
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elephant, warthog and zebra. Kudu trends showed a decrease in 
early years (2010–2013), followed by a recovery in the second half 
of the time series (2013–2016) (Figure 3). The models explained 
a substantial amount of variation in the data (92%–75%) for blue 
wildebeest, giraffe, warthog and impala and explained less than 
50% of the variation for kudu, zebra and elephant (Table 4). None 
of these trends were significant as all 85% CI overlapped between 
2010 and 2016 for all species.

3.4 | Comparison between spoor and distance 
survey estimates

Density estimates between spoor and distance surveys showed 
relative agreement for most species (Figure 4). CIs showed large 
overlap between the two methods, with the largest discrepancies 
seen in impala, zebra and warthog density estimates. Comparison 
of precisions showed the methods to produce similar results, with 
a mean difference in precision of 77%. Of the 29 comparisons, 
distance sampling estimates were more precise in 15 cases, while 
FMP estimates were more precise in 13 cases, and one case result-
ing in equal precision (Table 5).

4  | DISCUSSION

An integral component underpinning sustainable utilisation of 
natural resources is monitoring. In this study, the FMP approach 
was applied for the first time to ecological data collected largely 
by community members in a communal conservancy in Namibia to 
estimate and explore trends in density. Through achieving density 
estimates for 10 species, including cryptic species, we demon-
strated the value of the FMP's application to spoor count data for 
monitoring a wide range of species in different functional groups. 
Findings suggest a general but nonsignificant positive temporal 
trend for five species (blue wildebeest, common impala, common 
duiker, giraffe and kudu) and a negative trend for four species 
(eland, elephant, plains zebra and warthog). Nonetheless, the de-
rived density estimates and observed temporal trends suffer from 
several limitations in both the spoor index and day range compo-
nents of density estimation using the FMP formula.

Firstly, density estimates were likely underestimated because 
the sampling protocol used at Salambala and other conservancies 
in Namibia requires trackers to record individual animals’ spoor 
once only, and to disregard spoors linked to animals directly 
sighted. Thus, many spoor‐transect interceptions that are required 
for accurate FMP density estimation are unrecorded by pres-
ent sampling protocols. This is illustrated by the zebra data set, 
whereby a potential total of 10,174 spoors were not recorded over 
the seven years (10,828 direct sightings – 654 spoors). The impact 
of this shortcoming on density estimates is therefore potentially 
substantial in confounding trends if detectability varied between 
years.
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Secondly, both accuracy and precision of density estimates 
were likely affected by applying allometrically derived substitutes 
for empirical day range estimates. We were constrained to this ap-
proach by the general scarcity of precise, regional, day range esti-
mates, particularly for herbivores species. The sources used likely 
failed to capture all heterogeneity in movements. While the use of 
allometric relationships to derive day range estimates is a scien-
tifically valid method (Aguilar‐Trigueros, Rillig, & Crowther, 2017; 
Carbone et al., 2005; Keeping, 2014), our allometric movement es-
timates captured less variation compared to movement estimates 
based on empirical methods such as tracking or GPS collars. This 
is because a single mean estimate of day range for each species 
was used; thus, the allometric approach utilised inter‐species vari-
ation rather than within‐species variation. For example, empirical 
GPS tracking data for African buffalo had higher variation in day 
range (SD 3.73 km) than those derived allometrically in this study 
(SD 1.57 km). Thus, allometrically derived movement estimates led 
to an overestimate in density estimate precision. Future efforts to 
utilise allometric estimates of day range applied to FMP could be 
improved by creative analyses that incorporate the within‐species 
variation in day range to estimate variance more fairly.

Thirdly, empirical movement estimates for mammal species 
are typically determined from telemetry data with coarse tem-
poral resolutions (Owen‐Smith, Fryxell, & Merrill, 2010; Naidoo 
et al., 2012). This is also a potential source of bias. In this study, 
time intervals between GPS fixes were ≥1 hr (Bartlam‐Brooks 
et al., 2013; Naidoo et al., 2012). GPS fixes set to such intervals 
can severely underestimate total day range (Rowcliffe, Carbone, 
Kays, Kranstauber, & Jansen, 2012), as they fail to capture fine‐
scale movement, such as movement during foraging (Owen‐Smith 
et al. 2010). These same constraints apply to literature‐based 
range estimates as these are often based on telemetry data. 
Underestimating day range results in an overestimation of FMP‐
based density. Possibilities to correct this include technological 
advances in micro‐transmitters that record animal movements 
at sub‐second intervals (Wilson, Shepard, & Liebsch, 2008). 

However, in many tracking environments in which the FMP can be 
applied, it also possible to simply follow (trail) the tracks of animals 
using hand‐held GPS units to obtain near‐perfect tracings of their 
day ranges (Keeping & Pelletier, 2014; Stephens et al., 2006).

The main limitation and potentially confounding factor to esti-
mating trends was our assumption that day ranges remained con-
stant from 2010 to 2016. Any trends were thus resulting entirely 
from the spoor count component of FMP density estimates while 
inter‐annual species day ranges were assumed constant. The degree 
to which this assumption is likely to have been violated implicates 
our confidence in trends. There were fluctuations in annual rainfall 
(CV 20%) across the study period. Such variable rainfall influences 
ungulate movement in response to resource availability (Ogutu, 
Piepho, Dublin, Bhola, & Ried, 2008; Ogutu et al., 2016). Notably, the 
assumption of constant day range is implicitly assumed whenever 
spatial–temporal comparisons of repeat spoor surveys are made, 
including index‐density calibration approaches (e.g. Winterbach et 
al., 2016), unless re‐calibrated to local conditions every survey. The 
extent by which average day range fluctuates from year to year re-
quires further investigation.

Trends generated from the simulated data set (all spoors and 
all direct sightings) retrieved similar trends as those based only on 
spoors. This suggests sampling error was minimised as observers 
were relatively consistent year to year omitting tracks made by ani-
mals that were also directly sighted. Indeed, many of the same com-
munity members participated in multiple surveys across the seven 
years and a consistent protocol was used. For these reasons, we are 
confident that observed trends most likely do reflect true trends for 
these species.

Comparisons between FMP and distance sampling showed that 
most estimates and CIs between the two methods were in relative 
agreement. Precision of estimates showed little difference, with 
distance sampling producing more precise estimates in 15 of the 
29 cases, but representing data from three years. However, a linear 
relationship between CIs and density estimates has been shown by 
Barnes (2002), whereby CIs tend to decrease as estimates increase. 

Species
Variation explained 
(%) 85% CI (2010) 85% CI (2016)

African Elephant 65 2.7–27.3 0.5–18.4

Blue Wildebeest 99 10.0–35.5 22.0–69.0

Common duiker 84 7.2–23.6 10.3–36.6

Common impala 90 21.2–44.8 32.8–70.3

Eland 68 3.1–12.2a  1.9–6.7

Giraffe 89 1.5–17.0 1.3–17.6

Greater Kudu 63 12.2–27.7 14.6–27.3

Plains Zebra 45 0.0–16.1 0.0–17.2

Spotted hyena 25 0.03–0.1 0.03–0.3

Warthog 75 5.7–13.9 2.6–7.2

aEland time series begins in 2012 rather than 2010. 

TA B L E  3  Summary of species‐specific 
generalised additive model analysis that 
includes variation explained and 85% 
confidence interval (CI) for years 2010 and 
2016. Variation explained values 
represent the degree of the model fit to 
the data. Lack of overlap between 
confidence intervals of first and last time 
series points suggests a significant 
(p ≤ 0.05) trend
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As FMP density estimates were lower than distance sampling es-
timates in 25 of the 29 comparisons, higher precision from FMP 
results should be expected if all spoors had been recorded during 
sampling. Zebra and impala density estimates varied considerably 
between the two methods, with FMP producing lower estimates. 
Both species exhibit gregarious behaviour, therefore making for 

improved probability of direct sighting, and thus a decrease in spoor 
data due to the sampling protocol excluding tracks of animals di-
rectly sighted.

Distance sampling density estimates have been calculated using a 3‐
year moving average of the sampling data due to insufficient sightings in 
annual surveys. Using composite estimates creates difficulties regarding 

F I G U R E  2  Species‐specific trend 
in annual density estimates based on 
generalised additive (GAM) models. 
Dotted lines represent the GAM model 
95% confidence intervals for the entire 
time series. For eland, the distance 
between the confidence intervals and the 
GAM model line is too small to distinguish 
between the two
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the interpretation of results, as well as possibly compromising their va-
lidity. Moving averages mask sudden changes in the data within certain 
years, thus leading to potential bias in decisions made on an annual basis 

(e.g. hunting quotas). Pooling data from three survey years also implies 
that distance sampling requires three times the current sampling effort 
in order to calculate robust annual density estimates.

F I G U R E  3  Species‐specific trend 
in annual density estimates based on 
generalised additive (GAM) models. 
Models use complete data from both 
spoor and observational data sets 
(simulation 100%). Dotted lines represent 
the GAM model 95% confidence intervals 
for the entire time series. For eland, the 
distance between the confidence intervals 
and the GAM model line is too small to 
distinguish between the two

Species
Variation Explained 
(%) 85% CI (2010) 85% CI (2016)

Blue Wildebeest 92 11.5–42.3 35.6–96.8

Common impala 75 30.1–60.0 54.2–123.3

Elephant 39 3.6–52.4 2.9–64.5

Giraffe 88 2.5–8.2 2.4–11.0

Greater Kudu 42 14.5–31.5 16.3–33.9

Plains Zebra 46 0.0–930.3 0.0–124.3

Warthog 78 12.3–26.0 5.0–18.2

TA B L E  4  Summary of species‐specific 
generalised additive model analysis for 
simulated data sets that includes variation 
explained and 85% confidence interval (CI) 
for years 2010 and 2016. Variation 
explained values represent the degree of 
the model fit to the data. Lack of overlap 
between confidence intervals of first and 
last time series points suggests a 
significant (p ≤ 0.05) trend
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By using the FMP, we were able to derive estimates for species 
that are elusive (e.g. carnivores) or occurring in low densities. In 
only two cases could densities not be calculated using spoor data 
(eland in 2010 and 2011), while distance sampling data combined 
from three years failed to calculate densities in many cases. The 
FMP's ability to monitor multiple species is worth noting as this 
is a prerequisite for monitoring community structure (Cromsigt & 

Olff, 2008), functional diversity and, consequently, in preserving 
ecosystem functions (Cadotte, Carscadden, & Mirotchnick, 2011).

Temporal trends suggest that six of the 10 species popula-
tions are stable. This is of importance to conservancies and vari-
ous stakeholders as on one hand it reflects the effects of current 
management efforts, and on the other the need to concentrate 
efforts to species identified as potentially declining. Species 

F I G U R E  4  Species‐specific annual density estimates and 95% confidence intervals comparing spoor counts (solid line) to distance 
sampling (dotted line). Years with no estimates are years where distance sampling was unable to produce estimates due to insufficient 
sightings. Estimates without confidence intervals are due to intervals not being reported
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which showed steep but nonstatistically significant decreases in 
population size were eland, elephant, warthog and zebra. Eland 
was re‐introduced into the conservancy in 2012 and the popu-
lation may have not yet established itself. It is also possible that 
the population is failing to persist in the study area or that other 
factors may be suppressing its growth. Human encroachment, 
poaching and policy do negatively affect ungulate abundance 
(Ogutu et al., 2016). Eland in particular are sensitive to human 
disturbance, highly sought after for their meat, and hunted read-
ily without firearms (D. Keeping personal observation). Warthog 
decreases may be due to retaliation and or poaching, as warthogs 
can cause agricultural damages and are often hunted opportu-
nistically (Kalher & Gore, 2015; Swanepoel, Leslie, & Hoffman, 
2016). Elephant populations have declined across the African 
continent (with the exception of a few national park areas) 
(Chase et al.., 2016) with poaching possibly being a major driver 
in Namibia (Nakale, 2017). Zebra declines have been linked to 
fluctuations in rainfall (Georgiadis, Hack, & Turpin, 2003), and as 
the largest decrease in population occurred in the year with the 
least rainfall, it is possible that the observed trend is linked with 
rainfall patterns. Since Salambala Conservancy is not fenced in 
any way, it is possible that the zebra population relocated into 

the Chobe National Park during the recent drier years. Hyaena 
are often implicated in human–wildlife conflict incidents and re-
moved at times (NACSO, 2016). For the 10 stable species, the 
lack of relationship between dry season density estimates and 
annual rainfall may be because these species respond differently 
to rainfall patterns (Ogutu et al., 2008). Thus, these findings 
demonstrate that there is a need to acquire improved density 
estimates and implement a more fine‐scale demographic moni-
toring that can allow for proper assessment of how these species 
respond to environmental changes. The FMP approach, given an 
adjustment of spoor survey protocol and improved day range es-
timation, could make a valuable contribution to future monitoring 
and the inference derived therefrom.

Only two species, zebra and blue wildebeest, showed trends that 
differed between those retrieved using only the spoors data set ver-
sus the simulated data set. We suggest the simulated trend is likely 
more accurate for both species given the large proportion of spoor 
neglected for direct sightings. Also, the gregarious behaviour of 
these two species may lead them to be undercounted by their spoor 
if group sizes are large (Keeping et al., 2018), and since they are 
both highly visible and relatively abundant, direct sightings methods 
might rather be preferred (Caro, 2016).

Species

Percentage confidence length

2010 2011 2012 2013 2014 2015 2016

African elephant

Spoor count 351 328 360 357 329 347 403

Distance sample N/A N/A N/A 330 N/A N/A N/A

Blue wildebeest

Spoor count 160 150 138 134 131 127 148

Distance sample N/A N/A N/A 315 222 N/A N/A

Common duiker

Spoor count 153 157 170 167 252 166 165

Distance sample 175 150 N/A 159 134 99 202

Common impala

Spoor count 102 110 176 121 159 113 100

Distance sample 253 161 110 111 121 113 N/A

Giraffe

Spoor count 380 411 415 385 446 428 406

Distance sample N/A 189 N/A N/A N/A N/A N/A

Greater Kudu

Spoor count 111 104 105 109 112 87 85

Distance sample N/A N/A 201 203 251 259 225

Plains zebra

Spoor count 544 476 498 422 465 449 542

Distance sample N/A N/A N/A 309 N/A N/A N/A

Warthog

Spoor count 119 95 132 191 184 113 136

Distance sample 146 133 83 85 88 78 99

TA B L E  5  Percentage confidence 
length for spoor count and distance 
sampling density estimates. Calculated as 
confidence interval length divided by 
mean density estimate × 100. Lower 
values indicate higher levels of precision
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In conclusion, by applying the FMP formula to routine moni-
toring data collected by community members of a communal con-
servancy it was possible to derive density estimates for 10 species 
recorded in the study area between 2010 and 2016. This was an 
improvement over the currently employed distance method which 
only generated density estimates for eight species, of which only 
two species had density estimates for the entire range of 2010–
2016. These findings demonstrate the potential of this technique to 
monitor a wider number of species than the conservancy's distance 
surveys. However, as the reliability of FMP depends on appropriate 
day range estimates which remain a substantial knowledge gap, we 
recommend double sampling using simultaneous line transects. We 
also recommend that future surveys in this and other conservancies 
record all spoors regardless of individual identity or whether those 
animals are doubly recorded as line transect observations and that 
accurate day range estimates are obtained over a period of several 
years. The latter might be accomplished through local experienced 
trackers trailing animals. If these recommendations are met, then the 
FMP method could be an invaluable tool for monitoring and conserv-
ing multispecies.
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